首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Silver nanoparticles as a new generation of antimicrobials   总被引:7,自引:0,他引:7  
Silver has been in use since time immemorial in the form of metallic silver, silver nitrate, silver sulfadiazine for the treatment of burns, wounds and several bacterial infections. But due to the emergence of several antibiotics the use of these silver compounds has been declined remarkably. Nanotechnology is gaining tremendous impetus in the present century due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Metallic silver in the form of silver nanoparticles has made a remarkable comeback as a potential antimicrobial agent. The use of silver nanoparticles is also important, as several pathogenic bacteria have developed resistance against various antibiotics. Hence, silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc.  相似文献   

2.
Catechol O-methyltransferase, an enzyme involved in the metabolism of catechol containing compounds, catalyzes the transfer of a methyl group between S-adenosylmethionine and the hydroxyl groups of the catechol. Furthermore it is considered a potential drug target for Parkinson’s disease as it metabolizes the drug levodopa. Consequently inhibitors of the enzyme would increase levels of levodopa. In this study, absorption, fluorescence and infrared spectroscopy as well as computational simulation studies investigated human soluble catechol O-methyltransferase interaction with silver nanoparticles. The nanoparticles form a corona with the enzyme and quenches the fluorescence of Trp143. This amino acid maintains the correct structural orientation for the catechol ring during catalysis through a static mechanism supported by a non-fluorescent fluorophore–nanoparticle complex. The enzyme has one binding site for AgNPs in a thermodynamically spontaneous binding driven by electrostatic interactions as confirmed by negative ΔG and ΔH and positive ΔS values. Fourier transform infrared spectroscopy within the amide I region of the enzyme indicated that the interaction causes relaxation of its β?structures, while simulation studies indicated the involvement of six polar amino acids. These findings suggest AgNPs influence the catalytic activity of catechol O-methyltransferase, and therefore have potential in controlling the activity of the enzyme.  相似文献   

3.
纳米银因具备抗菌谱广、效果好、安全性高等特性,其医疗制品在临床治疗方面应用广泛。现普遍认为纳米银可通过释放银离子(Ag+)和诱导活性氧自由基的表达等方式达到杀菌目的,但其发挥抗菌作用的效果受到表面正电荷和粒子直径等因素影响。本文就纳米银的抗菌机制及临床实践应用进行综述,对现有的各种抗菌材料进行分类,重点探讨纳米银对金黄色葡萄球菌、大肠埃希菌、白假丝酵母菌和铜绿假单胞菌的杀菌和抑菌原理,以及其在抗菌过程中的影响因素,并阐述了纳米银及其复合材料在临床实践中的应用,以期为纳米银抗菌应用方面的后续研究提供一些参考。  相似文献   

4.
The current study reports rapid and easy method for synthesis of eco-friendly silver nanoparticles (AgNPs) using Coriandrum sativum leaves extract as a reducing and covering agent. The bio-reductive synthesis of AgNPs was monitored using a scanning double beam UV-vis spectrophotometer. Transmission electron microscopy (TEM) was used to characterize the morphology of AgNPs obtained from plant extracts. X-ray diffraction (XRD) patterns of AgNPs indicate that the structure of AgNPs is the face centered cubic structure of metallic silver. The surface morphology and topography of the AgNPs were examined by scanning electron microscopy and the energy dispersive spectrum revealed the presence of elemental silver in the sample. The silver phyto nanoparticles were collected from plant extract and tested growth potential and metabolic pattern in (Lupinus termis L.) seedlings upon exposure to different concentrations of AgNPs. The seedlings were exposed to various concentrations of (0, 0.1, 0.3 and 0.5 mg L?1) AgNPs for ten days. Significant reduction in shoot and root elongation, shoot and root fresh weights, total chlorophyll and total protein contents were observed under the higher concentrations of AgNPs. Exposure to 0.5 mg L?1 of AgNPs decreased sugar contents and caused significant foliar proline accumulation which considered as an indicator of the stressful effect of AgNPs on seedlings. AgNPs exposure resulted in a dose dependent decrease in different growth parameters and also caused metabolic disorders as evidenced by decreased carbohydrates and protein contents. Further studies needed to find out the efficacy, longevity and toxicity of AgNPs toward photosynthetic system and antioxidant parameters to improve the current investigation.  相似文献   

5.
Chitosan-based silver nanoparticles were synthesized by reducing silver nitrate salts with nontoxic and biodegradable chitosan. The silver nanoparticles thus obtained showed highly potent antibacterial activity toward both Gram-positive and Gram-negative bacteria, comparable with the highly active precursor silver salts. Silver-impregnated chitosan films were formed from the starting materials composed of silver nitrate and chitosan via thermal treatment. Compared with pure chitosan films, chitosan films with silver showed both fast and long-lasting antibacterial effectiveness against Escherichia coli. The silver antibacterial materials prepared in our present system are promising candidates for a wide range of biomedical and general applications.  相似文献   

6.
In the field of nano-biotechnology, silver nanoparticles (AgNPs) share a status of high repute owing to their remarkable medicinal values. Biological synthesis of environment-friendly AgNPs using plant extracts has emerged as the beneficial alternative approach to chemical synthesis. In the current study, we have synthesized biogenic silver nanoparticles (PG-AgNPs) using the peel extract of Punica granatum as a reducing and stabilizing agent. The as-synthesized PG-AgNPs were characterized and evaluated for their antibacterial and anticancer potential. UV–Visible spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the formation of biogenic PG-AgNPs. The antibacterial potential was assessed against the biofilm of Listeria monocytogenes. The PG-AgNPs were efficacious against sessile bacteria and their biofilm as well. The as-synthesized nanoparticles at sub-MIC values showed dose-dependent inhibition of biofilm formation. Corroborating results were observed under crystal violet assay, Congo red staining, Confocal microscopy and SEM analysis. The anticancer ability of the nanoparticles was evaluated against MDA-MB-231 metastatic breast cancer cells. As evident from the MTT results, PG-AgNPs significantly reduced the cell viability in a dose-dependent manner. Exposure of MDA-MB-231 cells led to the accumulation of reactive oxygen species (ROS). Morphological changes and DNA fragmentation showed the strong positive effect of PG-AgNPs on the induction of apoptosis. Collectively, the as-synthesized PG-AgNPs evolved with synergistically emerged attributes that were effective against L. monocytogenes and also inhibited its biofilm formation; moreover, the system displayed lower cytotoxic manifestation towards mammalian cells. In addition, the PG-AgNPs embodies intriguing anticancer potential against metastatic breast cancer cells.  相似文献   

7.
The present study evaluates the cytogenetic effects of both silver and gold nanoparticles on the root cells of Allium cepa. In this study, the root cells of Allium cepa were treated with both gold and silver nanoparticles of different concentrations (1?mg/L, 5?mg/L and 10?mg/L) along with control for 72?h. Experimental results revealed that after 72?h of exposure, a significant decrease in mitotic index (MI) from 68% (control) to 52.4% (1?mg/L), 47.3% (5?mg/L) and 41.4% (10?mg/L) for gold nanoparticles and 57.1% (1?mg/L), 53% (5?mg/l), 55.8% (10?mg/L) for silver nanoparticles. Through minute observation of the photograph, it was recorded that some specific chromosomal abnormalities such as stickiness of chromosome, chromosome breaks, nuclear notch, and clumped chromosome at different exposure conditions. Therefore, present results clearly suggest that Allium cepa root tip assay could be a viable path through which negative impact of both gold and silver nanoparticles can be demonstrated over a wide range of concentrations.  相似文献   

8.
The drug-resistant bacterial strains' emergence increases day by day. This may be a result of biofilm presence, which protects bacteria from antimicrobial agents. Thus, new approaches must be used to control biofilm-related infections in healthcare settings. In such a study, biological silver nanoparticles were introduced in such a study as an anti-biofilm agent against multidrug-resistant E. coli U12 on urinary catheters. Seven different silver nanoparticles concentrations were tested for their antimicrobial activities. Also, anti-biofilm activities against E. coli U12 were tested. Using the dilution method, the silver nanoparticles concentration of 85 μg/ml was the MIC (Minimum Inhibitory Concentration) that had excellent biocompatibility and showed significant antibacterial activity against E. coli U12. Scanning electron microscopy (SEM) confirmed that the highest efficient dose of silver nanoparticles was 340 μg/ml at 144 h that reduced adhesion of E. coli U12 to the urinary catheter. E. coli U12 cells ruptured cell walls and cell membranes after being examined using transmission electron microscopy (TEM). Thus, biologically prepared silver nanoparticles could be used to coat medical devices since it is effective and promising to inhibit biofilm formation by impregnating urinary catheters with silver nanoparticles.  相似文献   

9.
钩状木霉生物合成纳米银及其杀菌性能   总被引:1,自引:0,他引:1  
【目的】以钩状木霉为微生物材料合成纳米银粒子,并对其杀菌性能进行测定。【方法】将钩状木霉与2 mmol/L的Ag NO3溶液混合暗培养合成纳米银,采用UV-vis、XRD和TEM等方法对纳米银进行表征;利用原子吸收光谱仪和热重分析仪测定并计算银离子的转化率和纳米银的产率;以大肠杆菌和枯草芽孢杆菌为受试菌株检测纳米银的杀菌性能。【结果】钩状木霉与硝酸银混合的培养液颜色为红褐色,UV-vis图谱显示在420 nm左右出现了强的吸收峰;XRD图谱出现了4个特征性衍射峰,分别对应纳米银的4个晶面;TEM照片可以看出纳米银多数为球形,具有单分散性;粒度分布仪显示纳米银具有很窄的粒径分布,在1-13 nm之间,平均粒径为6.69 nm;根据原子光谱吸收仪测定的结果得到银的转化率为84.41%,根据热重分析结果得到纳米银的产率为67.12%;纳米银对大肠杆菌的MBC为10 mg/L,MIC为7 mg/L;对枯草芽孢杆菌的MBC为5 mg/L,MIC为4 mg/L。【结论】钩状木霉与Ag NO3溶液混合培养可以合成纳米银。合成的纳米银大小均匀,粒径小且分布很窄,具有面心立方结构,是纯净的,产率约为67.12%;纳米银对枯草芽孢杆菌的致死效果好于对大肠杆菌的致死效果。  相似文献   

10.
目的探讨纳米银(silver nanoparticles,silver-nps)在体外对腺病毒3型(Adenovirus type 3,ADV3)的抑制作用。方法运用细胞培养技术、MTT测值法、CPE和免疫荧光观察法,分析纳米银对ADV3感染HeLa细胞的预防作用、直接灭活作用以及对ADV3子代病毒体生成的抑制作用。结果纳米银能明显杀伤ADV3,且呈剂量依赖性;纳米银在HeLa细胞上最大无毒浓度(TC0)为52.48μg/ml;ADV3在HeLa细胞上的组织半数感染量(TCID50)为10-2.74/100μl;最大无毒剂量范围内,50、25、12.5、6.25和3.125μg/ml的纳米银分别与100 TCID50ADV3等体积混合,细胞存活率分别为(95.38±2.60)%、(60.51±9.42)%、(57.99±8.72)%、(41.35±3.91)%和(37.88±3.75)%,而100 TCID50ADV3感染HeLa细胞后,测得细胞存活率为(31.92±8.98)%,二者相比差异有统计学意义(P0.05);免疫荧光结果显示,与纯病毒组形成的强特异性荧光相比,纳米银在ADV3吸附细胞后加入、吸附前预处理HeLa细胞和纳米银同ADV3同时作用三种途径特异性荧光都很少见,说明纳米银在不同途径下对ADV3均有抑制作用。结论纳米银对腺病毒3型具有明显的抑制作用。  相似文献   

11.
Nanotechnology has become one of the most promising new approaches for pest control in recent years. In this research, biocompatible silver nanoparticles (Btk-AgNPs) were synthesised by using the entomopathogenic bacterium, Bacillus thuringiensis kurstaki (Btk) as a low-cost and eco-friendly production system. The AgNP samples exhibited a brownish-yellow colour that is characteristic for silver nanoparticles synthesis. Btk-synthesised AgNPs were produced using both the supernatant and pellet of Bt culture at various concentrations and AgNP particles were characterised by UV-Vis spectrophotometer and Dynamic Light Scattering (DLS). The variation of hydrodynamic diameter (Dh) and UV-Vis spectra of silver particles produced by various concentration of culture showed that production of AgNPs was maximised when using 20% for either supernatant or pellet treatments of Bt of culture and the size of particles was around 85?nm for both. The insecticidal efficacy of Btk-synthesised AgNPs against larvae of the cabbage looper, Trichoplusia ni (Hübner) and black cutworm, Agrotis ipsilon (Hufnagel) was tested. Results demonstrated that the treatments of either Btk-synthesised AgNP(s) made with Bt supernatant or Btk-synthesised AgNP(p) using Bt pellet were found to be significantly more virulent toward larvae of T. ni than to A. ipsilon.  相似文献   

12.
目的探讨纳米银广谱的抗菌作用及机制。方法以金黄色葡萄球菌、大肠埃希菌及白假丝酵母菌为研究对象,采用涂布法检测纳米银的杀菌作用,利用细菌呼吸链脱氢酶活性检测及透射电镜探讨纳米银抑菌的作用机制。结果≥0.05μg/mL的纳米银对金黄色葡萄球菌、大肠埃希菌及白假丝酵母菌具有明显的杀菌作用;5μg/mL的纳米银对金黄色葡萄球菌、大肠埃希菌及白假丝酵母菌作用60、30、15和5min均有明显的杀菌作用;纳米银对金黄色葡萄球菌、大肠埃希菌的呼吸链脱氢酶活性具有明显的抑制作用;纳米银对金黄色葡萄球菌、大肠埃希菌和白假丝酵母菌的菌体形态具有明显的破坏作用。结论纳米银对金黄色葡萄球菌、大肠埃希菌和白假丝酵母菌具有高效、迅速及广谱的杀菌作用,这些作用可能与纳米银的多靶位作用机制有关。  相似文献   

13.
This study was aimed to analyze the anti-cancer activity of silver nanoparticles (AgNPs) synthesized using aqueous plant extracts from the rhizome of Curcuma longa and Zingiber officinale. Synergistic aqueous extract of rhizome of C. longa and Z. officinale was used to green synthesis of AgNPs. Characterization of AgNPs was performed using UV–visible spectroscopy, FTIR, X-ray diffraction, TEM, and SEM analyses. Anti-cancer activity of AgNPs against human colon carcinoma (HT-29) cells was tested using MTT assay. UV–Visible spectroscopy analysis indicated the surface plasmon resonance (SPR) sharp peak at 350–430 nm wavelength that corresponds to the production of AgNPs. FTIR analysis reveals that existence of carboxyl (CO) and amine (NH) functional groups in the AgNPs. The X-ray diffraction analysis confirms four spectral peaks at 111, 200, 220, and 311. SEM analysis showed that AgNPs are in a spherical shape with a size of 42–61 nm and TEM analysis showed particle size are ranged between 20–51 nm. Anti-cancer study reveals that AgNPs had shown cytotoxicity against HT-29 cells at the concentrations ranged from 25 to 500 μg/mL and IC50 at 150.8 µg/mL. This study concludes that AgNPs synthesized using rhizome of Z. officinale and C. longa possesses potential anti-cancer activity.  相似文献   

14.
Synthesis of silver nanoparticles using α-NADPH-dependent nitrate reductase and phytochelatin in vitro has been demonstrated for the first time. The silver ions were reduced in the presence of nitrate reductase, leading to the formation of a stable silver hydrosol 10–25 nm diam. and stabilized by the capping peptide. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-Vis absorption. These studies will help in designing a rational enzymatic strategy for the synthesis of nanomaterials of different chemical composition, shapes and sizes as well as their separation.  相似文献   

15.
This investigation displayed the good catalytic activity of silver nanoparticles (AgNPs) on the reduction of methylene blue dye. During this work, Honey was chosen for environmentally reducing and stabilizing agents for preparation of silver nanoparticles then characterized these nanoparticles by ultraviolet–visible spectroscopy (UV–Vis), functional biomolecules were confirmed by Fourier transform infrared spectroscopy (FTIR). Via transmission electron microscopy (TEM), the size and shape of silver nanoparticles revealed that the particles are spherical and monodispersed without major agglomeration, the particle size ranging from 5 to 25 nm, in addition, the largest particle density levels are 5–10 nm, ZETA Seizers studied the size distribution of the colloidal solution. UV/Vis spectrophotometer and HPLC were used to study and analyze the degradation performance of silver nanoparticles on methylene blue. The results show that 92% of methylene blue has been degraded after 72 h. additionally, several new peaks have appeared after treatment of the samples by using HPLC.  相似文献   

16.
17.
Several attempts have been made for green synthesis of silver nanoparticles (AgNPs) using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE) of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii) with LD50 value 514.50 µg/ml.  相似文献   

18.
The present study emphasizes on biogenic synthesis of silver nanoparticles and their bactericidal activity against human and phytopathogens. Nanoparticle synthesis was performed using endosymbiont Pseudomonas fluorescens CA 417 inhabiting Coffea arabica L. Synthesized nanoparticles were characterized using hyphenated spectroscopic techniques such as UV–vis spectroscopy which revealed maximum absorption 425 nm. Fourier transform infrared spectroscopy (FTIR) analysis revealed the possible functional groups mediating and stabilizing silver nanoparticles with predominant peaks occurring at 3346 corresponding to hydroxyl group, 1635 corresponding carbonyl group and 680 to aromatic group. X-ray diffraction (XRD) analysis revealed the Bragg’s diffraction pattern with distinct peaks at 38° 44°, 64° and 78° revealing the face-centered cubic (fcc) metallic crystal corresponding to the (111), (200), (220) and (311) facets of the crystal planes at 2θ angle. The energy dispersive X-ray spectroscopy (EDS) analysis revealed presence of high intense absorption peak at 3 keV is a typical characteristic of nano-crystalline silver which confirmed the presence of elemental silver. TEM analysis revealed the size of the nanoparticles to be in the range 5–50 nm with polydisperse nature of synthesized nanoparticles bearing myriad shapes. The particle size determined by Dynamic light scattering (DLS) method revealed average size to be 20.66 nm. The synthesized silver nanoparticles exhibited significant antibacterial activity against panel of test pathogens. The results showed Klebsiella pneumoniae (MTCC 7407) and Xanthomonas campestris to be more sensitive among the test human pathogen and phyto-pathogen respectively. The study also reports synergistic effect of silver nanoparticles in combination with kanamycin which displayed increased fold activity up to 58.3% against Klebsiella pneumoniae (MTCC 7407). The results of the present investigation are promising enough and attribute towards growing scientific knowledge on development of new antimicrobial agents to combat drug resistant microorganisms. The study provides insight on emerging role of endophytes towards reduction of metal salts to synthesize nanoparticles.  相似文献   

19.
《Process Biochemistry》2014,49(6):1054-1061
The phytosynthesis of silver nanoparticles (AgNPs) by Dalbergia spinosa leaves (DSL) in aqueous extract was investigated. AgNPs were characterized by UV–visible absorption spectroscopy (UV–vis), transmission electron microscopy (TEM) and Fourier transform infra red spectrophotometry (FTIR). The results showed that the increase in the initial extract concentration at room temperature increased the mean size and widened the size distribution of the AgNPs, leading to a red shift and broadening the surface plasmon resonance absorption (439 nm). The results showed that the reducing sugars and flavonoids were primarily responsible for the bioreduction of silver ions and that their reductive capability was promoted at 36 °C. TEM analysis showed that the AgNPs were nearly spherical in shape with an average size of 18 ± 4 nm. When evaluated for in vitro antioxidant activity by DPPH, NO, hydrogen peroxide radicals, reducing power and CUPRAC assay methods in addition to anti-inflammatory activity by HBRC method, the silver nanoparticles exhibited considerably enhanced antioxidant and anti-inflammatory activity at the test doses when compared with that of the standards and the plant extract. Finally, the antibacterial activity of the AgNPs against two Gram-positive bacteria and two Gram-negative bacteria showed moderate antibacterial activity when compared with the standard and the plant extract. The synthesized silver nanoparticles were also effective in the catalytic reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP).  相似文献   

20.
In our study, green synthesis of silver nanoparticles was carried out using a red algae Gelidium corneum extract as reducing agent. The obtained silver nanoparticles were characterized by UV–vis, TEM, XRD, FTIR and ICP-MS measurements. FTIR measurements indicated the possible functional groups responsible for the stabilization and reduction of nanoparticles, while XRD analysis results explained the crystalline structure of the particles with centric cubic geometry. TEM micrographs showed that the size of the nanoparticles was between 20–50 nm. According to the broth microdilution test results, AgNPs showed a high antimicrobial activity with very low MIC values (0.51 μg/ml for Candida albicans yeast and 0.26 μg/ml for Escherichia coli bacteria). The different ultrastructural effects of silver nanoparticles on yeast and bacterial cells were observed by TEM. Antibiofilm efficacy studies were also examined in two stages as prebiofilm and postbiofilm effect. In prebiofilm effect studies, AgNPs (0.51 μg/ ml) exhibited 81% reducing effect on biofilm formation. The highest reduction rate in postbiofilm studies was 73.5% and this was achieved with 2.04 μg/ml AgNPs. Our data support that the silver nanoparticles obtained by this environmentally friendly process have potential to be used for industrial and therapeutic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号