首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Essential oils are very popular among organic growers because they are ecologically safe, do not have mammalian toxicity, and cannot be resistant to a variety of contaminants. Four essential oils, Lemon, Lavender, Peppermint, and Neem, were tested for larvicide efficacy against the dengue fever vector Aedes aegypti larvae under laboratory conditions using dipping bioassay techniques. Among the essential oils tested, lemon, peppermint, and lavender oils showed high larvicidal activity against larvae of Ae. aegypti. Lemon oil showed the highest effects (LC50 10.676 ppm), while Peppermint, Lavender and Neem oil showed the lowest effects (LC50 21.380, 29.818 and 38.058 ppm, respectively). As a result, the mixture of lemon oil (LC50) with Peppermint oil (LC25) showed the highest co-toxicity factor, whereas the mixture of Lemon oil (LC50) with Diesel oil (LC25) showed the lowest co-toxicity factor. Based on the results of this study, it appears that essential oils may be useful as larvicides against Ae. aegypti larvae. In search of new natural larvicides, these compounds may provide an alternative to Synthetic insecticides as these are environmentally safe insecticides.  相似文献   

2.
The efficacy of three formulations (i.e., natural lavender crude, essential oil, and gel) extracted from Lavender angustifolia was tested against vectors of the epidemic dengue virus, Aedesaegypti, to evaluate their larvicidal activity effect. The ethanolic extract of the lavender crude was prepared using a rotary evaporator, while the other extracts, such as essential oil and gel, were obtained from iHerb, a supplier of medicinal herbs in the US. The mortality rate of larvae was evaluated 24 h after exposure. Larvicidal activity of the lavender crude was 91% mortality at 150 ppm, 94% for essential oil at a concentration of 3000 ppm, and 97% for lavender gel at a 1000 ppm. Natural lavender crude was one of the most promising extracts tested against Ae.aegypti larvae, with lethal concentrations at LC50 and LC90 of 76.4 and 174.5 ppm post-treatment. The essential oil had the least effect on mosquito larvae, with LC50 and LC90 reaching 1814.8 and 3381.9 ppm, respectively. The lavender gel was moderately effective against Ae. aegypti larvae, with LC50 and LC90 values reaching 416.3 and 987.7 ppm after exposure. The occurrence of morphological abnormalities in the larvae treated with the three compounds, in turn, resulted in an incomplete life cycle. Therefore, our results indicated that natural lavender crude displayed the highest larvicidal activity against larvae, followed by gel and essential oil. Thus, this study concluded that lavender crude is an effective, eco-friendly compound that can be used as an alternative to chemical products to control vector-borne epidemic diseases.  相似文献   

3.
Mosquito control with essential oils is a trending strategy using aqueous oil nano-emulsions to expand their performance. Sandalwood essential oil and its prepared nano-emulsion used to estimate their larvicidal activities against the 3rd instar larvae of Culex pipiens and Aedes aegypti and their effects on larval tissue detoxifying enzymes. Sandalwood nano-emulsion was characterized by homogeneous, stable, average particles size (195.7 nm), polydispersity index (0.342), and zeta potential (?20.1 mV). Morphologically showed a regular spherical shape in size ranged from 112 to 169 nm that confirmed via scanning electron microscopy. Oil analysis identified sesquiterpene alcohols, mainly santalols, terpenoids, aromatic compounds, fatty acid methyl esters, and phenolic compounds. Larvicidal activities of the oil and its nano-emulsion indicated dose, formulation, and exposure time-related mortality after 24 and 48 h in both species. After 24 h, 100% mortality was detected at 1000 ppm for the nano-emulsion with LC50 of 187.23 and 232.18 ppm and at 1500 ppm for the essential oil with an LC50 of 299.47 and 349.59 ppm against the 3rd larvae Cx. pipiens and Ae. aegypti, respectively. Meanwhile, an enhanced significant effect of the nano-emulsion was observed compared to oil exposure in decreasing total protein content and the activities of alkaline phosphatase and β-esterase enzymes, and increasing α-esterase and glutathione S-transferase activities in larval body tissues. Results demonstrated the enhanced larvicidal potential of sandalwood oil nano-emulsion over that of oil. The effect involved alterations in the detoxifying enzymes based on the existing natural active ingredients against Cx. pipiens and Ae. aegypti larvae.  相似文献   

4.
《Journal of Asia》2022,25(3):101963
Biological control of larval mosquitoes is in great demand due to the development of resistance against synthetic insecticides, environmental toxicity and the inability to protect habitats from further oviposition. In the present study, three botanical essential oils (BEOs) – citronella, eucalyptus, and pine oils – were formulated for the assessment of larvicidal and oviposition repellent efficacies against Culex quinquefasciatus Say, the filaria vector. The GC–MS profiling of BEOs showed the presence of 16 – 19 compounds covering 87.7–93% of oil composition. The resistance status of Culex quinquefasciatus population was evaluated with temephos (LC50 = 0.001 ppm, LC90 = 0.01 ppm). Larval bioassay of emulsifiable concentrate (EC) formulations prepared from eucalyptus and pine oils showed promising efficacy (LC50 = 22.7 and 23.2 ppm) and LC90 (63.8 and 62.4 ppm) compared to citronella oil EC (LC50 = 43.4 ppm and LC90 = 199.0 ppm). The field trials of eucalyptus + pine (1:1 ratio) EC showed 100% larval mortality for 3 weeks at 300 ppm compared to 2 weeks of individual oils. Further, the oviposition attraction index (OAI) for ECs of eucalyptus, pine, and their combination showed complete protection of breeding habitats from oviposition at 1st week and ?0.9 to ?1.0 OAI at 2nd week with slight reduction to ?0.5 at 3rd week. Citronella EC provided shortest larvicidal and oviposition repellent efficacy under the field conditions. The promising mosquitocidal activities of EC formulations of eucalyptus and pine or their combination suggest them as potential biocontrol vector control candidates over citronella oil.  相似文献   

5.
Hydro-distilled essential oil from Kenyan Piper capense (Piperaceae) was analysed by gas chromatography mass spectrometry (GC–MS) and evaluated for larvicidal activity against the malaria vector, Anopheles gambiae. The oil consisted mainly of sesquiterpene hydrocarbons which accounted for 43.9% of the oil. The major sesquiterpenes were δ-cadinene (16.82%), β-bisabolene (5.65%), and bicyclogermacrene (3.30%). The oil also had appreciable amounts of monoterpene hydrocarbons (30.64%), including β-pinene (7.24%) and α-phellandrene (4.76%), and arylpropanoids (8.64%), including myristicin (4.26%). The oil showed larvicidal activity against third instar larvae of A. gambiae, with LC50 and LC90 values of 34.9 and 85.0 ppm, respectively. Most of the larvae died within the first few hours. The high larvicidal activity of this oil was indicated by the fact that over 80% mortality was observed at a concentration of 100 ppm after 24 h. These results compared favourably with the commercial larvicide pylarvex® which had LC50 and LC90 values of 3.7 and 7.8 ppm, respectively. Application of this oil or of products derived from it to larval habitats may lead to promising results in malaria and mosquito management programmes.  相似文献   

6.
Plant secondary metabolites have been recently used for the synthesis of different nanoparticles. The present investigation aimed at evaluating the effect of gold (AuNPs) and silver (AgNPs) nanoparticles synthesized using Acalypha fruticosa leaf extracts to control the mosquito Culex pipiens. The A. fruticosa AuNPs and AgNPs spectra displayed their maximum absorption at 550 nm and 440 nm, respectively. The infrared spectra revealed different functional groups related to different chemical compounds. The larval mortality of aqueous leaf extract of A. fruticosa was 499.54 ppm (LC50) and 1734.06 ppm (LC90) after 24 h of treatment. This study revealed that AuNP (LC50, 30.2 and LC90, 104.83 ppm) and AgNP (LC50, 52.86 and LC90, 157.227 ppm) preparations were highly effective compared to the A. fruticosa extract alone and also more affordable, as a smaller amount was required. The present findings show the potential larvicidal effect of the synthesized AuNPs and AgNPs for the control of mosquito-mediated disease transmission.  相似文献   

7.
The essential oils of leaves, stems and inflorescences of Piper marginatum, harvested in the Atlantic forest in the State of Pernambuco, Brazil, were obtained by hydrodistillation. GC and GC–MS analyses revealed the presence of 40 components accounting, respectively, for 99.6%, 99.7% and 99.1% of the leaf, stem and inflorescence oil, the most abundant being (Z)- or (E)-asarone and patchouli alcohol. The essential oil of the inflorescences exhibited potent activity against the 4th instar of Aedes aegypti with LC10 and LC50 values of 13.8 and 20.0 ppm, respectively. Furthermore, the inflorescence oil did not interfere in the oviposition of A. aegypti females when assayed at 50 ppm. These properties suggest that P. marginatum oil is a potential source of valuable larvicidal compounds for direct use or in conjunction with baits in traps constructed to capture eggs and larvae.  相似文献   

8.
《Journal of Asia》2020,23(1):260-267
The increasing risk of insecticide resistance in mosquito populations has led to the search for new larvicidal agents. Evaluation of bioassay-guided fractionation of the rhizome extract of Alpinia galanga (L.) Willd against Aedes aegypti was assessed. Bioactive fractions were isolated from the rhizome extract of A. galanga using a Soxhlet extractor and chromatography techniques, and subsequently tested against the fourth instar of Culex pipiens. The lethal concentration (LC) was calculated via log-probit analysis. The active fraction was evaluated by gas chromatography-mass spectroscopy (GC–MS) and infrared (IR) analysis. The highest larvicidal potential obtained from bioassays using the Soxhlet apparatus was observed in dichloromethane (DCM) and ethyl acetate (EtoAc) extracts, with LC50 values of 124.49 and 176.30 ppm, respectively, after 24 h of exposure. Subsequently, the DCM extract was subjected to column and thin-layer chromatography. Results of the DCM extraction and the active TLC fraction (F133) of the Rf value 0.5 revealed that LC50 and LC90 values decreased over time. The F133 fraction of A. galanga exhibited zero hatchability (100% mortality) at LC50 (63.416 ppm) and LC25 (31.70 ppm) against Cx. pipiens eggs. GC–MS analysis of the active thin-layer chromatography TLC fraction (F133) revealed the presence of phenol 2 4-bis (1 1-dimethylethyl), which was identified as the major compound. Alpinia galanga extract is a promising candidate for the control of mosquito populations. Further study is required to determine the effect of the extracts on non-target organisms.  相似文献   

9.
Essential oils obtained from the flowers of Dendropanax morbifera were extracted and the chemical composition and larvicidal effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy (GC–MS) revealed that the essential oil of D. morbifera contained 27 compounds. The major chemical components identified were γ-elemene (18.59%), tetramethyltricyclohydrocarbon (10.82%), β-selinene (10.41%), α-zingibirene (10.52%), 2-isopropyl-5-methylbicylodecen (4.2%), β-cubebene (4.19), and 2,6-bis(1,1-Dimethylethyl)-4-phenol (4.01%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L. with an LC50 value of 62.32 ppm and an LC90 value of 131.21 ppm. The results could be useful in search for newer, safer, and more effective natural larvicidal agents against A. aegypti.  相似文献   

10.
Continual application of synthetic insecticides in controlling mosquito larvae has resulted in several problems as build-up of mosquito resistance beside to negative impacts on human health and environment. Discovering new and affordable bio-insecticidal agents with high efficiency, cost effective and target specific become a crucial need. The current study assessed the larvicidal activity of eight methanolic algal extracts belong to three different algal divisions against the 3rd larval instar of Culex pipiens L. (Diptera: Culicidae). Comparative studies showed that four species of red and green algal extracts exhibited good larvicidal activity. Galaxaura elongata and Jania rubens (Rhodophyta), Codium tomentosum and Ulva intestinales (Chlorophyta) showed higher larvicidal potencies than Padina boryana, Dictyota dichotoma, and Sargassum dentifolium (Phaeophyta) and Gelidium latifolium (Rhodophyta). The maximum level of toxicity was achieved by exposure to G. elongata extract with LC50 (31.13 ppm), followed by C. tomentosum (69.85 ppm) then J. rubens (84.82 ppm) and U. intestinalis (97.54 ppm), while the lowest toxicity exhibited by G. latifolium (297.38 ppm) at 72 h post- treatment. The application of LC50 values of G. elongate, J. rubens, C. tomentosum, and U. intestinalis extracts affected the activities of antioxidant enzymes viz. superoxide dismutase, catalase and glutathione peroxidase as oxidative stress markers. An increase of antioxidant enzymes activities was recorded. Therefore, a significant elimination of free radicals, causing toxic effects. Overall, this study casts light on the insecticidal activity of some algal extracts, suggesting the possibility of application of these bio- agents as novel and cost- effective larvicides.  相似文献   

11.
In order to develop an eco-friendly botanical larvicide alternative to the synthetic larvicides, extracts were prepared from the Cinnamomum burmannii (C.B.) and Syzygium aromaticum (S.A.) with hexane using a sonicator. The extracts were evaluated for larvicidal activity individually and in combination against the Culex pipiens larvae. The LC50 value of C.B. and the S.A. hexane extracts tested individually were 184.2 and 363.7 µg/mL against Cx. pipiens respectively. All the combinations of the extract of C.B. and S.A. showed synergistic factors higher than one. Among the different ratios of extracts, the SA25%: CB75% extract was found to be more toxic than the other combinations (LC50:125.7 µg/mL). Midgut cells treated with S.A. 25%: C.B. 75% extract showed severe morphological alterations such as degradation of microvilli; degeneration of epithelial cells, and peritrophic membrane; loss of nuclei, irregular and damage of microvilli. The extract has a promising larvicidal potential against Cx. pipiens, However, the extract was toxic against HUVEC cells, as evident from MTT and cell morphology. Further investigation is required to assess the toxicity of the extract on aquatic animals.  相似文献   

12.
Essential oils from plants may provide environment-friendly alternatives to conventional synthetic insecticides. Here, toxic, repellent, and oviposition deterrent effects of essential oils of six plants: Allium sativum L. (Alliaceae), Azadirachta indica A. Juss. (Meliaceae), Cinnamomum cassia (L.) (Lauraceae), Eucalyptus camaldulensis Dehnh. (Myrtaceae), Piper nigrum L. (Piperaceae), and Thevetia peruviana (Pers.) (Apocynaceae), were evaluated against different life stages of Musca domestica. Bioassays revealed that the essential oils of A. indica, T. peruviana and E. camaldulensis exhibited: a) the highest toxicity on larvae (LC50 = 169.72, 182.23 and 277.01 ppm, respectively), pupae (LC50 = 150.56, 164.84 and 164.87 ppm, respectively) and adults (LC50 = 166.69, 139.15 and 302.75 ppm, respectively) of M. domestica; b) the highest repellency (91.44, 72.19 and 72.80%, respectively) and oviposition deterrent (90.36, 88.82 and 89.13%, respectively) effects on adults of M. domestica, as compared to the other essential oils. Moreover, the speed of mortality caused by essential oils of A. indica (LT50 = 16.85 and 17.06 h for larvae and adults, respectively) and T. peruviana (LT50 = 16.46 and 18.58 h for larvae and adults, respectively) was faster than the rest of the essential oils. On the whole, it might be expected that the essential oils of A. indica, T. peruviana and E. camaldulensis could be developed into a new type of environment-friendly insecticides and/or repellents for the management of M. domestica.  相似文献   

13.
The bio-efficacy of Aloe vera leaf extract and bacterial insecticide, Bacillus sphaericus larvicidal activity was assessed against the first to fourth instars larvae of Aedes aegypti, under the laboratory conditions. The plant material was shade dried at room temperature and powdered coarsely. A. vera and B. sphaericus show varied degrees of larvicidal activity against various instars larvae of A. aegypti. The LC50 of A. vera against the first to fourth instars larvae were 162.74, 201.43, 253.30 and 300.05 ppm and the LC90 442.98, 518.86, 563.18 and 612.96 ppm, respectively. B. sphaericus against the first to fourth instars larvae the LC50 values were 68.21, 79.13, 93.48, and 107.05 ppm and the LC90 values 149.15, 164.67, 183.84, and 201.09 ppm, respectively. However, the combined treatment of A. vera + B. sphaericus (1:2) material shows highest larvicidal activity of the LC50 values 54.80, 63.11, 74.66 and 95.10 ppm; The LC90 values of 145.29, 160.14, 179.74 and 209.98 ppm, against A. aegypti in all the tested concentrations than the individuals and clearly established that there is a substantial amount of synergist act. The present investigation clearly exhibits that both A. vera and B. sphaericus materials could serve as a potential larvicidal agent. Since, A. aegypti is a container breeder vector mosquito this user and eco-friendly and low-cost vector control strategy could be a viable solution to the existing dengue disease burden. Therefore, this study provides first report on the mosquito larvicidal activity the combined effect of A. vera leaf extract and B. sphaericus against as target species of A. aegypti.  相似文献   

14.
Twelve monoterpenes were evaluated for larvicidal and adulticidal activities towards Culex pipiens. Geraniol and cuminaldehyde were the most toxic monoterpenes to larvae, with LC50 values of 38.6 and 38.9 mg/l after 24 h of treatment, respectively, whereas cuminaldehyde was the most potent compound after 48 h of treatment, followed by geraniol and thymol. In fumigant toxicity experiments, (R)-carvone and geraniol were the most toxic monoterpenes against the adults at all three tested concentrations and after both 24 and 48 h. When tested at sublethal concentrations (0.5 LC50), (R)-carvone, (S)-limonene and cuminaldehyde decreased hatchability, pupation and adult emergence and induced high larval mortality. Our results suggest that geraniol, cuminaldehyde and (R)-carvone are promising toxicants against Culex pipiens and could be useful in the search for new natural insecticides.  相似文献   

15.
The larvicidal effect of the crude carbon tetrachloride, methanol and petroleum ether leaf extracts of a widely grown medicinal plant, Ocimum basilicum, against Anopheles stephensi and Culex quinquefasciatus was evaluated. Petroleum ether extract was found to be the most effective against the larvae of both mosquitoes, with LC50 values of 8.29, 4.57; 87.68, 47.25 ppm and LC90 values of 10.06, 6.06; 129.32, 65.58 ppm against A. stephensi and C. quinquefasciatus being observed after 24 and 48 h of treatment, respectively. The efficacy of petroleum ether was followed by that of the carbon tetrachloride and methanol extracts, which had LC50 values of 268.61, 143.85; 446.61, 384.84 ppm and LC90 values of 641.23, 507.80; 923.60, 887.00 ppm against A. stephensi after 24 and 48 h, respectively, and LC50 values of 24.14, 17.02; 63.48, 53.77 ppm and LC90 values of 295.38, 204.23; 689.71, 388.87 ppm against C. quinquefasciatus after 24 and 48 h of treatment, respectively. These extracts are highly toxic against mosquito larvae from a range of species; therefore, they may be useful for the management of mosquito larvae to control vector borne diseases.  相似文献   

16.
Effects of methanol extracts of Xanthium strumarium on different cancer cell lines and on the mortality rates of Aedes caspius, Culex pipiens (Diptera: Culicidae) were investigated. Among the cell lines tested, the Jurkat cell line was the most sensitive to the methanol extract and ethyl acetate fraction, with reported LC50 values of 50.18 and 48.73 μg/ml respectively. Conversely, methanol extracts were not that toxic to the A549 cell line though the toxicity increased on further purification. The percentage of growth inhibition was dose dependent for the methanol extract and ethyl acetate fraction. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The results showed that methanol extracts of plant seeds caused 100% mortality of mosquito larvae at a concentration of 1000 μg/ml after 24 h of treatment. The LC50 and LC90 values of X. strumarium were found to be 531.07 and 905.95 μg/ml against Ae. caspius and 502.32 and 867.63 μg/ml against Cx. Pipiens, respectively. From the investigations, it was concluded that the crude extract of X. strumarium showed a weak potential for controlling the larval instars of Ae. caspius and Cx. pipiens. However, on further purification the extract lost the larvicidal activity. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The ethyl acetate fraction investigated in this study appears to have a weak larvicidal activity but a promising cytotoxic activity. Future studies will include purification and investigation in further detail of the action of X. strumarium on Cancer Cell Lines and mosquitoes.  相似文献   

17.
The larvicidal activity of essential oils of four species of Piper from the Amazon Forest was tested using third-instar larvae of Aedes aegypti. The oils were extracted by steam distillation and analyzed by GC and GC–MS. The main components isolated from each Piper species were as follows: viridiflorol (27.50%), aromadendrene (15.55%) and β-selinene (10.50%) from Piper gaudichaudianum; β-selinene (15.77%) and caryophyllene oxide (16.63%) from Piper humaytanum; dillapiol (54.70%) and myristicin (25.61%) from Piper permucronatum; and asaricin (27.37%) and myristicin (20.26%) from Piper hostmanianum. Amongst all essential oils tested, the most active against larvae of A. aegypti was the oil extracted from P. permucronatum, with a LC50 = 36 μg/ml (LC90 = 47 μg/ml), followed by the essential oil of P. hostmanianum, with a LC50 = 54 μg/ml (LC90 = 72 μg/ml). The oils with higher content of arylpropanoids were more active against larvae of A. aegypti.  相似文献   

18.
The use of nanoparticles for various purposes, including pest control, has become increasingly popular because of their cost and environmental safety. In the present study, gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were synthesized in an extract of Senna alexandrina Miller leaves with the aim of use against vectors of disease such as Culex pipiens L. (the filarial vector in Saudi Arabia). The nanoparticles were characterized by scanning electron microscopy and spectroscopic techniques. The larvicidal activity of the nanoparticles against Cx. pipiens was evaluated according to the protocol of the World Health Organization. According to the lethal concentration LC50, the result shows differentiation in the sensitivity on mosquitoes. The AuNPs (51.383 ppm) the best one followed by AgNPs (52.525 ppm) while S. alexandrina leaf extract alone (355.25 ppm), the lowest effectiveness. Generally, the Cx. pipiens mosquito larvae proved to be more susceptible to AuNPs and AgNPs than leaf extract alone by about 6.91 and 6.76 times, respectively.  相似文献   

19.
The current works report the bio-efficacy of Pimenta dioica leaf derived silver nanoparticles (Pd@AgNPs) and leaf extract obtained trough different solvents against the larvae of malaria, filarial and dengue vectors. Synthesis of silver nanoparticles (AgNPs) was done by adding 10 ml of P. dioica leaf extract into 90 ml of 1 mM silver nitrate solution, a slow colour change was observed depicting the formation of AgNPs. Further, Pd@AgNPs was confirmed through Ultraviolet–visible spectroscopy which exhibited characteristic absorption peak at 422 nm wavelength. X-ray diffraction and selected area electron diffraction analysis confirmed monodispersed and crystalline nature of Pd@AgNPs with 32 nm an average size. Scanning electron microscopy and transmission electron microscopy showed the most of Pd@AgNPs were spherical and triangular in shape and energy-dispersive X-ray spectroscopy revealed silver elemental nature of nanoparticles. Zeta potential of Pd@AgNPs is highly negative which confirmed its stable nature. Pd@AgNPs showed prominent absorption peaks at 1015, 1047, 1243, 1634, 2347, 2373, 2697 and 3840 cm?1 which are corresponding to following compounds polysaccharides, carboxylic acids, water, alcohols, esters, ethers, amines, amides and phenol, respectively as reported by Fourier-transform infrared spectroscopy analysis. Gas chromatography–mass spectrometry and Liquid chromatography–mass spectrometry analysis revealed 39 and 70 compounds, respectively, which might be contributed for bio-reduction, capping, stabilization and larvicidal behavior of AgNPs. A comparable lethality (LC50 and LC90) was observed in case of Pd@AgNPs over leaf extract alone. The potential larvicidal activity of Pd@AgNPs was observed against the larvae of Aedes aegypti,(LC50, 2.605; LC90, 5.084 ppm) Anopheles stephensi (LC50, 3.269; LC90, 7.790 ppm) and Culex quinquefasciatus (LC50, 5.373; LC90, 14.738 ppm without affecting non-targeted organism, Mesocyclops thermocyclopoides after 72 hr of exposure. This study entails green chemistry behind synthesis of AgNPs which offers effective technique for mosquito control and other therapeutic applications.  相似文献   

20.
Preventive measures based in the control of insect vectors are considered as the best choice to decrease the incidence of insect-borne diseases. Herein we report on the volatile content of the leaf essential oils from Marina neglecta, a medicinal plant distributed in the tropical regions of southern Mexico. In order to investigate the chemical variation of the essential oils, a volatile screening was performed during the four seasons of the years 2016–2019. Simultaneously, their biological activity was tested on distinct life stages of Meccus pallidipennis, M. bassolsae, Aedes aegypti and A. albopictus. Essential oils were mainly constituted of β-pinene (>30%) β-caryophyllene (>25%) and germacrene D (>13%). Dorsal-abdomen application of essential oils on triatomines, revealed an efficient LC50 for nymphs of the stages I to III (4 µg/insect), nymphs of the stages IV to V (5–6 µg/insect), and adults (7–8 µg/insect). The LT50 for the stages I to III was between 6 and 8 h, whereas that for the stages IV to V and adults oscillated between 12 and 16 h and 22 to 26 h, respectively. Fumigation experiments performed on nymph V, demonstrated that 300 µg L?1 air produced 100% mortality after 72 h post-treatment. Among tested volatiles, β-pinene and β-caryophyllene produced a comparable mortality rate (p < 0.01) than that of essential oils in the stages assayed. Essential oils showed strong larvicidal (LC50, 24–36 µg mL?1) and adulticidal (35–48 µg mL?1) activities in mosquito species with an LT50 of 4.5 h and 25–35 min, respectively. The evaluation of β-pinene produced a significant mortality rate (p < 0.01) in larvae whereas germacrene D was the most effective volatile (p < 0.01) against adults of both mosquito species. According to our results, β-pinene was the most effective volatile against the four insect species evaluated and its effect was comparable to that of the essential oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号