首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MicroRNA(miRNA)是一种高保守,长度大概21-23个核苷酸,非蛋白编码RNA,起着调节基因表达的作用。近年来有关miRNA与肺癌的关系已经得到证实,并且成为当前研究的热点。miRNA能整体调节基因表达,这使得miRNA表达谱在作为生物信号方面比蛋白编码基因更具有提示作用。最近发现miRNA以被保护的状态存在于循环血液中,这使得miRNA表达的发现具有非侵袭性、重现性以及易检测性。研究显示血浆miRNA表达谱可作为肺癌生物信号分子,在肺癌早期诊断、判断预后和指导化疗药物应用等方面具有重要作用。本文将对血浆miRNA与肺癌的研究进展,以及在肺癌早期诊断、判断预后和指导化疗药物应用等方面作一综述。  相似文献   

4.
胃癌是人类最常见的肿瘤之一,其发病机制尚不完全清楚.微小RNA(microRNA,miRNA)是一组最近发现的长度为22个核苷酸左右的非编码RNA,具有负性调控基因表达的功能.本文对miRNA在胃癌发生中的作用及其表达调控机制进行综述.不断有文献显示,miRNA在多种肿瘤(包括胃癌)的发生过程中发挥着重要作用.作者和其他研究人员发现,miRNA的表达异常(如:miR-421和miR-21的上调或/和miR-31和miR-218的下调等)与胃癌的发生相关,提示miRNA是胃癌发生的重要因素.目前,miRNA表达的分子机制尚未完全明了.最近研究较清楚地显示,miRNA的表达受到DNA甲基化和组蛋白修饰等机制的调控.这说明,胃癌相关miRNA的表达水平受到表观遗传机制的调控。  相似文献   

5.
6.
MicroRNAs (miRNAs) are small RNAs that modulate gene expression by binding target mRNAs. The hundreds of miRNAs expressed in the brain are critical for synaptic development and plasticity. Drugs of abuse cause lasting changes in the limbic regions of the brain that process reward, and addiction is viewed as a form of aberrant neuroplasticity. Using next-generation sequencing, we cataloged miRNA expression in the nucleus accumbens and at striatal synapses in control and chronically cocaine-treated mice. We identified cocaine-responsive miRNAs, synaptically enriched and depleted miRNA families, and confirmed cocaine-induced changes in protein expression for several predicted synaptic target genes. The miR-8 family, known for its roles in cancer, is highly enriched and cocaine regulated at striatal synapses, where its members may affect expression of cell adhesion molecules. Synaptically enriched cocaine-regulated miRNAs may contribute to long-lasting drug-induced plasticity through fine-tuning regulatory pathways that modulate the actin cytoskeleton, neurotransmitter metabolism, and peptide hormone processing.  相似文献   

7.
8.
Cancer is a genetic and epigenetic disease. MicroRNAs (miRNAs), a class of small noncoding RNAs, have been shown to be deregulated in many diseases including cancer. An intertwined connection between epigenetics and miRNAs has been supported by the recent identification of a specific subgroup of miRNAs called “epi-miRNAs” that can directly and indirectly modulate the activity of the epigenetic machinery. The complexity of this connection is enhanced by the epigenetic regulation of miRNA expression that generates a fine regulatory feedback loop. This review focuses on how epigenetics affects the miRNome and how the recently identified epi-miRNAs regulate the epigenome in human cancers, ultimately contributing to human carcinogenesis.  相似文献   

9.
10.
11.
MicroRNAs (miRNAs) regulate target gene expression through translation repression or mRNA degradation. These non-coding RNAs are emerging as important modulators in cellular pathways, and they appear to play a key role in tumorigenesis. With increasing understanding of the miRNA target genes and the cellular behaviors influenced by them, modulating the miRNA activities may provide exciting opportunities for cancer therapy. Here the latest findings of which genes are targeted by each miRNA are reviewed, with particular emphasis on the deciphering of their possible mechanisms and the potential of miRNA-based cancer therapeutics.  相似文献   

12.
MicroRNAs (miRNAs) represent an abundant class of endogenously expressed small RNAs, which is believed to control the expression of proteins through specific interaction with their mRNAs. MiRNAs are non-coding RNAs of 18 to 24 nucleotides that negatively regulate target mRNAs by binding to their 3'-untranslated regions (UTR). Most eukaryotic cells utilize miRNA to regulate vital functions such as cell differentiation, proliferation or apopotosis. The diversity of miRNAs and of their mRNA targets strongly indicate that they play a key role in the regulation of protein expression. To date, more than 500 different miRNAs have been identified in animals and plants. There are at least 326 miRNAs in the human genome, comprising 1-4% of all expressed human genes, which makes miRNAs one of the largest classes of gene regulators. A single miRNA can bind to and regulate many different mRNA targets and, conversely, several different miRNAs can bind to and cooperatively control a single mRNA target. The correlation between the expression of miRNAs and their effects on tumorigenesis and on the proliferation of cancer cells is beginning to gain experimental evidences. Recent studies showed that abnormal expression of miRNAs represents a common feature of cancer cells and that they can function as tumor suppressor genes or as oncogenes. Therefore, this diversity of action for miRNAs on several target genes could be one of the common mechanisms involved in the deregulation of protein expression observed during intestinal disorders. In this review, the emergent functions of miRNAs in colorectal cancer and their potential role in the intestinal inflammatory process are discussed.  相似文献   

13.
14.
Abstract

MicroRNAs (miRNAs) are endogenously produced non-coding RNAs that serve as micromanagers by negatively regulating gene expression. MiRNAs are implicated in several biological pathways including development of neoplasia. Because altered miRNA expression is implicated in the pathobiology of various cancers, these molecules serve as potential therapeutic targets. Using miRNA mimics to restore levels of aberrantly down-regulated miRNAs or miRNA inhibitors to inactivate over-expressed miRNAs shows promise as the next generation of therapeutic strategies. Manipulation of miRNAs offers an alternative therapeutic approach for chemo- and radiation-resistant tumors. Similarly, miRNA expression patterns can be used for diagnosis and to predict prognosis and efficacy of therapy. We present here an overview of how miRNAs affect cancers, how they may be used as biomarkers, and the clinical implications of miRNAs in cancer.  相似文献   

15.
16.
TICs are characterized by their ability to self-renew, differentiate and initiate tumor formation. miRNAs are small noncoding RNAs that bind to mRNAs resulting in regulation of gene expression and biological functions. The role of miRNAs and TICs in cancer progression led us to hypothesize that miRNAs may regulate genes involved in TIC maintenance. Using whole genome miRNA and mRNA expression profiling of TICs from primary prostate cancer cells, we identified a set of up-regulated miRNAs and a set of genes down-regulated in PSs. Inhibition of these miRNAs results in a decrease of prostatosphere formation and an increase in target gene expression. This study uses genome-wide miRNA profiling to analyze expression in TICs. We connect aberrant miRNA expression and deregulated gene expression in TICs. These findings can contribute to a better understanding of the molecular mechanisms governing TIC development/maintenance and the role that miRNAs have in the fundamental biology of TICs.  相似文献   

17.
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two relevant classes of non-coding RNAs (ncRNAs) that play a pivotal role in a number of molecular processes through different epigenetic regulatory mechanisms of gene expression. As a matter of fact, the altered expression of these types of RNAs leads to the development and progression of a varied range of multifactorial human diseases. Several recent reports elucidated that miRNA and lncRNAs have been implicated in pancreatic cancer (PC). For instance, dysregulation of such ncRNAs has been found to be associated with chemoresistance, apoptosis, autophagy, cell differentiation, tumor suppression, tumor growth, cancer cell proliferation, migration, and invasion in PC. Moreover, several aberrantly expressed miRNAs and lncRNAs have the potential to be used as biomarkers for accurate PC diagnosis. Additionally, miRNAs and lncRNAs are considered as promising clinical targets for PC. Therefore, in this review, we discuss recent experimental evidence regarding the clinical implications of miRNAs and lncRNAs in the pathophysiology of PC, their future potential, as well as the challenges that have arisen in this field of study in order to drive forward the design of ncRNA-based diagnostics and therapeutics for PC.  相似文献   

18.
microRNAs(miRNAs)是一类内源性、非编码小分子RNAs(约22 nt),在基因表达调控中发挥关键作用。已有研究表明,miRNAs失调是造成多种人类疾病的原因,如癌症、病毒感染及自身免疫性疾病等。补充或抑制miRNAs功能与活性已成为多种疾病治疗的新策略,抗肿瘤miR-34 mimics、治疗HCV感染的anti-miR-122等基于miRNAs的治疗方案已进入临床试验。重点就miRNAs治疗在癌症及其他疾病中的最新研究进展进行综述,并对目前开发安全有效miRNAs治疗策略所面临的挑战进行分析。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号