首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Electromagnetic field exposure to the nervous system can cause neurological changes. The effects of extremely low-frequency electromagnetic fields, such as second-generation and third-generation radiation, have been studied in most studies. The current study aimed to explore fourth-generation cellular phone radiation on hippocampal morphology and behavior in mice. Swiss albino male mice (n = 30) were randomly categorized into 3 groups; control, 40 min, and 60 min exposure to 2400 MHz radiofrequency electromagnetic radiation (RF-EMR) daily for 60 days. The control mice were housed in the same environments but were not exposed to anything. Anxiety-like behaviors were tested using the elevated plus-maze. For histological and stereological examination, the brain was dissected from the cranial cavity. On Cresyl violet stained brain slices, the number of pyramidal neurons in the cornu ammonis of the hippocampus were counted. In exposed mice compared to control mice, a significant increase in anxiety-like behavior has been observed. Histological observations have shown many black and dark blue cytoplasmic cells with shrunken morphology degenerative alterations in the neuronal hippocampus in the radiation exposed mice. In the RF-EMR mouse hippocampus, stereological analyses revealed a significant decrease in pyramidal and granule neurons compared to controls. Our findings suggest that 2400-MHz RF-EMR cell phone radiation affects the structural integrity of the hippocampus, which would lead to behavioral changes such as anxiety. However, it alerts us to the possible long-term detrimental effects of exposure to RF-EMR.  相似文献   

2.
The radiofrequency electromagnetic radiation emitted by smart phones on biological systems has wide media coverage and public concern in recent years. The aim of this study was to explore the effects of fourth-generation cell phone radiation exposure on hematological (Total leukocyte count, Total erythrocyte count, and hemoglobin %), biochemical (Serum creatinine) parameters, and histopathological changes in the kidney and testis of Swiss albino mice. A total of 30 male Swiss albino mice weighing 45–65 g was randomly divided into three groups (n = 10). The first group A was the control group, the second group B, was exposed to 40 minutes of mobile phone radiation daily, the third group C was exposed to 60 minutes of radiation daily from two 2400 Megahertz fourth-generation connected mobile phones for 60 days, respectively. The electromagnetic radiation frequency radiometer measured the frequency of electromagnetic radiation emitted from cell phones. The specific absorption rate was calculated as 0.087 W/kg. The control group was kept under similar conditions, but the electromagnetic field was not given for the same period. All the mice were sacrificed at the end of the experiment. The blood samples were collected for hematobiochemical study, and then kidney and testis tissues were collected for histopathological study. Results of the study showed that the body weight and total erythrocyte count values were significantly (p < 0.05) decreased while total leukocyte count, hemoglobin %, and serum creatinine values were significantly (p < 0.05) increased in both the radiation exposure groups relative to the control group. Histopathological observation showed the kidney of 60 minutes exposed mice interstitial inflammation that causes marked mononuclear cellular infiltration compared to the 40 minutes and control mice. Compared to control mice, histopathological examinations of testicular tissue from the exposed mice, showed irregular in shapes and non-uniform sizes and fewer spermatogenic cells layer that leads to the larger lumen in the seminiferous tubules. It is concluded that fourth-generation cell phone radiation exposure may affect blood hemostasis and inflammation of mice's kidney and testis tissue. Based on these studies, it is important to increase public consciousness of potential adverse effects of mobile phone radiofrequency electromagnetic radiation exposure.  相似文献   

3.

Background

In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro.

Principal Findings

Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR) tuned to 1.8 GHz and covering a range of specific absorption rates (SAR) from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001). Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure.

Conclusions

RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications for the safety of extensive mobile phone use by males of reproductive age, potentially affecting both their fertility and the health and wellbeing of their offspring.  相似文献   

4.
Recently, there have been several reports referring to detrimental effects due to radio frequency electromagnetic fields (RF-EMF) exposure. Special attention was given to investigate the effect of mobile phone exposure on the rat brain. Since the integrative mechanism of the entire body lies in the brain, it is suggestive to analyze its biochemical aspects. For this, 35-day old Wistar rats were exposed to a mobile phone for 2 h per day for a duration of 45 days where specific absorption rate (SAR) was 0.9 W/Kg. Animals were divided in two groups: sham exposed (n = 6) and exposed group (n = 6).

Our observations indicate a significant decrease (P < 0.05) in the level of glutathione peroxidase, superoxide dismutase, and an increase in catalase activity. Moreover, protein kinase shows a significant decrease in exposed group (P < 0.05) of hippocampus and whole brain. Also, a significant decrease (P < 0.05) in the level of pineal melatonin and a significant increase (P < 0.05) in creatine kinase and caspase 3 was observed in exposed group of whole brain as compared with sham exposed. Finally, a significant increase in the level of ROS (reactive oxygen species) (P < 0.05) was also recorded.

The study concludes that a reduction or an increase in antioxidative enzyme activities, protein kinase C, melatonin, caspase 3, and creatine kinase are related to overproduction of reactive oxygen species (ROS) in animals under mobile phone radiation exposure. Our findings on these biomarkers are clear indications of possible health implications.  相似文献   

5.
The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9 h. A positive control group was treated during 20 min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9 h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9 h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields.  相似文献   

6.
Abstract

Increasing use of mobile phones in daily life with increasing adverse effects of electromagnetic radiation (EMR), emitted from mobile on some physiological processes, cause many concerns about their effects on human health. Therefore, this work was designed to study the effects of exposure to mobile phone emits 900-MHz EMR on the brain, liver and kidney of male albino rats. Thirty male adult rats were randomly divided into four groups (10 each) as follows: control group (rats without exposure to EMR), exposure group (exposed to 900-MHz EMR for 1?h/d for 60?d) and withdrawal group (exposed to 900-MHz electromagnetic wave for 1?h/d for 60?d then left for 30?d without exposure). EMR emitted from mobile phone led to a significant increase in malondialdehyde (MDA) levels and significant decrease total antioxidant capacity (TAC) levels in brain, liver and kidneys tissues. The sera activity of alanine transaminase (ALT), aspartate aminotransferase (AST), urea, creatinine and corticosterone were significantly increased (p?<?0.05), while serum catecholamines were insignificantly higher in the exposed rats. These alterations were corrected by withdrawal. In conclusion, electromagnetic field emitting from mobile phone might produce impairments in some biochemicals changes and oxidative stress in brain, liver and renal tissue of albino rats. These alterations were corrected by withdrawal.  相似文献   

7.
目的:探讨产前手机暴露对子代大鼠海马齿状回增殖细胞核抗原(PCNA)和双皮质素(DCX)表达的影响。方法:构建孕鼠手机射频暴露模型,分为对照组、短时暴露组和长时暴露组(n=6),短时和长时暴露组于孕第1-17天分别给予6 h/d和24 h/d的手机通话暴露,观察孕鼠的孕期长短、孕期体重增长和各组的胎儿数、胎儿出生体重。1月龄子代大鼠行焦油紫染色观察海马齿状回细胞形态,免疫组化观察齿状回PCNA和DCX表达,Western blot检测DCX和脑源性神经营养因子(BDNF)表达。结果:各组孕鼠的孕期、妊娠期体重增长和各组的胎儿数、胎儿出生体重无显著差异,长时暴露组子代大鼠的齿状回多形细胞层锥形细胞和DCX阳性细胞出现形态改变。与对照组、短时暴露组比较,长时暴露组子代大鼠齿状回PCNA阳性细胞和DCX、BDNF表达均明显减少(P<0.05)。结论:产前长时手机暴露可能通过改变子代大鼠海马BDNF而影响齿状回的PCNA和DCX表达。  相似文献   

8.
To investigate the effects of exposure to an 1800 MHz electromagnetic field on cell death and cell proliferation in the developing brain, postnatal day 7 (P7) and P21 healthy Kunming mice were randomly assigned into the experimental and control groups. The experimental groups were exposed to an 1800 MHz electromagnetic field for 8 h daily for three consecutive days. The thymidine analog 5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally 1 h before each exposure session, and all animals were sacrificed 24 h after the last exposure. Cell death and proliferation markers were detected by immunohistochemistry in the dentate gyrus of the hippocampus. Electromagnetic exposure has no influence on cell death in the dentate gyrus of the hippocampus in P7 and P21 mice as indicated by active caspase-3 immunostaining and Fluoro-Jade labeling. The basal cell proliferation in the hippocampus was higher in P7 than in P21 mice as indicated by the number of cells labeled with BrdU and by immunohistochemical staining for phosphor-histone H3 (PHH3) and brain lipid-binding protein (BLBP). Electromagnetic exposure stimulated DNA synthesis in P7 neural stem and progenitor cells, but reduced cell division and the total number of stem cells in the hippocampus as indicated by increased BrdU labeling and reduced PHH3 and BLBP labeling compared to P7 control mice. There were no significant changes in cell proliferation in P21 mice after exposure to the electromagnetic field. These results indicate that interference with stem cell proliferation upon short-term exposure to an 1800 MHz electromagnetic field depends on the developmental stage of the brain.  相似文献   

9.
There has been growing concern about the possibility of adverse health effects resulting from exposure to microwave radiations, such as those emitted by mobile phones. The purpose of this study was to investigate the cellular neoplastic transformation effects of electromagnetic fields. 916 MHz continuous microwave was employed in our study to simulate the electromagnetic radiation of mobile phone. NIH/3T3 cells were adopted in our experiment due to their sensitivity to carcinogen or cancer promoter in environment. They were divided randomly into one control group and three microwave groups. The three microwave groups were exposed to 916 MHz EMF for 2 h per day with power density of 10, 50, and 90 w/m(2), respectively, in which 10 w/m(2) was close to intensity near the antenna of mobile phone. The morphology and proliferation of NIH/3T3 cells were examined and furthermore soft agar culture and animal carcinogenesis assay were carried out to determine the neoplastic promotion. Our experiments showed NIH/3T3 cells changed in morphology and proliferation after 5-8 weeks exposure and formed clone in soft agar culture after another 3-4 weeks depending on the exposure intensity. In the animal carcinogenesis study, lumps developed on the back of SCID mice after being inoculated into exposed NIH/3T3 cells for more than 4 weeks. The results indicate that microwave radiation can promote neoplastic transformation of NIH/3T3cells.  相似文献   

10.
Recently, there have been several reports referring to detrimental effects due to radio frequency electromagnetic fields (RF-EMF) exposure. Special attention was given to investigate the effect of mobile phone exposure on the rat brain. Since the integrative mechanism of the entire body lies in the brain, it is suggestive to analyze its biochemical aspects. For this, 35-day old Wistar rats were exposed to a mobile phone for 2?h per day for a duration of 45 days where specific absorption rate (SAR) was 0.9?W/Kg. Animals were divided in two groups: sham exposed (n?=?6) and exposed group (n?=?6). Our observations indicate a significant decrease (P?相似文献   

11.
We have previously identified Ntan1 as a magnetism response gene by differential display screening in cultured rat hippocampal neurons. Ntan1 mRNA was ubiquitously expressed in all the mouse tissues examined but relatively abundant in brain, retina and testis. Ntan1 mRNA expression was detectable in the embryonic 12-day mouse brain and gradually increased with ageing. In situ hybridization analysis showed high localization of Ntan1 mRNA in pyramidal cell layer of CA region and granular cell layer of dentate gyrus in the hippocampus, and Purkinje and granular cell layers in the cerebellum, respectively. Ntan1 mRNA expression was significantly increased about two-fold 12 h after brief exposure for 15 min to magnetism at 100 mT with a gradual decrease thereafter in cultured mouse hippocampal neurons. When embryonic 12-day-old or newborn mice were successively exposed to magnetic fields at 100 mT for 2 h, four times per day until the postnatal seventh day, Ntan1 mRNA was significantly increased about 1.5-2-fold in the hippocampus in vivo. The mice exposed to magnetic fields under the same condition showed significantly decreased locomotor activity. These results suggest that magnetic exposure affects higher order neural functions through modulation of genes expression.  相似文献   

12.
We investigated the role of maternal exposure to human influenza virus (H1N1) in C57BL/6 mice on Day 9 of pregnancy on pyramidal and nonpyramidal cell density, pyramidal nuclear area, and overall brain size in Day 0 neonates and 14-week-old progeny and compared them to sham-infected cohorts. Pyramidal cell density increased significantly (p < 0.0038) by 170% in Day 0 infected mice vs. controls. Nonpyramidal cell density decreased by 33% in Day 0 infected progeny vs. controls albeit, nonsignificantly. Pyramidal cell nuclear size decreased significantly (p < 0.0465) by 29% in exposed newborn mice vs. controls. Fourteen-week-old exposed mice continued to show significant increases in both pyramidal and nonpyramidal cell density values vs. controls respectively (p < 0.0085 E1 (exposed group 1), p < 0.0279 E2 (exposed group 2) pyramidal cell density; p < 0.0092 E1, p < 0.0252 E2, nonpyramidal cell density). By the same token, pyramidal cell nuclear size exhibited 37–43% reductions when compared to control values; these were statistically significant vs. controls (p < 0.04 E1, p < 0.0259 E2). Brain and ventricular area measurements in adult exposed mice also showed significant increases and decreases respectively vs. controls. Ventricular brain ratios exhibited 38–50% decreases in exposed mice vs. controls. While the rate of pyramidal cell proliferation per unit area decreased from birth to adulthood in both control and exposed groups, nonpyramidal cell growth rate increased only in the exposed adult mice. These data show for the first time that prenatal exposure of pregnant mice on Day 9 of pregnancy to a sublethal intranasal administration of influenza virus has both short-term and long-lasting deleterious effects on developing brain structure in the progeny as evident by altered pyramidal and nonpyramidal cell density values; atrophy of pyramidal cells despite normal cell proliferation rate and final enlargement of brain. Moreover, abnormal corticogenesis is associated with development of abnormal behavior in the exposed adult mice.  相似文献   

13.
Cellphone electromagnetic radiation produces temperature alterations in facial skin. We hypothesized that the radiation-induced heat was transduced by warmth-sensing trigeminal neurons, as evidenced by changes in cognitive processing of the afferent signals. Ten human volunteers were exposed on the right side of the face to 1 GHz radiation in the absence of acoustic, tactile, and low-frequency electromagnetic stimuli produced by cellphones. Cognitive processing manifested in the electroencephalogram (EEG) was quantitated by analysis of brain recurrence (a nonlinear technique). The theoretical temperature sensitivity of warmth-sensing neurons was estimated by comparing changes in membrane voltage expected as a result of heat transduction with membrane–voltage variance caused by thermal noise. Each participant underwent sixty 12-s trials. The recurrence variable r (“percent recurrence”) was computed second by second for the ? band of EEGs from two bilaterally symmetric derivations (decussated and nondecussated). Percent recurrence during radiation exposure (first 4 s of each trial) was reduced in the decussated afferent signal compared with the control (last four seconds of each trial); mean difference, r = 1.1 ± 0.5%, p < 0.005. Mean relative ? power did not differ between the exposed and control intervals, as expected. Trigeminal neurons were capable of detecting temperature changes far below skin temperature increases caused by cellphone radiation. Simulated cellphone radiation affected brain electrical activity associated with nonlinear cognitive processing of radiation-induced thermal afferent signals. Radiation standards for cellphones based on a thermal/nonthermal binary distinction do not prevent neurophysiological consequences of cellphone radiation.  相似文献   

14.
15.
Over the last decade, communication industries have witnessed a tremendous expansion, while, the biological effects of electromagnetic waves have not been fully elucidated. Current study aimed at evaluating the mutagenic effect of long-term exposure to 900-MHz radiation on alpha-Int1 gene sequences of Candida albicans. A standard 900 MHz radiation generator was used for radiation. 10 ml volumes from a stock suspension of C. albicans were transferred into 10 polystyrene tubes. Five tubes were exposed at 4 °C to a fixed magnitude of radiation with different time periods of 10, 70, 210, 350 and 490 h. The other 5 tubes were kept far enough from radiation. The samples underwent genomic DNA extraction. PCR amplification of alpha-Int1 gene sequence was done using one set of primers. PCR products were resolved using agarose gel electrophoresis and the nucleotide sequences were determined. All samples showed a clear electrophoretic band around 441 bp and further sequencing revealed the amplified DNA segments are related to alpha-Int1 gene of the yeast. No mutations in the gene were seen in radiation exposed samples. Long-term exposure of the yeast to mobile phone radiation under the above mentioned conditions had no mutagenic effect on alpha-Int1 gene sequence.  相似文献   

16.
电磁辐射对原代培养海马神经元的损伤效应及其机制探讨   总被引:4,自引:0,他引:4  
研究X带高功率微波、S带高功率微波及电磁脉冲辐射对原代培养海马神经元的损伤效应并探讨其机制。通过体外培养原代海马神经元,建立电磁波辐照细胞模型。采用Annexin V-PI双标记、流式细胞术检测细胞凋亡与坏死,原子力显微镜检测细胞膜表面形态,Fluo-3-AM荧光探针负载、激光扫描共聚焦显微镜测定胞内[Ca2 ]i。结果表明,辐射后海马神经元凋亡与坏死均增加,其中坏死增加明显;细胞膜表面粗糙度加大,膜穿孔增多;胞内[Ca2 ]i明显升高。且以上变化均以X带高功率微波组最重,S带高功率微波组次之,电磁脉冲组最轻。提示细胞膜穿孔增多,膜通透性增加,导致胞外Ca2 内流增加,甚至胞内钙超载是辐射致海马神经元凋亡与坏死的机制之一;三种电磁辐射对海马神经元的损伤程度与照射频率呈正相关。  相似文献   

17.
Hazardous health effects resulting from exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from cell phones have been reported in the literature. However, the cellular and molecular targets of RF-EMR are still controversial. The aim of this study was to examine the oxidant/antioxidant status in saliva of cell phone users. Saliva samples collected before using a cell phone as well as at the end of 15 and 30?min calls were tested for two commonly used oxidative stress biomarkers: malondialdehyde (MDA) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-Oxo-dG). The 8-oxo-dG levels were determined by enzyme-linked immunosorbent (ELISA) competitive assay, while the MDA levels were measured using the OxiSelect MDA adduct ELISA Kit. The antioxidant capacity of the saliva was evaluated using the oxygen radical absorption capacity (ORAC) and the hydroxyl radical averting capacity (HORAC) assays according to the manufacture instructions. The mean 8-oxo-dG and the Bradford protein concentrations (ng/ml and mg/ml, respectively) peaked at 15?min. The levels of HORAC, ORAC and MDA progressively increased with time and reached maximum at 30?min. However, there was no significant effect of talking time on the levels of 8-OxodG and MDA. Similarly, there was no statistically significant effect of talking time on the oxygen and hydroxyl radicals averting capacities, (ORAC) and (HORAC), respectively. These findings suggest that there is no relationship between exposure to radio frequency radiation (RFR) and changes in the salivary oxidant/antioxidant profile.  相似文献   

18.
Mobile phones communicate with base stations using 900 MHz microwaves. The current study was aimed to survey the effects of long-term 900 MHz microwave exposure of mice on experimentally induced cutaneous candidiasis. Forty inbred, male, BALB/c mice were randomly divided into four groups. Cutaneous lesions with Candida albicans were experimentally induced on the lateral-back skin of the 20 mice. One group of the diseased mice were exposed (6 h per day and 7 d per week) to 900 MHz microwave radiation, while the other groups were not exposed. Two unexposed control groups were also included. The skin lesions were regularly monitored and the live candida cell density was enumerated using the colony-forming unit (CFU) assay. The process was repeated after a one week resting interval. One week later, all mice were challenged through intra tail veins using LD90 dose of C. albicans. Mortality of the mice was recorded and the candida load of the kidney homogenates from died animals was counted. 900 MHz microwave exposed mice had 1.5 day and 3.7 day delays on wound healing in stages two. Live Candida inoculated Wave exposed (LCW) mice also showed higher yeast loads in skin lesions at days 5, 7 and 9 post inoculation. Survival analysis of live candida challenged mice showed the radiation exposed group is prone to death induced by systemic infection and candida enumeration from the kidney homogenates showed radiation exposed animals have had significantly higher yeast load in the tissue. In collection, long-term 900 MHz radiation exposure of mice led to longevity of skin wounds and susceptibility of the animals to systemic challenge and higher incidences of microorganisms in internal tissues.  相似文献   

19.
Zhao  Liang  Zhang  Chuanyang  Cao  Guilin  Dong  Xueyi  Li  Dongliang  Jiang  Lei 《Neurochemical research》2019,44(11):2506-2516

Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to promote oxidative stress and inflammation in the peripheral tissues, contributing to the pathogenesis of many diseases. Here we examined whether pre-existing higher circulating TMAO would influence cognitive function in aged rats after anesthetic sevoflurane exposure. Aged rats received vehicle or TMAO treatment for 3 weeks. After 2 weeks of treatment, these animals were exposed to either control or 2.6% sevoflurane for 4 h. One week after exposure, freezing as measured by fear conditioning test, microglia activity, proinflammatory cytokine expression and NADPH oxidase-dependent reactive oxygen species (ROS) production in the hippocampus (a key brain structure involved in learning and memory) were comparable between vehicle-treated rats exposed to control and vehicle-treated rats exposed to sevoflurane. TMAO treatment, which increased plasma TMAO before and 1 week after control or sevoflurane exposure, significantly reduced freezing to contextual fear conditioning, which was associated with increases in microglia activity, proinflammatory cytokine expression and NADPH oxidase-dependent ROS production in the hippocampus in rats exposed to sevoflurane but not in rats exposed to control. Moreover, hippocampal expression of antioxidant enzyme methionine sulfoxide reductase A (MsrA) was reduced by TMAO treatment in both groups, and TMAO-induced reduction in MsrA expression was negatively correlated with increased proinflammatory cytokine expression in rats exposed to SEV. These findings suggest that pre-existing higher circulating TMAO downregulates antioxidant enzyme MsrA in the hippocampus, which may sensitize the hippocampus to oxidative stress, resulting in microglia-mediated neuroinflammation and cognitive impairment in aged rats after sevoflurane exposure.

  相似文献   

20.
Li Z  Wang Y  Xie Y  Yang Z  Zhang T 《Neurochemical research》2011,36(10):1840-1849
Many studies have demonstrated the cytoprotective effects of hydrogen sulfide (H2S) in vitro and/or in vivo ischemic injury. The aim of the current study was to investigate whether exogenous H2S attenuates the neuronal injury induced by brain ischemia. As an H2S donor, sodium hydrosulfide (NaHS) was administered intraperitoneally (5.6 mg/kg/day, i.p.). The effects of exogenous H2S on neurons of ischemic hippocampus were examined by using measurement of behavior, electrophysiology, morphology and immunohistochemical staining, respectively. Our results showed that exogenous H2S significantly improved spatial learning and memory deficits induced by brain ischemia (P < 0.01). Exogenous H2S enhanced synaptic plasticity in the hippocampus of brain-ischemic rats, inhibited the edema around pyramidal neurons and the nuclear shrink induced by ischemia, and promoted the expression of growth-associated protein-43 (GAP-43) in the CA1 region of hippocampus post ischemia. The results suggest a protective effect and therapeutic potential of H2S in the treatment of brain ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号