首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the container habitats of immature mosquitoes, catabolism of plant matter and other organic detritus by microbial organisms produces metabolites that mediate the oviposition behavior of Aedes aegypti and Aedes albopictus. Public health agencies commonly use oviposition traps containing plant infusions for monitoring populations of these mosquito species, which are global vectors of dengue viruses. In laboratory experiments, gravid females exhibited significantly diminished responses to experimental infusions made with sterilized white oak leaves, showing that attractive odorants were produced through microbial metabolic activity. We evaluated effects of infusion concentration and fermentation time on attraction of gravid females to infusions made from senescent bamboo or white oak leaves. We used plate counts of heterotrophic bacteria, total counts of 4′,6-diamidino-2-phenylindole-stained bacterial cells, and 16S ribosomal DNA (rDNA) polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) to show that changes in the relative abundance of bacteria and the species composition of bacterial communities influenced attraction of gravid A. aegypti and A. albopictus mosquitoes to infusions. DGGE profiles showed that bacterial species composition in infusions changed over time. Principal components analysis indicated that oviposition responses to plant infusions were in general most affected by bacterial diversity and abundance. Analysis of bacterial 16S rDNA sequences derived from DGGE bands revealed that Proteobacteria (Alpha-, Beta-, Delta-, and Gamma-) were the predominant bacteria detected in both types of plant infusions. Gravid A. aegypti were significantly attracted to a mix of 14 bacterial species cultured from bamboo leaf infusion. The oviposition response of gravid mosquitoes to plant infusions is strongly influenced by abundance and diversity of bacterial species, which in turn is affected by plant species, leaf biomass, and fermentation time.  相似文献   

2.
Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) are highly anthropophilic mosquito species and potential vectors of dengue and yellow fever. The location of suitable sites for oviposition requires a set of visual, tactile, and olfactory cues that influence females before they lay their eggs. In this study, the effect of n‐heneicosane, a recognized oviposition pheromone of Ae. aegypti, on the olfactory receptors of the antennae of Ae. aegypti and Ae. albopictus was studied using electroantennographic detection coupled to gas chromatography (GC‐EAD). A significant electroantennographic response to n‐heneicosane in adult females of both mosquito species was observed. In addition, gravid Ae. albopictus females laid more eggs in substrate treated with n‐heneicosane at 0.1, 1, or 10 p.p.m. than in the control, denoting oviposition attractancy. Conversely, at 30, 50, 100, and 200 p.p.m., more eggs were laid in the control substrate, indicating oviposition repellency. Analysis of the larval cuticle by GC and mass spectrometry confirmed the presence of n‐heneicosane in the cuticles of Ae. albopictus larvae. The species‐specific role of n‐heneicosane as an oviposition pheromone in Ae. aegypti and its significance as a behaviour modifier of Ae. albopictus in breeding sites is discussed.  相似文献   

3.
The impact of the presence of larval mosquito pathogens with potential for biological control on oviposition choice was evaluated for three mosquito species/pathogen pairs present in Florida. These included Aedes aegypti infected with Edhazardia aedis, Aedes albopictus infected with Vavraia culicis, and Culex quinquefasciatus infected with Culex nigripalpus nucleopolyhedrovirus (CuniNPV). Two‐choice oviposition bioassays were performed on each host and pathogen species with one oviposition cup containing infected larvae and the other cup containing uninfected larvae (control). Both uninfected and E. aedis‐infected female Ae. aegypti laid significantly fewer eggs in oviposition cups containing infected larvae. Uninfected gravid female Ae. albopictus and Cx. quinquefasciatus oviposited equally in cups containing uninfected larvae or containing larvae infected with V. culicis or CuniNPV, respectively. Gravid female Ae. albopictus infected with V. culicis did not display ovarian development and did not lay eggs. The decreased oviposition by gravid Ae. aegypti in containers containing E. aedis‐infected larvae may indicate that the infected larvae produce chemicals deterring oviposition.  相似文献   

4.
A novel series of aryl hydrazono esters (AHE) (1-13) were synthesized (yield 76-98%) to study the oviposition responses in Aedes albopictus (Skuse) mosquitoes for the first time. At a concentration of 10 μg ml−1 in dual choice experiment, among the screened compounds, AHE-12 showed remarkable oviposition attractant activity with an oviposition activity index (OAI) of +0.299 (greater than 95% confidence limit) comparable to p-cresol (OAI +0.320) which is well-reported oviposition attractant for Aedes aegypti. Conversely, AHE-10 exhibited highest oviposition deterrent activity with OAI −0.247. The possible utilization of these compounds will be in integrated vector management strategies.  相似文献   

5.
The proposed expansion of biofuels production may cause unintended land‐use changes and potentially alter ecosystem services. This study evaluated the impact of first‐generation (corn) and second‐generation (switchgrass and Miscanthus) biofuel crops on production and oviposition site selection by two vector mosquitoes, the yellow fever mosquito Aedes aegypti and the Asian tiger mosquito Aedes albopictus. Larvae of the two species were reared at varying conspecific and heterospecific densities in senescent leaf infusions prepared from one of the three biofuel crops and their survival and development time to adulthood determined. The effects of the three leaf infusions on water chemistry and oviposition site selection by the two mosquito species were also determined. Ae. albopictus females deposited significantly fewer eggs in Miscanthus than in corn infusion while Ae. aegypti females deposited significantly fewer eggs in Miscanthus than in both corn and switchgrass infusion. Survival to adulthood for both mosquito species was significantly lower in corn than in switchgrass and Miscanthus infusions; was consistently lower at high‐ (0:40 and 20:20) than at low density treatments in both switchgrass and Miscanthus infusions; and significantly lower at high intraspecific density (40:0 and 0: 40) than at high interspecific density (20:20) in Miscanthus infusion. Development time to adulthood was positively related to larval density, but was not influenced by biofuel leaf treatment. Corn infusion had lower pH values and higher salinity, conductivity, total dissolved solids (TDS), and temperature values than switchgrass and Miscanthus infusions. These findings demonstrate the potential for biofuel crops to modify the chemistry of aquatic habitats in ways that may influence mosquito production and thereby the risk of exposure to mosquito‐borne diseases.  相似文献   

6.
We investigated the oviposition behavior of Ae. aegypti and Ae. albopictus. In particular we examined whether small‐scale site characteristics and the presence of conspecifics or congeners altered oviposition by these mosquitoes. Various combinations of females of the two species were allowed to oviposit inside cages among either vegetation (potted plants) or structural components (wood and concrete blocks). Numbers of eggs deposited per female were compared between species, sides, and treatments. Most significant differences between treatments and species involved differences between single species and mixed species treatments. Ae. aegypti deposited more eggs/female in the vegetation side than in the structure side whereas the opposite pattern was evident for Ae. albopictus. Ae. aegypti females had higher frequency of skip oviposition than Ae. albopictus. An average of 63% of the containers in the two‐species treatments contained eggs of both species, with more frequent joint occurrences observed in the treatment with three females of each species than in the treatments with one of each. Our results point to the existence of various interactions between gravid Ae. aegypti and Ae. albopictus females at or near the oviposition sites but further experimental work is necessary to fully characterize the interactions and their specific mechanisms.  相似文献   

7.
Adaptations to anthropogenic domestic habitats contribute to the success of the mosquito Aedes aegypti as a major global vector of several arboviral diseases. The species inhabited African forests before expanding into domestic habitats and spreading to other continents. Despite a well‐studied evolutionary history, how this species initially moved into human settlements in Africa remains unclear. During this initial habitat transition, African Ae. aegypti switched their larval sites from natural water containers like tree holes to artificial containers like clay pots. Little is known about how these natural versus artificial containers differ in their characteristics. Filling this knowledge gap could provide valuable information for studying the evolution of Ae. aegypti associated with larval habitat changes. As an initial effort, in this study, we characterized the microenvironments of Ae. aegypti larval sites in forest and domestic habitats in two African localities: La Lopé, Gabon, and Rabai, Kenya. Specifically, we measured the physical characteristics, microbial density, bacterial composition, and volatile chemical profiles of multiple larval sites. In both localities, comparisons between natural containers in the forests and artificial containers in the villages revealed significantly different microenvironments. We next examined whether the between‐habitat differences in larval site microenvironments lead to differences in oviposition, a key behavior affecting larval distribution. Forest Ae. aegypti readily accepted the artificial containers we placed in the forests. Laboratory choice experiments also did not find distinct oviposition preferences between forest and village Ae. aegypti colonies. These results suggested that African Ae. aegypti are likely generalists in their larval site choices. This flexibility to accept various containers with a wide range of physical, microbial, and chemical conditions might allow Ae. aegypti to use human‐stored water as fallback larval sites during dry seasons, which is hypothesized to have initiated the domestic evolution of Ae. aegypti.  相似文献   

8.

Background

Aedes aegypti Linnaeus is a peridomestic mosquito that lays desiccation-resistant eggs in water-filled human-made containers. Previous investigations connected egg hatching with declining dissolved oxygen (DO) that is associated with bacterial growth. However, past studies failed to uncouple DO from other potential stimulatory factors and they contained little quantitative information about the microbial community; consequently, a direct role for bacteria or compounds associated with bacteria in stimulating egg hatching cannot be dismissed.

Methodology/Principal Findings

Environmental factors stimulating hatch of Ae. aegypti eggs were investigated using non-sterile and sterile white oak leaf (WOL) infusions and a bacterial culture composed of a mix of 14 species originally isolated from bamboo leaf infusion. In WOL infusion with active microbes, 92.4% of eggs hatched in 2-h at an average DO concentration of 2.4 ppm. A 24-h old bacterial culture with a DO concentration of 0.73 ppm also stimulated 95.2% of eggs hatch within 1-h. In contrast, only 4.0% of eggs hatched in sterile infusion, whose DO averaged 7.4 ppm. Effects of bacteria were uncoupled from DO by exposing eggs to bacterial cells suspended in NaCl solution. Over a 4-h exposure period, 93.8% of eggs hatched while DO concentration changed minimally from 7.62 to 7.50 ppm. Removal of bacteria by ultra-filtration and cell-free filtrate resulted in only 52.0% of eggs hatching after 4-h at an average DO concentration of 5.5 ppm.

Conclusions/Significance

Collectively, the results provide compelling evidence that bacteria or water-soluble compounds secreted by bacteria, not just low DO concentration, stimulate hatching of Ae. aegypti eggs. However, the specific cues involved remain to be identified. These research findings contribute new insight into an important aspect of the oviposition biology of Ae. aegypti, a virus vector of global importance, providing the basis for a new paradigm of environmental factors involved in egg hatching.  相似文献   

9.
We evaluated the oviposition response of gravid Aedes albopictus (Skuse) to six organic infusions. Laboratory and field‐placed oviposition cups baited with water oak (Quercus nigra L.), longleaf pine (Pinus palustris P. Mill), or St. Augustine grass (Stenotaphrum secundatum (Walt.) Kuntze), as well as binary infusion mixtures of each, were used. In addition, a triple‐cage, dual port olfactometer was used to measure upwind response of gravid individuals to these infusions. We found that Ae. albopictus deposited more eggs in infusion‐baited cups compared with water alone. Moreover, significantly more eggs were laid in the water oak and a water oak‐pine mixture as compared with the St. Augustine grass infusion in laboratory bioassays. However, a negative upwind response was observed with longleaf pine infusion in the olfactometer. In field cages, significantly more eggs were deposited in infusion‐baited cups as compared with water alone and a greater percentage of eggs were deposited in cups containing a water oak and the water oak‐longleaf pine mixture as compared with cups containing single infusions or their mixtures.  相似文献   

10.
Aedes (Stegomyia) aegypti is considered to be the most important dengue vector worldwide. Studies were conducted to design and evaluate a chemically‐based baited ovitrap for monitoring Ae. aegypti under laboratory conditions. Several known chemical attractants and three types of ovitraps (ovitraps A, B, and C) were evaluated throughout the oviposition bioassays. Oviposition responses of gravid female Ae. aegypti were evaluated to n‐heneicosane, 3‐methylindole (skatole), 4‐methylphenol (p‐cresol), and phenol. Female Ae. aegypti were attracted to all the evaluated compounds. Among them, n‐heneicosane at a concentration of 10 ppm (mg/l), skatole from 50 to 1000 ppm, p‐cresol at 100 ppm, and phenol at 50 ppm showed a significant positive oviposition response. A blend of the four chemical attractants increased the oviposition response; 67% of the eggs were deposited in the treatment compared to the control. Female Ae. aegypti were signi?cantly more attracted to ovitrap A loaded with the four‐component synthetic blend compared to the standard ovitrap in the oviposition bioassays. The compound used in ovitrap A retained its attractant property for up to three days. The chemically‐based baited ovitrap may be considered as an option to be integrated during the monitoring of dengue virus vectors in México.  相似文献   

11.
《Journal of Asia》2023,26(2):102051
The mosquito Aedes aegypti is the main vector for the virus dengue, chikungunya and Zika. For its control, it is essential to search for natural products with insecticidal effects. The climatic singularity of Caatinga, an exclusive Brazilian biome, aids the survival of plants that produce secondary metabolites, which could be toxic to insects. Therefore, this review discusses the insecticidal potential of Caatinga plants on Aedes aegypti mosquitoes. The meta-analysis was performed using Review Manager Software 5.4.1®. Several studies have demonstrated the insecticidal efficacy of Caatinga plants on the egg, larvae, pupae and adult phases of Ae. aegypti, with a predominance of the plant activity in the larval stage. The leaves were the most utilized part of the plant. The essential oils from Caatinga plants were significantly active against Ae. aegypti (RR = 0.21, 95 % CI = 0.07 – 0.68, p = 0.009). The most promising botanical genera as an insecticide are: Abarema, Myracrodruon, Croton, Lippia and Syagrus. Among chemical compounds from these insecticidal plants has been identified and isolated flavonoids and fatty acids. Therefore, the Caatinga plant is a promising plant that contain bioactive compounds that are useful in the control of vector insects. This could contribute to the characterisation and valorisation of flora of this biome, as well as the production of environmentally friendly insecticides with specific action on target insects.  相似文献   

12.

Background

Current Aedes aegypti larval control methods are often insufficient for preventing dengue epidemics. To improve control efficiency and cost-effectiveness, some advocate eliminating or treating only highly productive containers. The population-level outcome of this strategy, however, will depend on details of Ae. aegypti oviposition behavior.

Methodology/Principal Findings

We simultaneously monitored female oviposition and juvenile development in 80 experimental containers located across 20 houses in Iquitos, Peru, to test the hypothesis that Ae. aegypti oviposit preferentially in sites with the greatest potential for maximizing offspring fitness. Females consistently laid more eggs in large vs. small containers (β = 9.18, p<0.001), and in unmanaged vs. manually filled containers (β = 5.33, p<0.001). Using microsatellites to track the development of immature Ae. aegypti, we found a negative correlation between oviposition preference and pupation probability (β = −3.37, p<0.001). Body size of emerging adults was also negatively associated with the preferred oviposition site characteristics of large size (females: β = −0.19, p<0.001; males: β = −0.11, p = 0.002) and non-management (females: β = −0.17, p<0.001; males: β = −0.11, p<0.001). Inside a semi-field enclosure, we simulated a container elimination campaign targeting the most productive oviposition sites. Compared to the two post-intervention trials, egg batches were more clumped during the first pre-intervention trial (β = −0.17, P<0.001), but not the second (β = 0.01, p = 0.900). Overall, when preferred containers were unavailable, the probability that any given container received eggs increased (β = 1.36, p<0.001).

Conclusions/Significance

Ae. aegypti oviposition site choice can contribute to population regulation by limiting the production and size of adults. Targeted larval control strategies may unintentionally lead to dispersion of eggs among suitable, but previously unoccupied or under-utilized containers. We recommend integrating targeted larval control measures with other strategies that leverage selective oviposition behavior, such as luring ovipositing females to gravid traps or egg sinks.  相似文献   

13.
《Journal of Asia》2022,25(3):101963
Biological control of larval mosquitoes is in great demand due to the development of resistance against synthetic insecticides, environmental toxicity and the inability to protect habitats from further oviposition. In the present study, three botanical essential oils (BEOs) – citronella, eucalyptus, and pine oils – were formulated for the assessment of larvicidal and oviposition repellent efficacies against Culex quinquefasciatus Say, the filaria vector. The GC–MS profiling of BEOs showed the presence of 16 – 19 compounds covering 87.7–93% of oil composition. The resistance status of Culex quinquefasciatus population was evaluated with temephos (LC50 = 0.001 ppm, LC90 = 0.01 ppm). Larval bioassay of emulsifiable concentrate (EC) formulations prepared from eucalyptus and pine oils showed promising efficacy (LC50 = 22.7 and 23.2 ppm) and LC90 (63.8 and 62.4 ppm) compared to citronella oil EC (LC50 = 43.4 ppm and LC90 = 199.0 ppm). The field trials of eucalyptus + pine (1:1 ratio) EC showed 100% larval mortality for 3 weeks at 300 ppm compared to 2 weeks of individual oils. Further, the oviposition attraction index (OAI) for ECs of eucalyptus, pine, and their combination showed complete protection of breeding habitats from oviposition at 1st week and ?0.9 to ?1.0 OAI at 2nd week with slight reduction to ?0.5 at 3rd week. Citronella EC provided shortest larvicidal and oviposition repellent efficacy under the field conditions. The promising mosquitocidal activities of EC formulations of eucalyptus and pine or their combination suggest them as potential biocontrol vector control candidates over citronella oil.  相似文献   

14.
The mainly fresh water arboviral vector Aedes aegypti L. (Diptera: Culicidae) can also undergo pre-imaginal development in brackish water of up to 15 ppt (parts per thousand) salt in coastal areas. We investigated differences in salinity tolerance, egg laying preference, egg hatching and larval development times and resistance to common insecticides in Ae. aegypti collected from brackish and fresh water habitats in Jaffna, Sri Lanka. Brackish water-derived Ae. aegypti were more tolerant of salinity than fresh water-derived Ae. aegypti and this difference was only partly reduced after their transfer to fresh water for up to five generations. Brackish water-derived Ae. aegypti did not significantly discriminate between 10 ppt salt brackish water and fresh water for oviposition, while fresh water-derived Ae. aegypti preferred fresh water. The hatching of eggs from both brackish and fresh water-derived Ae. aegypti was less efficient and the time taken for larvae to develop into pupae was prolonged in 10 ppt salt brackish water. Ae. aegypti isolated from coastal brackish water were less resistant to the organophosphate insecticide malathion than inland fresh water Ae. aegypti. Brackish and fresh water-derived Ae. aegypti however were able to mate and produce viable offspring in the laboratory. The results suggest that development in brackish water is characterised by pertinent biological changes, and that there is restricted genetic exchange between coastal brackish and inland fresh water Ae. aegypti isolates from sites 5 km apart. The findings highlight the need for monitoring Ae. aegypti developing in coastal brackish waters and extending vector control measures to their habitats.  相似文献   

15.
Known oviposition attractants or stimulants were compared, singly and in combination, using inexpensive autocidal ovitraps designed to trap emerging adults, in a rural area of Timor‐Leste during the dry season. In this area, the dengue vector Aedes albopictus (Stegomyia albopicta) Skuse (Diptera: Culicidae) was abundant, but Aedes aegypti (Stegomyia aegypti) L. was not detected. The attractants were: (a) a compound found in Aedes eggs (dodecanoic acid); (b) components of nitrogen, phosphorous and potassium‐based (NPK) fertilizer, and (c) infusions of discarded cigarette butts. A solution of ammonium phosphate and potassium nitrate was significantly more attractive to gravid Ae. albopictus than water only. Dodecanoic acid and cigarette butt infusions were not significantly more attractive than the control; however, they attracted various other Diptera and many non‐culicid larvae developed in ovitraps in which these substances were used; thus, the presence of eggs or larvae of other species may have deterred Aedes oviposition. Significantly more Aedes eggs were found in ovitraps under vegetation than in ovitraps placed inside houses or against external walls. Clear‐sided ovitraps in which black mesh was placed over a black ring floating on the water surface collected significantly fewer eggs than black ovitraps with identically placed mesh and rings.  相似文献   

16.
Aedes aegypti mosquitoes are highly adaptable to abiotic stimuli. To evaluate the influence of shading and pedestrian traffic on the preference of Ae. aegypti for oviposition microenvironments, 20 sites were sampled weekly using ovitraps within the perimeter of Universidade Federal do Espírito Santo, located in São Mateus, Espírito Santo, Brazil. A spatial and statistical analysis was performed in order to assess the relationship between shading time, pedestrian traffic, and the presence of biological forms of Ae. aegypti. A temporal analysis of temperature and precipitation influence on oviposition was also made. Between June, 2013 and June, 2014, 7,362 Ae. aegypti eggs were collected. Over a 12‐month period, we made weekly collections of Ae. aegypti eggs from ovitraps. Pedestrian traffic and shading time influenced the number of positive ovitraps; precipitation and temperature were correlated with the number of positive ovitraps (p <0.05). We conclude that the influence of temperature and precipitation was not significant for the oviposition index, and the frequency of oviposition was directly proportional to the number of individuals moving close to the traps during periods of greater shading.  相似文献   

17.
Considering the rapid transmission of the dengue virus, substantial efforts need to be conducted to ward-off the epidemics of dengue viruses. The control effort is depending on chemical insecticides and had aroused undesirable conflicts of insecticide resistance. Here, we study the entomopathogenic fungus, Metarhizium anisopliae as a promising new biological control agent for vector control. The pathogenicity effects of Metarhizium anisopliae against field and laboratory strains of Aedes albopictus and Aedes aegypti larvae were tested using the larvicidal bioassay technique. The results demonstrate that the treatments using M. anisopliae isolate MET-GRA4 were highly effective and able to kill 100% of both Ae. albopictus and Ae. aegypti mosquito larvae at a conidia concentration of 1 × 10?/ml within 7 days of the treatment period. The fungus displayed high larvicidal activity against laboratory and field strain of Ae. aegypti larvae with LC50 values (9.6 × 103/ml, 1.3 × 103/ml) and LC95 values (1.2 × 10?/ml, 5.5 × 105/ml) respectively. For Ae. albopictus, LC50 values for laboratory and field strains were (1.7 × 104/ml, 2.7 × 104/ml) and the LC95 values were (2.1 × 10?/ml, 7.0 × 105/ml) respectively. Interestingly, the susceptibility of field strain towards M. anisopliae was higher as compared to the laboratory strain Aedes larvae. In which, the causative agents of all the dead larvae were verified by the virulence of M. anisopliae and caused morphological deformities on larval body. The findings from this study identify this isolate could be an effective potential biocontrol agent for vector mosquitoes in Malaysia.  相似文献   

18.
《Journal of Asia》2022,25(3):101961
Understanding local geographical variation in vector density and bionomics related to virus transmission are critical for planning effective vector control programs to control dengue virus transmission. This study investigated the prevalence and resting behaviour of Aedes aegypti and Ae. albopictus in three dengue high-risk areas in the Colombo District, Sri Lanka. Monthly sampling of resting adult mosquitoes was conducted from August 2019 to February 2020. Thirty-seven percent of the households (289/776) harboured Aedes mosquitoes, and 603 Aedes mosquitoes were collected. The proportion of Ae. aegypti was higher in the overall collection during the collection period (94% [569/603]), and 62% (352/569) were females. Significant monthly variations in Ae. aegypti were observed with respect to the indices: number of females per surveyed house (F/SH; p = 0.001), number of females per Aedes positive house (F/PH; p = 0.029), adult house index (AHI; p = 0.001), adult density (AD; p = 0.005) and resting ratio (RR; p = 0.001). AHI, AD, and RR had statistically significant positive correlations with monthly rainfall (p = 0.001, p = 0.011, and p = 0.002 respectively) and one-month lagged dengue cases (p = 0.002, p = 0.005, and p < 0.001 respectively). A statistically significantly higher proportion of Ae. aegypti females were caught resting indoors (N = 309, 88%) than outdoors (N = 43, 12%; p < 0.001). The most common resting areas were bedrooms (51%) & living/dining rooms (37%), and places were under or on furniture (47%) & hangings (34%) for Ae. aegypti. Conversely, 74% of female Ae. albopictus were collected outdoors. Results of this study could have strong implications to improve vector surveillance and control by early detection of dengue to detect outbreaks and minimization of disease transmission.  相似文献   

19.
Aedes mosquitoes are the most important group of vectors that transmit pathogens, including arboviruses, and cause human diseases such as dengue fever, yellow fever, Zika virus, and Chikungunya. Biosynthesis and the use of green silver nanoparticles (AgNPs) is a vital step to identify reliable and eco-friendly controls for these vectors. In this study, Aedes (Ae.) aegypti larvae (2nd and 3rd instar) were exposed to leaf extracts of Ricinus communis (Castor) and AgNPs synthesized from the extract to evaluate their larvicidal potential. Synthesized AgNPs were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (XRD). Ae. aegypti larvae were treated with different concentrations (50–250 ppm) of the leaf extract and synthesized AgNPs. There were five replicates per treatment, in addition to a positive (temephos) and negative control (dechlorinated water). Mortality was recorded after 12, 24, 36, and 48 h and the data were subjected to Probit analysis. The nanoparticles were more toxic (LC50 = 46.22 ppm and LC90 = 85.30 ppm) than the plant extract (106.24 and 175.73 ppm, respectively). The leaf extracts of Ricinus communis were subjected to HPLC analysis to identify their chemical constituents. This study suggests that plant extracts and synthesized nanoparticles are excellent alternatives to hazardous chemical pesticides used to control vector mosquitoes. This is a potentially useful technique that can reduce aquatic toxicity from insecticide use.  相似文献   

20.

Background

Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites.

Methodology

Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts.

Findings

The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as habitat density increased. An ecological approach, accounting for development site density, is appropriate for predicting Ae. aegypti population levels and developing efficient vector control programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号