首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cercospora leaf spot caused by Cercospora beticola is a significant threat to the production of sugar and table beet worldwide. A de novo genome assembly of C. beticola was used to develop eight polymorphic and reproducible microsatellite markers for population genetic analyses. These markers were used, along with five previously described microsatellite loci to genotype two C. beticola populations from table beet fields in New York, USA. High allelic and genotypic diversity and low population differentiation were found between fields. Linkage disequilibrium of loci after clone-correction of datasets was attributed to the presence of two distinct clonal lineages within the populations. Linkage equilibrium of loci in one of the clusters supported the presence of sexual reproduction. The draft de novo genome assembly will help elucidate the reproductive system of C. beticola through investigating evidence of recombination in the C. beticola genome.  相似文献   

2.
Cercospora leaf spot of sugar beet, caused by the fungus Cercospora beticola, is a major foliar pathogen on sugar beet. Fungicide sprays have been used extensively to manage Cercospora leaf spot, including the benzimidazole fungicides. Resistance to benzimidazoles has been observed in isolates of C. beticola. The precise genetics of this resistance is not known in this fungus. We tested benzimidazole‐tolerant and ‐sensitive isolates and found a single mutation in the β‐tubulin gene of benzimidazole‐tolerant isolates that corresponds to a mutation known to confer benzimidazole tolerance in other ascomycetes. This mutation is predicted to cause a change from glutamic acid to alanine in the protein product. Isolates containing this mutation further show an increased sensitivity to an N‐phenylcarbamate, as would be predicted based on the mutant phenotype found in other filamentous fungi. Only a single mutation was found in isolates from different regions of the United States, isolated in different growing seasons.  相似文献   

3.
The plant pathogenic fungus, Cercospora beticola, causes the most important foliage disease of sugar beet. A previous study has shown that isolates of opposite mating types are present in equal proportions in natural populations; therefore, the aim of this study was to develop highly reproducible polymorphic markers for analysing populations of C. beticola. Five microsatellite and four single nucleotide polymorphism (SNP) markers were developed that allow rapid screening of genetic diversity in C. beticola. Six populations were screened with these markers and all were found to be in gametic equilibrium, indicating random mating in C. beticola.  相似文献   

4.
Cercospora beticola is a hemibiotrophic fungus that causes cercospora leaf spot disease of sugar beet (Beta vulgaris). After an initial symptomless biotrophic phase of colonization, necrotic lesions appear on host leaves as the fungus switches to a necrotrophic lifestyle. The phytotoxic secondary metabolite cercosporin has been shown to facilitate fungal virulence for several Cercospora spp. However, because cercosporin production and subsequent cercosporin-initiated formation of reactive oxygen species is light-dependent, cell death evocation by this toxin is only fully ensured during a period of light. Here, we report the discovery of the effector protein CbNip1 secreted by C. beticola that causes enhanced necrosis in the absence of light and, therefore, may complement light-dependent necrosis formation by cercosporin. Infiltration of CbNip1 protein into sugar beet leaves revealed that darkness is essential for full CbNip1-triggered necrosis, as light exposure delayed CbNip1-triggered host cell death. Gene expression analysis during host infection shows that CbNip1 expression is correlated with symptom development in planta. Targeted gene replacement of CbNip1 leads to a significant reduction in virulence, indicating the importance of CbNip1 during colonization. Analysis of 89 C. beticola genomes revealed that CbNip1 resides in a region that recently underwent a selective sweep, suggesting selection pressure exists to maintain a beneficial variant of the gene. Taken together, CbNip1 is a crucial effector during the C. beticola–sugar beet disease process.  相似文献   

5.
The taxonomy and evolutionary species boundaries in a global collection of Cercospora isolates from Beta vulgaris was investigated based on sequences of six loci. Species boundaries were assessed using concatenated multi-locus phylogenies, Generalized Mixed Yule Coalescent (GMYC), Poisson Tree Processes (PTP), and Bayes factor delimitation (BFD) framework. Cercospora beticola was confirmed as the primary cause of Cercospora leaf spot (CLS) on B. vulgaris. Cercospora apii, C. cf. flagellaris, Cercospora sp. G, and C. zebrina were also identified in association with CLS on B. vulgaris. Cercospora apii and C. cf. flagellaris were pathogenic to table beet but Cercospora sp. G and C. zebrina did not cause disease. Genealogical concordance phylogenetic species recognition, GMYC and PTP methods failed to differentiate C. apii and C. beticola as separate species. On the other hand, multi-species coalescent analysis based on BFD supported separation of C. apii and C. beticola into distinct species; and provided evidence of evolutionary independent lineages within C. beticola. Extensive intra- and intergenic recombination, incomplete lineage sorting and dominance of clonal reproduction complicate evolutionary species recognition in the genus Cercospora. The results warrant morphological and phylogenetic studies to disentangle cryptic speciation within C. beticola.  相似文献   

6.
Rhizoctonia solani is a soilborne pathogen with a broad host range. An anastomosis group (AG) system based on hyphal fusions has been established to distinguish between different R. solani subgroups in this species complex. Members of the AG2-2IIIB subgroup can cause serious problems in sugar beet production, resulting in Rhizoctonia root and crown rot. In this review, we summarize the current molecular advances in the R. solani sugar beet pathosystem. The draft genome of R. solani AG2-2IIIB has an estimated size of 56.02 Mb, larger than any of the R. solani AGs sequenced to date. The genome of AG2-2IIIB has been predicted to harbor 11,897 protein-encoding genes, including a high number of carbohydrate-active enzymes (CAZymes). The highest number of CAZymes was observed for polysaccharide lyase family 1 (PL-1), glycoside hydrolase family 43 (GH-43), and carbohydrate esterase family 12 (CE-12). Eleven single-effector candidates were predicted based on AG2-2IIIB genome data. The RsLysM, RsRlpA, and RsCRP1 genes were highly induced upon early-stage infection of sugar beet seedlings, and heterologous expression in Cercospora beticola and model plant species demonstrated their involvement in virulence. However, despite the progress achieved thus far on the molecular interactions in this pathosystem, many aspects remain to be elucidated, including the development of efficient transformation systems, important for functional studies, and the silencing of undesirable traits in the sugar beet crop.  相似文献   

7.
《Biological Control》2003,26(2):153-161
Bacillus spp. have been used to control a number of leaf spot and post harvest diseases. Their capacity to form endospores facilitates long-term storage and relatively easy commercialization. This study focuses on optimizing a Bacillus subtilis isolate, BacB, for the control of sugar beet Cercospora leaf spot, caused by Cercospora beticola Sacc., by examining application timing, biocontrol agent (BCA) concentration, use of the selective nutrient substrate β-glucan, and the form of the BCA at time of application. A method for germinating endospores prior to spraying, without active aeration, is described. Examining the effects of varying β-glucan concentrations and levels of BacB at application demonstrated a complex interaction between β-glucan, BCA population, and disease control. In the 1998 field season, disease severity was significantly decreased, as compared to the control, at an application rate of 1×106 CFU/ml, or higher, with 0% β-glucan. In 1999, there was less disease pressure, and all treatments reduced disease severity. Growth chamber experiments demonstrated that applying the bacteria as vegetative cells instead of spores or applying the BCA 1–5 days before infection could significantly increase disease control. Laboratory experiments demonstrated the ability to induce germination and vegetative growth of BacB from a spore formulation, without shaking or fermentation equipment. This shows promise for optimizing Bacillus sp. for biological control. In field trials the vegetative cells did not perform better than the spore application, though the potential for β-glucan to increase disease was demonstrated.  相似文献   

8.
We present a new linkage map for sugar beet (Beta vulgaris) which has been developed using a population segregating for genetic factors that confer tolerance to the leaf spot fungus (Cercospora beticola), the causal factor of leaf spot disease in sugar beet). In the F2 population studied, a subset of 36 RFLP probes, mapping on eight out of the nine linkage groups of sugar beet, provided the anchor markers to assign chromosomes. A total of 224 markers, including RFLPs, AFLPs, SCARs and microsatellites, were mapped. Estimates of leaf damage in F2 and test-cross families were repeated at different stages of plant development. Each set of data was analysed as such. An average estimate was also considered. QTLs with highly significant LOD scores revealed both by the F2 and test-cross analyses were localized on linkage groups 2, 6 and 9. Linkage groups 4 and 5 gave a clear indication of the presence of a QTL only when F2 data were considered. One highly significant QTL with a LOD of 16.0 was revealed only by the data obtained under conditions of artificial inoculation. This QTL maps at position 90 on chromosome 3. Received: 3 February 1999 / Accepted: 20 February 1999  相似文献   

9.
Leaf spot disease caused by Cercospora beticola Sacc. (class Ascomycota, ord. Dothideales, fam. Mycosphaerellaceae) is the most destructive foliar disease of sugar beet. Commercial varieties are partially resistant and require repeated fungicide applications to obtain adequate protection levels; this has a high environmental impact and a risk of selecting resistant pathogen strains. A way of reducing chemical inputs could be to use biocontrol agents to replace or supplement fungicide treatments. A well-known class of biological control agents is represented by the fungi belonging to the Trichoderma genus (class Ascomycota, ord. Hypocreales, fam. Hypocreaceae), but there is a lack of information about its behaviour towards C. beticola. This study reports the evaluation of several Trichoderma isolates as possible biocontrol agents of this pathogen. Preliminary in vitro and in vivo assays led to the selection of two Trichoderma isolates characterised by their ability to reduce pathogen sporulation and antagonism towards the pathogen or competence for sugar beet phyllosphere. Repeated foliar applications of the liquid culture homogenate preceded by a single treatment of difenoconazole in 2 year trials under natural inoculum in field reduced the disease incidence and pathogen sporulation from the necrotic spots. An increase in sugar yield was also obtained by means of isolate Ba12/86-based treatments, perhaps due to induced resistance effects.  相似文献   

10.
Lethal and mutagenic effects ofN-nitroso-N-ethylurea (NEU) on the parasitic fungusCercospora beticola Sacc. was investigated. Mutation frequency increased and the number of surviving individuals (conidia) simultaneously decreased with increasing mutagen concentration and the period of its application. Treatment ofC. beticola conidia with NEU induced 14 morphological mutants characterized by changes in pigmentation of air mycelium and substrate, excretion of the pigment into the cultivation medium and colonies morphology. A considerable proportion of morphological mutants lost their sporulation ability bothin vitro on the sporulation medium andin vivo on host leaves and became non-pathogenic. The other morphological mutants (21.4%) were pathogenic on a sensitive sugar beet cultivar Dobrovická A and on other three resistant cultivars (Maribo 1, 2, 3). A revertant with increased pathogenity arose from the light non-pathogenic mutant. During the remonosporic isolation of the pathogenic mutants isolates were obtained characterized by a phenotype which originated during the mutagenic process.  相似文献   

11.

Background

During production of sugar beet (Beta vulgaris) seeds in greenhouses, workers frequently develop allergic symptoms. The aim of this study was to identify and characterize possible allergens in sugar beet pollen.

Methods

Sera from individuals at a local sugar beet seed producing company, having positive SPT and specific IgE to sugar beet pollen extract, were used for immunoblotting. Proteins in sugar beet pollen extracts were separated by 1- and 2-dimensional electrophoresis, and IgE-reactive proteins analyzed by liquid chromatography tandem mass spectrometry.

Results

A 14 kDa protein was identified as an allergen, since IgE-binding was inhibited by the well-characterized allergen Che a 2, profilin, from the related species Chenopodium album. The presence of 17 kDa and 14 kDa protein homologues to both the allergens Che a 1 and Che a 2 were detected in an extract from sugar beet pollen, and partial amino acid sequences were determined, using inclusion lists for tandem mass spectrometry based on homologous sequences.

Conclusion

Two occupational allergens were identified in sugar beet pollen showing sequence similarity with Chenopodium allergens. Sequence data were obtained by mass spectrometry (70 and 25%, respectively for Beta v 1 and Beta v 2), and can be used for cloning and recombinant expression of the allergens. As for treatment of Chenopodium pollinosis, immunotherapy with sugar beet pollen extracts may be feasible.  相似文献   

12.
Two novel, nearly identical antifungal proteins, IWF1 and IWF2, were isolated from the intercellular washing fluid (IWF) of sugar beet leaves. The proteins were purified to homogeneity and their amino acid sequences were determined. They are basic, monomeric proteins of 91 amino acid residues, 89 of which are identical. Both proteins show strongin vitro antifungal activity againstCercospora beticola, the casual agent of leaf spot disease in sugar beet. Based on primary sequence homology, including the presence of 8 conserved cysteine residues, IWF1 and IWF2 are related to the family of plant non-specific lipid transfer proteins (nsLTPs). Antibodies were raised against IWF2 after conjugation to diphtheria toxoid. The amino acid sequence data was used to generate a polymerase chain reaction (PCR) clone, employed for the isolation of a cDNA clone encoding a closely related isoform IWFA, which differs from IWF1 by two amino acid substitutions only. The induction and subcellular localization of these proteins were studied by western and northern blotting analyses after treatment with 2,6-dichloroisonicotinic acid (INA), a compound capable of inducing resistance againstC. beticola, and after fungal infection. The following observations were made: (1) the proteins were present in leaves of non-INA-treated and uninfected control plants, (2) they were only slightly induced by INA treatment and during infection withC. beticola, and (3) they were present both intra- and extracellularly. However, their strong antifungal potentials together with immunohistological investigations, the proteins accumulating in contact with the fungus and in autolysing cells, suggested a role of these proteins in plant defence. Finally, immunohistology revealed a remarkable expression pattern of the IWF1 and IWF2 proteins, or serologically related proteins, in sugar beet styles, in that single or a few scattered papillae and a few cells in the lower transmitting tissue strongly and specifically reacted with the antibody.  相似文献   

13.
Perylenequinones are a family of structurally related polyketide fungal toxins with nearly universal toxicity. These photosensitizing compounds absorb light energy which enables them to generate reactive oxygen species that damage host cells. This potent mechanism serves as an effective weapon for plant pathogens in disease or niche establishment. The sugar beet pathogen Cercospora beticola secretes the perylenequinone cercosporin during infection. We have shown recently that the cercosporin toxin biosynthesis (CTB) gene cluster is present in several other phytopathogenic fungi, prompting the search for biosynthetic gene clusters (BGCs) of structurally similar perylenequinones in other fungi. Here, we report the identification of the elsinochrome and phleichrome BGCs of Elsinoë fawcettii and Cladosporium phlei, respectively, based on gene cluster conservation with the CTB and hypocrellin BGCs. Furthermore, we show that previously reported BGCs for elsinochrome and phleichrome are involved in melanin production. Phylogenetic analysis of the corresponding melanin polyketide synthases (PKSs) and alignment of melanin BGCs revealed high conservation between the established and newly identified C. beticola, E. fawcettii and C. phlei melanin BGCs. Mutagenesis of the identified perylenequinone and melanin PKSs in C. beticola and E. fawcettii coupled with mass spectrometric metabolite analyses confirmed their roles in toxin and melanin production.  相似文献   

14.
AX2 is a 46-amino-acid cysteine-rich peptide isolated from sugar beet leaves infected with the fungus Cercospora beticola (Sacc.). AX2 strongly inhibits the growth of C. beticola and other filamentous fungi, but has little or no effect against bacteria. AX2 is produced in very low amounts in sugar beet leaves, and to study the protein in greater detail with respect to biological function and protein structural analysis, the methylotrophic yeast Pichia pastoris was used for large-scale production. The amino acid sequence, processing of the signal peptide, disulfide bridges, and biological activity of the recombinant protein were determined and compared with that of the authentic AX2. In P. pastoris, the protein was expressed with an additional N-terminal arginine. The disulfide bonding was found to be identical to that of the authentic AX2. However, when tested in in vitro bioassay, the biological activity of the recombinant protein was slightly lower than that measured for the authentic protein. Furthermore, the recombinant protein was significantly more sensitive to Ca2+ than the authentic protein. This is most probably due to the extra arginine, since no other differences between the two proteins have been found.  相似文献   

15.
Rhizoctonia damping-off caused by Rhizoctonia solani Kühn, is one of the most damaging sugar beet diseases. It causes serious economic damage wherever sugar beets are grown. Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Suppression of damping-off disease caused by R. solani was carried out by four isolates of Bacillus subtilis (Ehrenberg) Cohn as well as three isolates of each of Trichoderma harzianum Rifai and Trichoderma hamatum (Bonord.) Bainier. The effect of Bacillus and Trichoderma isolates against R. solani was investigated in vitro and tested on sugar beet plants under greenhouse conditions. Isolates of Bacillus and Trichoderma were able to inhibit the growth of R. solani in dual culture. Furthermore, Trichoderma isolates gave high antagonistic effect than isolates of B. subtilis. Under greenhouse conditions, coating seeds by T. harzianum and B. subtilis separately, reduced seedling damping-off significantly. However, applications of T. harzianum increased the percentage of surviving plants more than B. subtilis in comparison to control. The obtained results indicate that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in sugar beet damping-off and should be harnessed for further biocontrol applications.  相似文献   

16.
We previously demonstrated that xanthobaccin A from the rhizoplane bacterium Lysobacter sp. strain SB-K88 suppresses damping-off disease caused by Pythium sp. in sugar beet. In this study we focused on modes of Lysobacter sp. strain SB-K88 root colonization and antibiosis of the bacterium against Aphanomyces cochlioides, a pathogen of damping-off disease. Scanning electron microscopic analysis of 2-week-old sugar beet seedlings from seeds previously inoculated with SB-K88 revealed dense colonization on the root surfaces and a characteristic perpendicular pattern of Lysobacter colonization possibly generated via development of polar, brush-like fimbriae. In colonized regions a semitransparent film apparently enveloping the root and microcolonies were observed on the root surface. This Lysobacter strain also efficiently colonized the roots of several plants, including spinach, tomato, Arabidopsis thaliana, and Amaranthus gangeticus. Plants grown from both sugar beet and spinach seeds that were previously treated with Lysobacter sp. strain SB-K88 displayed significant resistance to the damping-off disease triggered by A. cochlioides. Interestingly, zoospores of A. cochlioides became immotile within 1 min after exposure to a SB-K88 cell suspension, a cell-free supernatant of SB-K88, or pure xanthobaccin A (MIC, 0.01 μg/ml). In all cases, lysis followed within 30 min in the presence of the inhibiting factor(s). Our data indicate that Lysobacter sp. strain SB-K88 has a direct inhibitory effect on A. cochlioides, suppressing damping-off disease. Furthermore, this inhibitory effect of Lysobacter sp. strain SB-K88 is likely due to a combination of antibiosis and characteristic biofilm formation at the rhizoplane of the host plant.  相似文献   

17.
The reactions of Beta procumbens C. Sm. and Beta webbiana Moq. were compared to those of Beta vulgaris L. with regard to an infection by Cercospora beticola Sacc. The fleck reaction obsrved in B. webbiana may be interpreted as hypersensitivity based on symptomatological, light microscopical, fluorescent microscopical and electron microscopical data. The B. procumbens clone was found to show resistance characteristics similar to those of B. webbiana and B. vulgaris, as it reacted both by flecks (B. webbiana) and leaf spots (B. vulgaris) to a C. beticola infection.  相似文献   

18.
Survival in natural bulk soil and colonization of sugar beet seeds and barley straw residues were determined for Pseudomonas sp. strain DSS73 and Tn5 mutants in amsY (encoding a peptide synthetase involved in production of the cyclic lipopeptide amphisin) and gacS (encoding the sensory kinase of the two-component GacA/GacS regulatory system). No differences in survival or growth in response to carbon amendment (citrate) were observed in bulk soil. However, both mutants were impaired in their colonization of sugar beet seeds and barley straw residues by an inoculum established in the bulk soil. The two mutants had comparable colonization phenotypes, suggesting that amphisin production is more important for colonization than other gacS-controlled traits.  相似文献   

19.
Agrobacterium radiobacter, strain B6 (a strain isolated in this laboratory, which limited the occurrence of damping-off of sugar beet and influenced growth of plants in hot-house and field experiments) was found to produce an acidic exopolysaccharide in a mineral medium with various carbon sources. Hydrolyzates of the polysaccharide contained glucose, galactose, glycerol, succinic acid and pyruvic acid, whose quantitative content varied according to the carbon source used. The polysaccharide isolated from the medium containing glucose exhibited the highest physiological activity. Seeds germinated best and sugar beet roots were found to grow most rapidly in a medium containing 0.2 % (W/W) of the polysaccharide. The roots exposed for 3 d in this medium grew 2.7-fold as compared with non-treated plants. Higher sumbers of microorganisms were detected on the surface of roots treated with the polysaccharide. Growth of roots was also stimulated when immersing the seeds (30 min) in a 0.2 –0.4 % solution of this polysaccharide. After a two-fold treatment the roots were less damaged by the fungusPythium ultimum. Plants from seeds treated with the polysaccharide grew in the field soil more rapidly than the non-treated plants but worse than after bacterization of the seeds byA. radiobacter B6 and were only partially protected against the damping-off of sugar beet.  相似文献   

20.
Three antifungal compounds, designated xanthobaccins A, B, and C, were isolated from the culture fluid of Stenotrophomonas sp. strain SB-K88, a rhizobacterium of sugar beet that suppresses damping-off disease. Production of xanthobaccin A in culture media was compared with the disease suppression activities of strain SB-K88 and less suppressive strains that were obtained by subculturing. Strain SB-K88 was applied to sugar beet seeds, and production of xanthobaccin A in the rhizosphere of seedlings was confirmed by using a test tube culture system under hydroponic culture conditions; 3 μg of xanthobaccin A was detected in the rhizosphere on a per-plant basis. Direct application of purified xanthobaccin A to seeds suppressed damping-off disease in soil naturally infested by Pythium spp. We suggest that xanthobaccin A produced by strain SB-K88 plays a key role in suppression of sugar beet damping-off disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号