首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many species of microalgae produce greatly enhanced amounts of triacylglycerides (TAGs), the key product for biodiesel production, in response to specific environmental stresses. Improvement of TAG production by microalgae through optimization of growth regimes is of great interest. This relies on understanding microalgal lipid metabolism in relation to stress response in particular the deprivation of nutrients that can induce enhanced TAG synthesis. In this study, a detailed investigation of changes in lipid composition in Chlorella sp. and Nannochloropsis sp. in response to nitrogen deprivation (N-deprivation) was performed to provide novel mechanistic insights into the lipidome during stress. As expected, an increase in TAGs and an overall decrease in polar lipids were observed. However, while most membrane lipid classes (phosphoglycerolipids and glycolipids) were found to decrease, the non-nitrogen containing phosphatidylglycerol levels increased considerably in both algae from initially low levels. Of particular significance, it was observed that the acyl composition of TAGs in Nannochloropsis sp. remain relatively constant, whereas Chlorella sp. showed greater variability following N-deprivation. In both algae the overall fatty acid profiles of the polar lipid classes were largely unaffected by N-deprivation, suggesting a specific FA profile for each compartment is maintained to enable continued function despite considerable reductions in the amount of these lipids. The changes observed in the overall fatty acid profile were due primarily to the decrease in proportion of polar lipids to TAGs. This study provides the most detailed lipidomic information on two different microalgae with utility in biodiesel production and nutraceutical industries and proposes the mechanisms for this rearrangement. This research also highlights the usefulness of the latest MS-based approaches for microalgae lipid research.  相似文献   

2.
This study evaluated the bioremediation potential of two marine microalgae Chlorella sp. and Phormidium sp., both individually and in consortium, to reduce various pollutants in tannery wastewater (TW). The microalgae were grown in hazardous 100% TW for 20 days, and the reductions in biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), chromium (Cr) and total dissolved solids (TDS) of the wastewater monitored periodically. Both marine isolates reduced the BOD and COD by ≥90% in the consortium and by over 80% individually. Concentrations of TN and TP were reduced by 91.16% and 88%, respectively, by the consortium. Removal/biosorption efficiencies for chromium ranged from 90.17–94.45%. Notably, the TDS, the most difficult to deal with, were reduced by >50% within 20 days by the consortium. The novel consortium developed in this study reduced most of the ecologically harmful components in the TW to within the permissible limits of discharge in about 5 to 15 days of treatment. Thus, both the tested marine strains of Chlorella and Phormidium sp. are promising for bioremediating/detoxifying TW and adequately improve the water quality for safe discharge into open water bodies, in particular when used as a consortium.  相似文献   

3.
This study is to evaluate the potential of endophytic fungi of Salvadora persica for the production of bioactive compounds against pathogenic bacteria and fungi. Forty-two fungal isolates were obtained from 135 young and old stem and 125 root segments. Those 42 isolates representing ten fungi include: Trichoderma sp. (the most common), two species of Alternaria, Rhizopus arrhizus and 6 sterile mycelia. The ten fungi were grown in liquid culture and their crude extracts were tested against pathogenic bacteria and fungi. Nine crude extracts gave positive reactions against pathogenic bacteria of which Alternaria sp. (A8) was chosen further study. The fungal isolate was growing as sterile mycelium and was identified by phylogenetic analyses based on LSU rDNA sequence data and it might represent undescribed species of Alternaria. Sixty-two bioactive chemical compounds were identified from the ethyl acetate crude extracts of Alternaria sp., of which the following were recorded as major compounds in the active sub-fractions. These compounds showed strong antibacterial activity in combination.  相似文献   

4.
A simple agar diffusion method is developed where pure colony of Chlamydomonas sp. CRP7 was isolated from Chlorella sp. CB4 mixtures by passing through agar migration with a light exposure of 6,000 lux for 7 h. The main concept behind it is that Chlamydomonas has flagella and the rhodopsin pigment is attracted towards light. Thus the above two microalgae species can be separated from the mixtures as eye spot serves as a navigator and flagella serves as a propeller for Chlamydomonas spp. Further the genomic DNA was isolated and purified from the above mentioned two species after the separation from the mixtures. PCR amplification was carried out for ITS1, 5.8S and ITS2 regions. The amplified products were sequenced and the sequence analysis confirmed that they belong to Chlamydomonas sp. and Chlorella sp. This is an important augmentation for isolation and separation of microalgae.  相似文献   

5.
Recent interest in the use of microalgae for the production of biofuels and bioproducts has stimulated an interest in methods to enhance the growth rate of microalgae. This review examines past work involving the stimulation of Chlorella sp. growth and metabolite production by plant growth substances as well as by mixed cultures of Chlorella sp. with bacteria. Plant growth substances known to regulate Chlorella sp. growth and metabolite production include auxins, cytokinins, abscisic acid, polyamines, brassinosteroids, jasmonic acid, salicylic acid, and combinations of two or three of the aforementioned substances. Mixed cultures of bacteria are examined, including both natural bacteria–algae consortia and artificially induced symbioses. For natural consortia, commonly occurring bacterial species, including the genera Brevundimonas and Sphingomonas, are discussed. For artificially induced symbioses, the use of the nitrogen-fixing bacterium Azospirillum is examined in detail. In particular, a variety of studies have involved the coimmobilization of Chlorella sp. with Azospirillum sp. in alginate beads, with the goal of using the mixed culture to treat wastewater. In summary, the use of plant growth substances and mixed cultures provides two methods to increase the growth of Chlorella sp., whether for the production of lipids for biofuels, the production of bioproducts, the treatment of wastewater, or a variety of other reasons.  相似文献   

6.
There has been considerable interest on cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. The ideal microalga characteristics are that it must grow well even under high cell density and under varying outdoor environmental conditions and be able to have a high biomass productivity and contain a high oil content (~25–30 %). The main advantage of Chlorophyta is that their fatty acid profile is suitable for biodiesel conversion. Tetraselmis suecica CS-187 and Chlorella sp. were grown semi-continuously in bag photobioreactors (120 L, W?×?L?=?40?×?380 cm) over a period of 11 months in Melbourne, Victoria, Australia. Monthly biomass productivity of T. suecica CS-187 and Chlorella sp. was strongly correlated to available solar irradiance. The total dry weight productivity of T. suecica and Chlorella sp. was 110 and 140 mg L?1 d?1, respectively, with minimum 25 % lipid content for both strains. Both strains were able to tolerate a wide range of shear produced by mixing. Operating cultures at lower cell density resulted in increasing specific growth rates of T. suecica and Chlorella sp. but did not affect their overall biomass productivity. On the other hand, self shading sets the upper limit of operational maximum cell density. Several attempts in cultivating Dunaliella tertiolecta CS-175 under the same climatic conditions were unsuccessful.  相似文献   

7.
The cellular characteristics and antioxidant responses including reactive oxygen species (ROS), esterase activity, superoxide dismutase, peroxidase (POD), glutathione (GSH), and malondialdehyde (MDA) content of two microalgal species, Selenastrum capricornutum and Chlorella sp., exposed to single and mixed estradiol (E2) and ethinlyestradiol (EE2) at a final concentration of 200 μg L?1 were investigated. The growth, autofluorescence, cell complexity, and cell size of S. capricornutum and Chlorella sp. were not affected by single and mixed estrogen treatments, but the temporal trends of these two species were different. The temporal changes of the esterase activity and ROS level in these two species were also very different, with a continuous increase with time in Chlorella but peak on Day 2 in S. capricornutum. The esterase activity of S. capricornutum was not affected by estrogen treatments; however, the activity in treated Chlorella decreased significantly from Day 2 onwards. The single EE2 and mixed E2 and EE2 treatments induced more ROS of S. capricornutum than the single E2 treatment and control on Day 4, but no other difference was found between treatments and control of Chlorella on that day. The other oxidative damage responses of S. capricornutum were not affected by estrogen treatments, except MDA increased in EE2 treatment, on the other hand, POD and GSH of Chlorella increased in both single and mixed estrogen treatments on Day 4. These results suggested that microalgae species were tolerant to E2 and EE2, but some species-specific changes occurred to combat the oxidative stress posed by estrogens.  相似文献   

8.
The diversity and antimicrobial activity of endophytic fungi associated with the Brazilian medicinal plant Solanum cernuum Vell. were studied during summer and winter seasons. A total of 246 fungal isolates were obtained, including 225 filamentous fungi and 21 yeasts. They were identified by morphological, physiological, and molecular methods. Fifty-five different taxa represented by the phyla Ascomycota (33 taxa), Basidiomycota (21 taxa), and Zygomycota (one taxon) were identified. The most abundant taxa were closely related to Arthrobotrys foliicola , Colletotrichum gloeosporioides , Coprinellus radians , Glomerella acutata , Diatrypella frostii , Phoma glomerata , Mucor sp., Phlebia subserialis , Phoma moricola , Phanerochaete sordida , and Colletotrichum sp. A total of 265 fungal extracts were screened and 64 (26.01%) displayed antimicrobial activities. Among these extracts, 18 (28.12%) presented antibacterial and antifungal activities, 42 (65.62%) displayed selective antibacterial activity, and four (6.25%) exhibited only antifungal activity. The best values of minimum inhibitory concentration were obtained from extracts of Cryptococcus rajasthanensis , Glomerella acutata, Leptosphaeria sp., and Phoma glomerata ranging from 7.8 to 15.62?μg/mL. This study is the first survey of the endophytic fungi community associated with S. cernuum, and our results show that they can represent a promising source of bioactive compounds.  相似文献   

9.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

10.
Aims: The aim of the present study was to purify and characterize a natural antimicrobial compound from Bacillus sp. strain N associated with a novel rhabditid entomopathogenic nematode. Methods and Results: The cell‐free culture filtrate of a bacterium associated with a novel entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by column chromatography, and two bioactive compounds were isolated and their chemical structures were established based on spectral analysis. The compounds were identified as 3,4′,5‐trihydroxystilbene (1) and 3,5‐dihydroxy‐4‐isopropylstilbene (2). The presence of 3,4′,5‐trihydroxystilbene (resveratrol) is reported for the first time in bacteria. Compound 1 showed antibacterial activity against all the four test bacteria, whereas compound 2 was effective against the Gram‐positive bacteria only. Compounds 1 and 2 were active against all the five fungi tested and are more effective than bavistin, the standard fungicide. The antifungal activity of the compounds against the plant pathogenic fungi, Rhizoctonia solani is reported for the first time. Conclusions: Cell‐free extract of the bacterium and isolated stilbenes demonstrated high antibacterial activity against bacteria and fungi especially against plant pathogenic fungi. We conclude that the bacterium‐associated EPN are promising sources of natural bioactive secondary metabolites. Significance and Impact of the Study: Stilbene compounds can be used for the control of fungi and bacteria.  相似文献   

11.
The growth of algae strains Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic conditions in the presence of different concentrations of technical glycerol was investigated with the aim of increasing biomass growth and algae oil content. The highest concentration of lipid obtained in media with 5 g L?1 glycerol for Chlorella sp., Scenedesmus sp., Nannochloris sp. and Haematococcus sp. was 17.77, 22.34, 27.55 and 34.22 % larger than during the autotrophic growth of these species. Increases in triacylglycerols of up to ten times was observed for Scenedesmus sp. under mixotrophic conditions (using 10 g L?1 glycerol), whereas an increase of 2.28 times was found for Haematococcus sp. The content of saturated fatty acids of Scenedesmus, Chlorella, Haematococcus and Nannochloris was 67.11, 34.63, 23.39 and 24.23 %, and the amount of unsaturated fatty acids was 32.9, 65.06, 79.61 and 75.78 % of total fatty acids, respectively. Growth on technical glycerol of these strains with light produced higher biomass concentrations and lipid content compared with autotrophic growth. The fatty acid content of oils from these species suggests their potential use as biodiesel feedstock.  相似文献   

12.
This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.  相似文献   

13.
An attempt was made to study the bioactive compounds from a terrestrial Streptomyces sp. ANU 6277 isolated from laterite soil. Four active fractions were recovered from the solvent extracts obtained from the culture broth of five day-old strain. Three bioactive compounds were purified and identified as 3-phenylpropionic acid, anthracene-9,10-quinone and 8-hydroxyquinoline. The components of the partially purified fourth active fraction were analyzed by gas chromatography-mass spectrometry and identified as benzyl alcohol, phenylethyl alcohol and 2H-1, 4-benzoxazin-3 (4H)-one. Four active fractions were screened for antimicrobial activity against Gram-positive and Gram-negative bacteria, and fungi including phytopathogenic, toxigenic and dermatophytic genera. Among these metabolites, 8-hydroxyquinoline exhibited strong antibacterial and antifungal activity as compared to 3-phenylpropionic acid and anthracene-9,10-quinone.  相似文献   

14.
In this study, three marine algae collected from western coast of algerian mediteranean sea (Ulva lactuca, Dictyota dichotoma, and Corallina elongata) were tested using the agar-well diffusion method for their production of antibacterial and antifungal agents on various organisms that cause diseases of humans and plants (Eschirichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Salmonella sp, Candida albicans, and Penicillium sp.). The total phenol content and antimicrobial activity were determined using different crude seaweeds extracts (methanol, diethylether, and chloroform). The results show that the chloroform extracts of (Ulva lactuca and Corallina elongata) had the highest activity against E. coli and Salmonella sp. The methanol extract obtained from (Ulva lactuca, Dictyota dichotoma, and Corallina elongata) showed antifungal activity for Candida albicans. The results of the study revealed that the seaweeds from Algeria appear to have immense potential as a source of antibacterial and antifungal compounds; they can be used in treating diseases caused by these organisms.  相似文献   

15.
Aromatic ketones were reduced using suspension culture of Chlorella sp. MK201 under fluorescent light illumination producing the corresponding chiral alcohols in high yields with excellent enantiomeric excess (ee). For example, 2′,3′,4′,5′,6′-pentafluoroacetophenone at 0.25?mg/ml was converted to the corresponding (S)-alcohol in 80?% yield with?>99?% ee by 1?mg dry wt of Chlorella/ml in 12?h illumination (2,000 lux).  相似文献   

16.
The need to develop biomass-based domestic production of high-energy liquid fuels (biodiesel) for transportation can potentially be addressed by exploring microalgae with high lipid content. Selecting the strains with adequate oil yield and quality is of fundamental importance for a cost-efficient biofuel feedstock production based on microalgae. This work evaluated 29 strains of Chlorella isolated from Malaysia as feedstock for biodiesel based on volumetric lipid productivity and fatty acid profiles. Phylogenetic studies based on 18S rRNA gene revealed that majority of the strains belong to true Chlorella followed by Parachlorella. The strains were similarly separated into two groups based on fatty acid composition. Of the 18 true Chlorella strains, Chlorella UMACC187 had the highest palmitic acid (C16:0) content (71.3?±?4.2 % total fatty acids, TFA) followed by UMACC84 (70.1?±?0.7 %TFA), UMACC283 (63.8?±?0.7 %TFA), and UMACC001 (60.3?±?4.0 %TFA). Lipid productivity of the strains at exponential phase ranged from 34.53 to 230.38 mg L?1 day?1, with Chlorella UMACC050 attaining the highest lipid productivity. This study demonstrated that Chlorella UMACC050 is a promising candidate for biodiesel feedstock production.  相似文献   

17.
This study aimed to evaluate the volatile or lipophilic chemical profiling and the biological activities of avocado (Persea americana cv. Criollo sp.) seed extracts. Chemical profile of volatile compounds (GC/MS), antioxidant properties (phenolic compounds, DPPH radical scavenging activities and reducing power), and antimicrobial activity (Salmonella Typhimurium and Staphylococcus aureus) of avocado (Persea americana cv. Criollo sp.) seed extracts (ethanol and acetone) were characterized. Sixteen volatile chemical compounds were determined, including isoprenoid derivatives (estragole), esters of fatty acids (linoleic and linolenic acids), and their derivatives (9,12-Octadecadien-1-ol and 9,12,15-Octadecatrien-1-ol). Acetone was the best solvent to obtain volatile compounds from avocado seed; this extract also showed a higher reducing power (56.35 mg AAE/100 g). Maximum S. aureus and S. Typhimurium log reductions were 4.0 ± 0.3 and 1.8 ± 0.3 at the highest amount used (2000 mg/L), without significant effect (p < 0.05) of the solvent used. According to the results of the volatile chemical profiling of avocado (Persea americana cv. Criollo sp.) seed extracts, they can have potential application as antioxidant (212.75 and 183.75 mg Trolox/100 g) and antimicrobial additives.  相似文献   

18.
The methanol, dichloromethane, hexane, chloroform and volatile components ofEnteromorpha linza were testedin vitro for their antimicrobial activity against five Gram-positive, four Gram-negative bacteria andCandida albicans ATCC 10239. GC-MS analysis of the volatile components ofE. linza resulted in the identification of 35 compounds which constituted 84.76% of the total compounds. The volatile components ofE. linza consisted of n-tetratriacontane (8.45%), 1-heptadecanamine (6.65%) and docosane (6.46%) as major components. The methanol and chloroform extracts showed more potent antimicrobial activity than hexane and dichloromethane extracts. The volatile oils of these algae did not remarkably inhibit the growth of tested microorganisms.  相似文献   

19.
The ability of three psychrotrophic Gram-negative bacilli isolated from Chilean Patagonian cold freshwater rivers to produce bioactive metabolites was evaluated. The strains were isolated from cold waters rivers and identified by their biochemical properties and 16S rRNA gene analysis. The metabolites fractions showing antibacterial activity were obtained by solvent extraction and partially characterized by gas–mass chromatography (GC-MS). Antibacterial activity of the fractions was evaluated by an agar-well diffusion test upon 14 bacterial strains, both Gram positive and Gram negative. Thermal and proteolytic resistances of the antibacterial metabolites fractions were also evaluated. Molecular analysis allows the identification of the three Patagonian strains as Pseudomonas sp. RG-6 (Pseudomonas brenneri 99.6 % identity), Pseudomonas sp. RG-8 (Pseudomonas trivialis 99.6 % identity) and Yersinia sp. RP-3 (Yersinia aldovae 99.5 % identity). These extracts were able to inhibit both Gram-positive and Gram-negative bacteria but not Listeria monocytogenes. The antibacterial activity of the filtrated supernatants was lost at temperatures ≥60 °C, and was not affected by proteinase K treatment. The chemical structure of the active molecule remains to be elucidated, although the GC-MS analysis of the filtrates suggests that compounds like sesquiterpenes derivatives from β-maaliene or δ-selinene could be responsible of this antibacterial activity. Pristine cold freshwater streams showed to be interesting sources of metabolites-producing microorganisms with antibacterial activity.  相似文献   

20.
In this work, antimicrobial peptides from Cuminum cyminum L. seeds were isolated and purified for the first time by 50% ethanol extraction, C18 reverse phase column chromatography and ion exchange chromatography for separation different peptides fraction. Then isolated fractions were characterized by Gel electrophoresis (SDS-PAGE), high-pressure liquid chromatography and the peptides components and molecular weights were determined by liquid chromatography and mass spectrometry. The extracts were tested against some strains of bacteria (E. coli and Staphylococcus aureus) and one strain of fungi (Candida albicans) using well diffusion and broth dilution assays. The extracts from C. cyminum L. seeds demonstrated a high degree of activity (some antibacterial effect) against the bacteria strains and аntifungal activity against the Candida albicans. However, the study indicates that the crude peptide extracts from C. cyminum L. seeds have promising antimicrobial and antioxidant activities that can be harnessed as leads for potential bioactive compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号