首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Odorant receptors play a crucial role in the special recognition of scent molecules in the honeybee olfaction system. The odorant receptor 11 (AmOR11) in western honeybee drones (Apis mellifera) has been demonstrated to specifically bind to 9-oxo-2-decenoic acid (9-ODA) of queens. However, little is known regarding the functions of OR11 Asian honeybee drones (Apis cerana) in the context of their mating activities. In this study, the odorant receptor 11 gene (AcOr11) from A. cerana was cloned, and its expression profiles were examined during two developmental stages (immature and sexually mature) and different physiological statuses (flying and crawling). The cDNA sequence of AcOr11 was highly similar to that of AmOr11, and encoded a membrane-coupled protein of 384 amino acids. The results of qRT-PCR indicated that AcOr11 was expressed at higher levels in drone antennae compared to brains, and the expression was significantly up-regulated in sexually mature drone brains compared to immature brains. Interestingly, AcOr11 expression in brains of mature flying drones was dramatically higher than those of mature crawling drones. To our knowledge, this study demonstrate a link between AcOr11 gene expression in the brain of honeybee drones and behavior associated with sexual maturity and mating flight.  相似文献   

2.
Summary Reciprocal transfer of sealed drone brood between colonies ofApis cerana andApis koschevnikovi was successful and resulted in four colonies (two of each species) with a mixed drone population. Flights ofApis cerana drones occurred between 14.00 and 16.15 regardless whether they were in a conspecific or alien colony.Apis koschevnikovi drones also flew at their species specific time from 16.45 to 18.30. A variance estimation revealed that 99.4% of the total variance depended on the species of the drone. In contrast to theApis drone's general biological dependence upon the colony, crossfostered drones ofApis cerana andApis koschevnikovi showed an unexpected autonomy in chosing their mating flight time.  相似文献   

3.
4.

Background

Apis mellifera and Apis cerana are two sibling species of Apidae. Apis cerana is adept at collecting sporadic nectar in mountain and forest region and exhibits stiffer hardiness and acarid resistance as a result of natural selection, whereas Apis mellifera has the advantage of producing royal jelly. To identify differentially expressed genes (DEGs) that affect the development of hypopharyngeal gland (HG) and/or the secretion of royal jelly between these two honeybee species, we performed a digital gene expression (DGE) analysis of the HGs of these two species at three developmental stages (newly emerged worker, nurse and forager).

Results

Twelve DGE-tag libraries were constructed and sequenced using the total RNA extracted from the HGs of newly emerged workers, nurses, and foragers of Apis mellifera and Apis cerana. Finally, a total of 1482 genes in Apis mellifera and 1313 in Apis cerana were found to exhibit an expression difference among the three developmental stages. A total of 1417 DEGs were identified between these two species. Of these, 623, 1072, and 462 genes showed an expression difference at the newly emerged worker, nurse, and forager stages, respectively. The nurse stage exhibited the highest number of DEGs between these two species and most of these were found to be up-regulated in Apis mellifera. These results suggest that the higher yield of royal jelly in Apis mellifera may be due to the higher expression level of these DEGs.

Conclusions

In this study, we investigated the DEGs between the HGs of two sibling honeybee species (Apis mellifera and Apis cerana). Our results indicated that the gene expression difference was associated with the difference in the royal jelly yield between these two species. These results provide an important clue for clarifying the mechanisms underlying hypopharyngeal gland development and the production of royal jelly.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-744) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Hornets (Vespa affinis) flying in a drone congregation area attracted drones of Apis cerana. The drones followed the hornet and were ‘manoeuvred’ towards a leaf or a tree. The hornet then rushed at one of the drones. Many attempts by the hornet to catch a drone were unsuccessful and all drones fled. After failing, the hornet returned to centre of the drone congregation area and repeated the behaviour. Only after successfully seizing of a drone did the hornet leave the drone congregation area carrying its prey. In a two-choice test in the centre of the drone congregation area, free-flying A. cerana drones preferred a hornet model to a live A. cerana queen. V. affinis apparently ‘exploits’ the intraspecific communication between queen and drones of A. cerana. Hunting of drones in the drone congregation area by V. affinis may be an example of predatory mimicry.  相似文献   

7.
Apis cerana and Apis mellifera normally display different strategies in cooling hive temperature, raising the question whether they would coordinate their efforts in to achieve stable thermoregulation in mixed colonies. The results show that the normal temperatures in the brood area in mixed colonies are more similar to those of pure A. cerana colonies than pure A. mellifera colonies. Under heat stress, A. cerana workers are more sensitive, and initiate fanning earlier than A. mellifera workers. In mixed colonies, the former become the main force for thermoregulation. When worker bees of both species were fanning together at the entrance, their own species-specific postures were adopted, but due to a significantly smaller number of A. mellifera workers engaged in fanning, the cooling efficiency of mixed colonies were closest to that of pure A. cerana colonies.  相似文献   

8.
Zusammenfassung In Feldversuchen an Drohnensammelplätzen wurden Königinnen von Apis mellifica und A. cerana von mellifica-Drohnen angeflogen. Die arteigene Königin wurde bei gleichzeitiger Darbietung der artfremden Königin in manchen Fällen (an Tagen mit geringer sexueller Appetenz der Drohnen) gesichert bevorzugt.Elektrophysiologisch konnten von den Porenplatten der Drohnenantennen beider Arten langsame Potentiale bei Reizung mit 9-Oxo-trans-2-decensäure (Queen substance) abgeleitet werden. Auf dieselben Riechzellen wirkt auch das Mandibeldrüsensekret von A. cerana. Bei beiden Arten standen die Wirkungen von Queen substance-Proben und von Cerana-Mandibeldrüsen zueinander im gleichen Verhältnis.Riechzellen des gleichen Typs finden sich auch auf den Antennen von Arbeiterinnen und Königinnen beider Arten. Ein anderer Riechzelltyp bei allen Kasten beider Arten reagiert auf den Sterzelduft von A. mellifica.
On the interspecific effect of the sex attractant of Apis mellifica and Apis cerana
Summary In field experiments drones of Apis mellifica were attracted by queens of Apis mellifica and of A. cerana. On days of low sexual appetite the drones showed a significant preference for their own queen.In both species we recorded spikes and slow potentials from the poreplates of the drones antennae. The same type of olfactory sense cells responds to 9-oxotrans-2-decenoic acid (queen substance) and to the secretion of the mandibular gland of Apis cerana. The quantitative relationship of the effects of the queen substance probes and of the cerana-mandibular glands were the same in both species.Olfactory cells of the same type were found on the queens' and workers' antennae of both species. Another cell type common to all castes of both species responds to the scent of the Nasanov gland of A. mellifica.


Für die freundliche Überlassung von Proben synthetischer 9-Oxo-trans-2-decensäure danken wir Herrn R. K. Callow (Rothamsted) und H. Rembold (München).  相似文献   

9.
10.
11.
Reproductive isolation between closely related species is often incomplete. The Western honeybee, Apis mellifera, and the Eastern hive bee, Apis cerana, have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century, the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations – two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species‐specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one‐third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically mated A. mellifera queens in either location. However, A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs or unfertilized drones. This suggests that reproductive interference will impact the viability of honeybee populations wherever A. cerana and A. mellifera are in contact.  相似文献   

12.
13.
Varroa destructor mite is currently the most serious threat to the world bee industry. Differences in mite tolerance are reported between two honey bee species Apis mellifera and Apis cerana. Differential gene expression of two honey bee species induced by V. destructor infection was investigated by constructing two suppression subtractive hybridization (SSH) libraries, as first steps toward elucidating molecular mechanisms of Varroa tolerance. From the SSH libraries, we obtained 289 high quality sequences which clustered into 132 unique sequences grouped in 26 contigs and 106 singlets where 49 consisted in A. cerana subtracted library and 83 in A. mellifera. Using BLAST, we found that 85% sequences had counterpart known genes whereas 15% were undescribed. A Gene Ontology analysis classified 51 unique sequences into different functional categories. Eight of these differentially expressed genes, representative of different regulation patterns, were confirmed by qRT-PCR. Upon the mite induction, the differentially expressed genes from both bee species were different, except hex 110 gene, which was up-regulated in A. cerana but down-regulated in A. mellifera, and Npy-r gene, which was down-regulated in both species. In general, most of the differential expression genes were involved in metabolic processes and nerve signaling. The results provide information on the molecular response of these two bee species to Varroa infection.  相似文献   

14.
Sensory neuron membrane protein (SNMP) is an olfactory receptor with photoaffinity analogs, capable of binding the pheromone membrane protein receptor deduced from receptor membrane protein with the pheromone–pheromone binding protein complex. However, this hypothesis has not yet been experimentally verified. In this experiment, the cDNA sequence encoding an open reading frame (ORF) of the SNMP gene AccSNMP1 (GenBank, KC012595) was cloned from Chinese honey bee, Apis cerana cerana Fabricius. Results from sequence analysis showed that this gene is 1,563 bp long, and that the ORF encodes 520 amino acids with a predicted molecular weight of 58.02 kDa, and has a theoretical isoelectric point of 5.83. Furthermore, there are two putative transmembrane domains. Multiple sequence alignment indicated that the AccSNMP1 gene from A. cerana cerana had different degrees of identity with the corresponding genes in nineteen other insects at the amino acid level. Phylogenetic analysis of the aligned sequences showed that A. cerana cerana is closely related to Apis mellifera Linnaeus and Bombus impatiens Cresson. Its distribution in tissues, as quantified using real-time RT-PCR, indicated that AccSNMP1 is highly expressed in the antennae and legs of A. cerana cerana, and there was a significant difference (p < 0.05) in gene expression between those tissues and tissues in the thorax, abdomen, snout, and head (not including antennae). Western blotting also confirmed the existence in the antennae of AccSNMP1 with an M W of 58.0 kDa, which is the same as the expected value of 58.02 kDa. An immunohistochemistry study showed that AccSNMP1 is expressed in the trichoid sensilla of A. cerana cerana antenna. Therefore, the results of this study provide the basis for further studies of the function of SNMP from A. cerana cerana.  相似文献   

15.
16.

Background

Hemolymph plays key roles in honey bee molecule transport, immune defense, and in monitoring the physiological condition. There is a lack of knowledge regarding how the proteome achieves these biological missions for both the western and eastern honey bees (Apis mellifera and Apis cerana). A time-resolved proteome was compared using two-dimensional electrophoresis-based proteomics to reveal the mechanistic differences by analysis of hemolymph proteome changes between the worker bees of two bee species during the larval to pupal stages.

Results

The brood body weight of Apis mellifera was significantly heavier than that of Apis cerana at each developmental stage. Significantly, different protein expression patterns and metabolic pathways were observed in 74 proteins (166 spots) that were differentially abundant between the two bee species. The function of hemolymph in energy storage, odor communication, and antioxidation is of equal importance for the western and eastern bees, indicated by the enhanced expression of different protein species. However, stronger expression of protein folding, cytoskeletal and developmental proteins, and more highly activated energy producing pathways in western bees suggests that the different bee species have developed unique strategies to match their specific physiology using hemolymph to deliver nutrients and in immune defense.

Conclusions

Our disparate findings constitute a proof-of-concept of molecular details that the ecologically shaped different physiological conditions of different bee species match with the hemolymph proteome during the brood stage. This also provides a starting point for future research on the specific hemolymph proteins or pathways related to the differential phenotypes or physiology.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-563) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
The aim of this study was to examine the effects of alpha lipoic acid (ALA) supplementation during semen cryopreservation on the sperm quality, chromatin integrity, oxidative stress, and expression level of BAX, BCL2, HSP70 and iNOS genes in semen samples obtained from infertile men with asthenoteratozoospermia.MethodsTwenty freshly ejaculated semen samples were cryopreserved with sperm freezing medium supplemented with 0.00, 0.02, 0.05, 0.1, 0.5, and 1 mmol/mL of ALA. The samples were analyzed according to the WHO guidelines before and after freezing. Sperm ROS production level, DNA fragmentation and cryo-capacitation were assessed using flow cytometry, TUNEL assay and chlortetracycline (CTC) test, respectively. Expression level of stress protein (HSP70), pro-apoptotic Bax, anti-apoptotic Bcl-2, and iNOS genes was assessed by real-time PCR assay.ResultsThe effective concentrations of ALA (0.02 and 0.5 mM) significantly improved the motility, viability and morphology of the frozen-thawed sperms compared to the control group treated with 0.00 mM of ALA. During cryopreservation, treatment of semen with 0.02 mM of ALA, as the optimal concentration, significantly decreased DNA fragmentation and oxidative stress level (P < 0.05), protected the acrosome integrity, and led to insignificant reduction in BAX gene expression level and significant increase in expression level of BCL2, HSP70, and iNOS genes compared with control group.ConclusionOur findings revealed that the adding ALA to semen samples obtained from infertile men with asthenoteratozoospermia plays a significant protective role against cryodamage by preserving the sperm functional parameters.  相似文献   

19.
The bacterial communities in the guts of the adults and larvae of the Asian honey bee Apis cerana and the European honey bee Apis mellifera were surveyed by pyrosequencing the 16S rRNA genes. Most of the gut bacterial 16S rRNA gene sequences were highly similar to the known honey bee-specific ones and affiliated with Pasteurellaceae or lactic acid bacteria (LAB). The numbers of operational taxonomic units (OTUs, defined at 97% similarity) were lower in the larval guts (6 or 9) than in the adult guts (18 or 20), and the frequencies of Pasteurellaceae-related OTUs were higher in the larval guts while those of LAB-related OTUs in the adult guts. The frequencies of Lactococcus, Bartonella, Spiroplasma, Enterobacteriaceae, and Flavobacteriaceae-related OTUs were much higher in A. cerana guts while Bifidobacterium and Lachnospiraceae-related OTUs were more abundant in A. mellfera guts. The bacterial community structures in the midguts and hindguts of the adult honey bees were not different for A. cerana, but significantly different for A. mellifera. The above results substantiated the previous observation that honey bee guts are dominated by several specific bacterial groups, and also showed that the relative abundances of OTUs could be markedly changed depending on the developmental stage, the location within the gut, and the honey bee species. The possibility of using the gut bacterial community as an indicator of honey bee health was discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号