首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The central aim of this paper is to clarify the picture of postglacial recolonisation and the reconstruction of refugia of Populus alba (L.) and Populus tremula (L.) in the light of hybridisation of the two species. We focussed our study on Central and Southeastern Europe including reference samples from Spain, Sweden and Northern Africa.We investigated 414 individuals of 26 populations using restriction fragment length polymorphisms (PCR-RFLPs) in six maternally inherited chloroplast markers. Altogether, 57 haplotypes were analysed of which four indicated hybridisation events in the past. Phylogeographic structure was found for P. alba with low diversity in Eastern Europe versus high diversity in Italy and Central Europe. A lack of phylogeographic structure was assessed for P. tremula as expected for a boreal forest tree, and diversity was evenly distributed in the studied populations. Two main refugia were identified for P. alba in Italy and Romania. A previously described hybrid zone between species in Central Europe turned out also to be a zone of contact between southern and eastern chloroplast lineages in P. alba. In contrast, P. tremula recolonised its present habitats in Central Europe from several refugia near the former ice cap. We assume separate disconnected refugia for P. alba and P. tremula and suggest an immigration scenario involving the mixing of colonisation routes and interspecific introgression to be responsible for the observed patterns.  相似文献   

2.
Plant–plant interactions are among the fundamental processes that shape structure and functioning of arid and semi‐arid plant communities. Despite the large amount of studies that have assessed the relationship between plant–plant interactions (i.e., facilitation and competition) and diversity, often researchers forget a third kind of interaction, known as allelopathy. We examined the effect of plant–plant interactions of three dominant species: the perennial grass Lygeum spartum, the allelopathic dwarf shrub Artemisia herba‐alba, and the nurse shrub Salsola vermiculata, on plant diversity and species composition in a semi‐arid ecosystem in NE Spain. Specifically, we quantified the interaction outcome (IO) based on species co‐occurrence, we analyzed diversity by calculation of the individual species–area relationship (ISAR), and compositional changes by calculation of the Chao‐Jaccard similarity index. We found that S. vermiculata had more positive IO values than L. spartum, and A. herba‐alba had values between them. Lygeum spartum and A. herba‐alba acted as diversity repellers, whereas S. vermiculata acted as a diversity accumulator. As aridity increased, A. herba‐alba transitioned from diversity repeller to neutral and S. vermiculata transitioned from neutral to diversity accumulator, while L. spartum remained as diversity repeller. Artemisia herba‐alba had more perennial grass species in its local neighborhood than expected by the null model, suggesting some tolerance of this group to its “chemical neighbor”. Consequently, species that coexist with A. herba‐alba were very similar among different A. herba‐alba individuals. Our findings highlight the role of the nurse shrub S. vermiculata as ecosystem engineer, creating and maintaining patches of diversity, as well as the complex mechanism that an allelopathic plant may have on diversity and species assemblage. Further research is needed to determine the relative importance of allelopathy and competition in the overall interference of allelopathic plants.  相似文献   

3.
Summary Isozyme analysis was conducted on individuals of Populus alba L., P. tremula L., and P. × canescens Smith to genetically characterize and differentiate species, hybrids, and individuals, and to determine genetic relationships among them. Thirty gene loci, with 71 alleles, coding for 15 enzymes were observed. Individuals could be identified on the basis of their multilocus genotypes. There were 21 unique multilocus genotypes among 23 P. alba clones. Five P. alba clones from Canada were genetically distinct from each other. Each of the 18 P. tremula and 15 P. × canescens clones had unique multilocus genotypes. Thirteen clones had a unique genotype at a single locus. Percentage of polymorphic loci, average number of alleles per locus, and mean observed heterozygosity were, respectively, 50.0, 1.86, and 0.085 in P. alba, 51.7, 1.66, and 0.096 in P. tremula, and 51.7, 1.86, and 0.157 in P. × canescens. Populus alba and P. tremula were genetically distinct from each other and could be distinguished by mutually exclusive alleles at Aco-3, P. tremula-specific gene Mdh-3, and allele frequency differences at 6 loci. Populus × canescens had allele contributions of P. alba and P. tremula. However, their allele frequencies were closer to those of P. alba than being truly intermediate. The mean genetic identity was 0.749 between P. alba and P. tremula, 0.987 between P. alba and P. × canescens, and 0.817 between P. tremula and P. × canescens. Canonical discriminant analysis of multilocus genotypes separated P. alba, P. tremula, and P. × canescens into three distinct groups and portrayed similar interspecific relationship as above. Our results suggested that the putative P. × canescens individuals consisted of a mixture of F1 hybrids of P. alba and P. tremula and their backcrosses to P. alba.Presently with the University of Alberta, and BioGenetica Inc., P.O. Box 8261, Edmonton, Alberta, Canada T6H 4P1  相似文献   

4.
Rapid identification of Populus L. species and hybrids can be achieved with relatively little effort through the use of primer extension-based single nucleotide polymorphism (SNP) genotyping assays. We present an optimized set of 36 SNP markers from 28 gene regions that diagnose eight poplar species (Populus angustifolia James, Populus balsamifera L., Populus deltoides Bartram, Populus fremontii Watson, Populus laurifolia Ledeb., Populus maximowiczii Henry, Populus nigra L., and Populus trichocarpa Torr. & Gray). A total of 700 DNA sequences from six Populus species (1–15 individuals per species) were used to construct the array. A set of flanking and probe oligonucleotides was developed and tested. The accuracy of the SNP assay was validated by genotyping 448 putatively “pure” individuals from 14 species of Populus. Overall, the SNP assay had a high success rate (97.6 %) and will prove useful for the identification of all Aigeiros Duby and Tacamahaca Spach. species and their early-generation hybrids within natural populations and breeding programs. Null alleles and intraspecific polymorphisms were detected for a few locus/species combinations in the Aigeiros and Tacamahaca sections. When we attempted to genotype aspens of the section Populus (Populus alba L., Populus grandidentata Michx., Populus tremula L., and Populus tremuloides Michx.), the success rate of the SNP array decreased by 13 %, demonstrating moderate cross-sectional transferability.  相似文献   

5.
6.
Abstract Cades Cove, Great Smoky Mountains National Park, U.S.A. was historically cleared largely for pastoral purposes; it is now comprised of recently abandoned pastures dominated by non‐native pasture species. To investigate the potential for reducing non‐native species relative to native species, park managers initiated an experiment in 1995 that included mowing, herbicide application, planting of seed, and burning of replicate 20 × 50–m plots at each of two sites within Cades Cove. Between 1995 and 2001 we evaluated the response of the plant community (i.e., species‐specific cover and frequency, biomass, diversity) to this suite of treatments and compared it with unmanipulated control plots at each site. Four years after treatment initiation abundance measures of Plantago lanceolata, Setaria geniculata, and Trifolium spp. averaged one‐third lower in treated than control plots. Frequency of Festuca pratensis was lower in treated than in control plots for 2 years, but after 4 years its frequency, cover, and biomass did not differ between treated and control plots. By 2000 the cover of Sorghastrum nutans in treated plots increased to 23–47%, depending on the site. Total biomass and diversity increased in treated plots. The dominance of Lespedeza cuneata at one site apparently reduced planting success, biomass production, and diversity and evenness. Post‐treatment lags in response for several species, coupled with interannual variation in response to environmental conditions, suggest that evaluations of treatment success would differ greatly depending on when the evaluation was conducted.  相似文献   

7.
Riparian vegetation in temperate zones holds great environmental importance and thus its conservation should be a priority. Among riverine tree species, genus Populus stands out, being also a model organism in research. In this work, we present a genetic analysis of the hybrid Populus x canescens and its parent species Populus alba and Populus tremula, with special emphasis in P. alba with which backcrosses frequently occur. This study focuses on the river Douro basin (Spain) where the presence of hybrids has been previously reported. Nuclear microsatellite markers and Bayesian statistical analysis have been used for the detection of hybrids and purebred stands. This methodology has also made possible the study of clonality in the taxonomic continuum P. albaP. x canescens. Our results highlight the existence of a small number of genotypes accounting for most of the individual trees and stands. Possible causes leading to this situation are discussed. Also, the presence of individuals genetically close to ornamental cultivars is reported for the first time. Finally, concern about the present situation of P. alba genetic resources is brought up.  相似文献   

8.
Changes in plant species richness across environmental and temporal gradients have often been explained by the intermediate disturbance hypothesis and a unimodal diversity–productivity relationship. We tested these predictions using two sets of mountain plant communities assembled along postglacial successional and snow depth (disturbance and stress) gradients in maritime Kamchatka. In each community, we counted the number of species in plots of increasing sizes (0.0025–100 m2) and analyzed them using species–area curves fitted by the Arrhenius power function and the Gleason logarithmic function. A comparison of successional communities along a 270-year-old moraine chronosequence behind the receding Koryto Glacier—representing gradients of increasing productivity and resource competition—confirmed the unimodal species richness pattern. The plant diversity peaked in a 60–80-year-old SalixAlnus stand where light availability was sufficient to sustain a rich understory combining pioneer and late successional herbs. The closed Alnus canopy on older moraines caused a pronounced decrease in species richness for all plot sizes (interactive stage 80–120 years since deglaciation). A slight increase in species richness in the oldest assortative stages (120–270 years), when Alnus stands are mature, was found only at the smaller spatial scales. This reflects (i) the consolidation of clonal understory dominants and (ii) the absence of other woody species such as Betula ermanii whose invasion would eliminate Alnus and increase diversity at larger spatial scales. A comparative study of major mountain plant communities distributed above the Koryto Glacier foreland did not confirm the highest species richness at intermediate levels of disturbance and stress. Contrary to our expectation, the species richness was highest in alpine tundra and snowbed communities, which are subjected to severe winter frost and a short summer season, while less disturbed communities of subalpine meadows, heaths, and Betula ermanii woods were less species-rich. We attribute this pattern to differences in habitat area and species pool size.  相似文献   

9.
Ectomycorrhizal (ECM) fungi historically were considered poorly represented in Neotropical forests but in the central Guiana Shield substantial areas are dominated by leguminous ECM trees. In the Upper Potaro Basin of Western Guyana, ECM fungi were sampled for 7?years during the rainy seasons of 2000–2008 in three 1-ha plots in primary monodominant forests of the ECM canopy tree Dicymbe corymbosa (Fabaceae subfam. Caesalpinioideae). Over the plot sampling period sporocarps of 126 species of putative or confirmed ECM fungi were recovered. These taxa represented 13 families and 25 genera of primarily Agaricomycetes, but also Ascomycota (Elaphomycetaceae), the majority of which are new to science. Russulaceae contained the most species (20 Russula; 9 Lactarius), followed by Boletaceae (8 genera, 25 spp.), Clavulinaceae (17 Clavulina), and Amanitaceae (16 Amanita). An additional 46 species of ECM fungi were collected in forests of the Upper Potaro Basin outside the study plots between 2000 and 2010, bringing the regional number of ECM species known from sporocarps to 172. This is the first long-term ECM macrofungal dataset from an ECM-dominated Neotropical forest, and sporocarp diversity is comparable to that recorded for ECM-diverse temperate and boreal forests. While a species accumulation curve indicated that ECM sporocarp diversity was not fully recovered inside of the plots,?~80% of the total species were recovered in the first year. Sequence data from ECM roots have confirmed the ECM status of 56 taxa represented by corresponding sporocarp data. However,?>50% of ECM fungal species from roots remain undiscovered as sporocarps, leading to a conservative estimate of?>?250 ECM species at the Potaro site. Dicymbe forests in Guyana are a hotspot for ECM fungal diversity in the Neotropics.  相似文献   

10.
Habitat manipulation in agroecosystems can influence predator–prey interactions. In this study, we collected foliar predators from field potato plots with different mulch treatments and assayed them for DNA of the target prey, Leptinotarsa decemlineata (Say), using species-specific primers. Concurrently, L. decemlineata larval abundance and plant damage were recorded from the same plots. Predator species abundance and diversity were not influenced by habitat manipulation, while prey density was highest in plots without mulch. Gut-content analysis revealed that the highest incidence of predators positive for L. decemlineata DNA was in plots without mulch, where target prey abundance was highest. Therefore, the lower prey abundance in mulched plots was not due to predation. The most abundant species in the predator assemblage was Coleomegilla maculata, which had the lowest proportion of L. decemlineata DNA in the gut. Podisus maculiventris, Perillus bioculatus, and Lebia grandis were less abundant but had a higher incidence of target prey DNA in the gut. DNA detectability half-lives were used to adjust for inter-specific variation in DNA digestive rates of the four predator species. Using this information to adjust actual number of positives for prey DNA, we compared proportions positive for L. decemlineata and found that P. maculiventris is the most effective predator species in the complex.  相似文献   

11.
Begomoviruses (whitefly‐transmitted, single‐stranded DNA plant viruses) are among the most damaging pathogens causing epidemics in economically important crops worldwide. Besides cultivated plants, many weed and wild hosts act as virus reservoirs where recombination may occur, resulting in new species. The aim of this study was to further characterise the diversity of begomoviruses infecting two major weed genera, Sida and Leonurus. Total DNA was extracted from samples collected in the states of Rio Grande do Sul, Paraná and Mato Grosso do Sul during the years 2009–2011. Viral genomes were enriched by rolling circle amplification (RCA), linearised into unit length genomes using various restriction enzymes, cloned and sequenced. A total of 78 clones were obtained: 37 clones from Sida spp. plants and 41 clones from Leonurus sibiricus plants. Sequence analysis indicated the presence of six bipartite begomovirus species and two alphasatellites. In Sida spp. plants we found Sida micrantha mosaic virus (SiMMV), Euphorbia yellow mosaic virus (EuYMV), and three isolates that represent new species, for which the following names are proposed: Sida chlorotic mottle virus (SiCMoV), Sida bright yellow mosaic virus (SiBYMV) and Sida golden yellow spot virus (SiGYSV), an Old World‐like begomovirus. L. sibiricus plants had a lower diversity of begomoviruses compared to Sida spp., with only Tomato yellow spot virus (ToYSV) and EuYMV (for the first time detected infecting plants of the genus Leonurus) detected. Two satellite DNA molecules were found: Euphorbia yellow mosaic alphasatellite, for the first time detected infecting plants of the genus Sida, and a new alphasatellite associated with ToYSV in L. sibiricus. These results constitute further evidence of the high species diversity of begomoviruses in non‐cultivated hosts, particularly Sida spp.  相似文献   

12.
The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the ‘model forest tree’ Populus.  相似文献   

13.
Many species are characterized by high levels of intraspecific or ecotypic diversity, yet we know little about how diversity within species influences ecosystem processes. Using a common garden experiment, we studied how intraspecific diversity within the widespread and often dominant North American native Pseudoroegneria spicata (Pursh) Á. Löve. affected invasion by Centaurea stoebe L. We experimentally manipulated Pseudoroegneria intraspecific diversity by changing the number of Pseudoroegneria ecotypes in common garden plots, using ecotypes collected throughout western North America. Invader biomass was 46% lower in mono-ecotype Pseudoroegneria plots than in control plots without any plants prior to invasion, and plots with 3–12 Pseudoroegneria ecotypes were 44% less invaded by Centaurea than the mono-ecotype plots. Across all plots, the total biomass of invading Centaurea plants was negatively correlated with total Pseudoroegneria biomass, but biotic resistance provided by high ecotypic diversity of Pseudoroegneria was not explained only by the increase in productivity that occurred with ecotypic diversity. Relative to Pseudoroegneria yield, Centaurea yield was lowest when Pseudoroegneria overyielded due to size-independent “complementarity” effects. This was not observed when overyielding was due to size-dependent effects. Our results suggest that the intraspecific diversity of a widespread and dominant species has the potential to impact invasion outcomes beyond its effects on native plant productivity and that mechanisms of biotic resistance to invaders may be to some degree independent of plant size.  相似文献   

14.
Summary This study examines the role of canopy trees in the formation and maintenance of different herb microhabitats in a mixed mesophytic forest stand. Herb abundance and reproductive success were recorded in 54 circular plots under seven species of canopy trees and in 15 circular control plots>2 m from any tree. Soil moisture, soil nutrient levels, litter depth, and light intensity were measured in a subset of these plots. Ordination of plots by both herb relative abundance and by reproductive success of common species indicated that herb assemblages under most canopy tree species were similar to those away from trees. However, herb assemblages under Fagus grandifolia trees differed moderately from the others while plots under Quercus alba trees supported significantly different herb assemblages. Analyses of variance revealed that several herb species occurred at significantly closer mean distance to the base of Q. alba or Fagus trees or at higher densities under these tree species. Soils around Q. alba trees had significantly higher concentrations of calcium and sulfate ions, and higher pH than plots under other tree species and control plots. This correlated closely with Q. alba stemflow which had higher concentrations of calcium and sulfate ions and lower concentrations of hydrogen ions than stemflow from other trees at this site. The slightly lower soil pH near the base of Fagus trees may have been related to the high volumes of stemflow produced by this species. Stepwise regression showed significant correlations between abundances of five common herb species and soil nutrient patterns. Maintenance of spatial heterogeneity in forest floor resources by the presence of different species of canopy trees may therefore be important in the maintenance of diversity in these understory herb communities.  相似文献   

15.
In sustainable pest management, orientation of insect pests can be manipulated by utilizing the relative attractiveness of different host plants. Plants attractive for oviposition but not offering a suitable resource for the development of larvae are called dead-end trap crops. In this study, the number of eggs and larvae and larval survival of Meligethes aeneus (Fab.) in the buds of Brassica napus L., B. rapa L., B. nigra L., B. juncea L., Eruca sativa Mill., Raphanus sativus Pers. and Sinapis alba L. were compared in 2011 and 2012. Overall infestation rate of buds varied from 0 to 71 %; the least attractive plants were S. alba and E. sativa. Egg clutch size per bud was greater on B. nigra and lower on S. alba and E. sativa than on B. napus. Dead larvae were found only in E. sativa and R. sativus buds. Over the two study years, 19 % of larvae on E. sativa and 35 % on R. sativus were dead. In conclusion, M. aeneus preferred to oviposit on Brassica species rather than on cruciferous plants from the other genera. In addition, R. sativus has the features of dead-end trap crop because 35 % of the larvae failed to survive.  相似文献   

16.
《Dendrochronologia》2014,32(3):220-229
Pointer year analysis, simple correlations, and response functions were combined in a dendroecological study to evaluate climate–growth relationships over the last century in two Abies alba Mill. and Fagus sylvatica L. mixed stands in Southern Italy mountainous areas. Analyses revealed species-specific attributes at the two study sites, i.e. Molise and Basilicata. Growth divergence between the two species emerged based on three primary climatic drivers, including drought stress and spring warmer temperatures during the current growing season for F. sylvatica, and water availability in the previous growing season for A. alba. However, despite the microclimatic differences between the two study sites, F. sylvatica showed similar climate–growth patterns, while differences were indicated for A. alba, due to its minor susceptibility to drought stress during the current growing season at the Basilicata site. Indeed, at the southernmost geographic limits of A. alba drought avoidance mechanisms were confirmed, consistent with traits considered diagnostic for the species in the Mediterranean region.  相似文献   

17.
珠穆朗玛峰国家级自然保护区高山杜鹃群落多样性研究   总被引:1,自引:0,他引:1  
根据野外样方调查数据,采用双向种指示分析(TWINSPAN)和典范对应分析(DCCA),对珠穆朗玛峰国家级自然保护区高山杜鹃灌丛群落进行分类和排序,并分析物种多样性沿海拔梯度分布格局。结果表明:(1)该研究区域38个高山杜鹃样地中,共记载的维管束植物有35科68属135种,出现频度较高的种有高山嵩草(Kobresia pygmaea)、珠芽蓼(Polygonum viviparum)、高山大戟(Euphorbia stracheyi)、髯花杜鹃(Rhododendron anthopogon)、雪层杜鹃(R.nivale)、扫帚岩须(Cassiope fastigiata)、鳞腺杜鹃(R.lepidotum)、木根香青(Anaphalis xylorhiza)、刚毛杜鹃(R.setosum)等。(2)TWINSPAN等级分类将该区域高山杜鹃灌丛38个样地划分为14个群丛类型。(3)样地DCCA二维排序图结果表明,土壤类型和海拔是影响该区域高山杜鹃灌丛群落分布格局的主要因子。(4)该区域高山杜鹃灌丛群落物种丰富度、Shannon-Wiener指数和Simpson指数与海拔呈显著负相关关系,随着海拔的升高而不断降低;而Pielou指数与海拔之间并无显著相关关系。  相似文献   

18.
The aim of this research was to evaluate plant diversity and the relationships between the distribution of Raunkiaer life forms and community structure, and species richness, at different successional stages in communities of Quercus ilex L., Erica arborea L. and Sarcopoterium spinosum (L.) Spach., distributed as enclaves in Sinop Province. Permanent sample plots were selected to determine plant diversity. The cover percentage of each plant species was recorded monthly during two vegetation periods. Raunkiaer life forms, and the Shannon–Wiener, Evenness, Simpson and Margalef indexes were determined. Twenty-three species in Quercus ilex, 96 species in Erica arborea, and 148 species in Sarcopoterium spinosum were identified. Hemicryptophyte dominancy was observed followed by phanerophytes in the Q. ilex community, and therophyte and hemicryptophyte dominancy in the E. arborea and S. spinosum communities, respectively. It was determined that the S. spinosum community was the most heterogeneous community while the Q. ilex community was more uniform than other communities. The variation in diversity indexes, homogeneity, and composition of life forms among communities adopting a similar climatic environment could result from a differentiation of environmental factors, which impact on community structuring, from biotic to abiotic at different successional stages of Mediterranean communities.  相似文献   

19.
Invasion by exotic plant species and herbivory can individually alter native plant species diversity, but their interactive effects in structuring native plant communities remain little studied. Many exotic plant species escape from their co-evolved specialized herbivores in their native range (in accordance with the enemy release hypothesis). When these invasive plants are relatively unpalatable, they may act as nurse plants by reducing herbivore damage on co-occurring native plants, thereby structuring native plant communities. However, the potential for unpalatable invasive plants to structure native plant communities has been little investigated. Here, we tested whether presence of an unpalatable exotic invader Opuntia ficus-indica was associated with the structure of native plant communities in an ecosystem with a long history of grazing by ungulate herbivores. Along 17 transects (each 1000 m long), we conducted a native vegetation survey in paired invaded and uninvaded plots. Plots that harboured O. ficus-indica had higher native plant species richness and Shannon–Wiener diversity H′ than uninvaded plots. However, mean species evenness J was similar between invaded and uninvaded plots. There was no significant correlation between native plant diversity and percentage plot cover by O. ficus-indica. Presence of O. ficus-indica was associated with a compositional change in native community assemblages between paired invaded and uninvaded plots. Although these results are only correlative, they suggest that unpalatable exotic plants may play an important ecological role as refugia for maintenance of native plant diversity in intensely grazed ecosystems.  相似文献   

20.
Host responses to AMF from plots differing in plant diversity   总被引:2,自引:0,他引:2  
Increased plant species richness in a plant community leads to changes in the composition of the associated arbuscular-mycorrhizal fungal (AMF) community. We tested whether AMF from plots with increased plant diversity cause significant differences in the growth of Lespedeza capitata, Schizachyrium scoparium or Liatris aspera. Seedlings of each were transplanted into pasteurized soil inoculated with soil from their own monocultures, or from plots with one, seven, or 15 additional plant species. In addition, inocula from S. scoparium and L. capitata monocultures were tested for reciprocal growth effects. Inocula from plots containing the native tallgrass prairie species Lespedeza capitata showed increasing AMF species richness and spore density with increasing plant diversity; this was not true with plots containing Schizachyrium scopariumor Liatris aspera. All three species responded to AMF inoculation with increased growth and Cu concentrations, and lowered Mn concentrations compared to non-inoculated control plants. Increasing the plant diversity of the inoculum source-plots significantly affected plant weights of L. capitata, but not of the other two host plants. Both S. scoparium and L. capitata showed increases in growth with inoculum from S. scoparium monocultures compared to that from L. capitata monocultures. Spore density of inoculum source plots was associated with subsequent plant growth or nutrient content only in Lespedeza plots, which contained considerably fewer spores, plant cover, and root biomass in plots with lower plant diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号