首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
The synthesis of Zinc oxide nanoparticles using a plant-mediated approach is presented in this paper. The nanoparticles were successfully synthesized using the Nitrate derivative of Zinc and plant extract of the indigenous medicinal plant Cayratia pedata. 0.1 mM of Zn (NO3)2.6H2O was made to react with the plant extract at different concentrations, and the reaction temperature was maintained at 55 °C, 65 °C, and 75 °C. The yellow coloured paste obtained was wholly dried, collected, and packed for further analysis. In the UV visible spectrometer (UV–Vis) absorption peak was observed at 320 nm, which is specific for Zinc oxide nanoparticles. The characterization carried out using Field Emission Scanning Electron Microscope (FESEM) reveals the presence of Zinc oxide nanoparticles in its agglomerated form. From the X-ray diffraction (XRD) pattern, the average size of the nanoparticles was estimated to be 52.24 nm. Energy Dispersive Spectrum (EDX) results show the composition of Zinc and Oxygen, giving strong energy signals of 78.32% and 12.78% for Zinc and Oxygen, respectively. Fourier Transform - Infra-Red (FT-IR) spectroscopic analysis shows absorption peak of Zn–O bonding between 400 and 600 cm?1. The various characterization methods carried out confirm the formation of nano Zinc oxide. The synthesized nanoparticles were used in the immobilization of the enzyme Glucose oxidase. Relative activity of 60% was obtained when Glucose oxidase was immobilized with the green synthesized ZnO nanoparticles. A comparative study of the green synthesized with native ZnO was also carried out. This green method of synthesis was found to be cost-effective and eco-friendly.  相似文献   

2.
Zinc oxide, an established inorganic metal oxide in nanoparticles form exhibits tremendous anti-bacterial activity. The present study focuses on determining the anti-bacterial activity of green synthesized zinc oxide nanoparticles (ZnO NPs). Results clearly validate the effective synthesis of spherical shaped nanoparticles with average size range of 60–80 nm. SEM and EDAX data buttresses the results obtained by XRD pattern in terms of size and purity. ZnO NPs exhibited dose-dependent anti-bacterial activity against Escherichia coli (E. coli) and the IC50 value was calculated to be around 20 μg/mL. Growth kinetics study was conducted in the presence of nanoparticles which demonstrated the bacteriostatic effect of ZnO NPs. The study recommends the potential use of ZnO NPs in industries like food, pharmaceutical, agriculture, cosmetic industries for its anti-bacterial activity.  相似文献   

3.
Present study, report the biofabrication of zinc oxide nanoparticles from aqueous leaf extract of Melia azedarach (MaZnO-NPs) through solution combustion method and their novel application in preventing the growth of seed-borne fungal pathogens of soybean (Cladosporium cladosporioides and Fusarium oxysporum). The standard blotter method was employed to isolate fungi and was identified through molecular techniques. The characterization of MaZnO-NPs was carried out by UV–Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). The physicochemical characterization confirmed the particles were of high purity and nano size (30–40 nm) with a hexagonal shape. The synthesized MaZnO-NPs inhibited the growth of C. cladosporioides and F. oxysporum in a dose dependent manner. Biomass, ergosterol, lipid peroxidation, intracellular reactive oxygen species and membrane integrity determination upon MaZnO-NPs treatment offered significant activities there by confirming the mechanism of action against the test pathogens. In conclusion, due to the effectiveness of MaZnO-NPs in controlling the growth of C. cladosporioides and F. oxysporum, the synthesized MaZnO-NPs provides insight towards their potential application in agriculture and food industries.  相似文献   

4.
The nanoparticles such as hydroxyapatite, zinc oxide, titanium dioxide and zirconium nanoparticles have application in dentistry. Therefore, it is of interest to document the antimicrobial activity of silymarin mediated zinc oxide and hydroxy apatite nanoparticles against oral pathogens. Hence, we synthesized hydroxyapatie and zinc oxide nanoparticles with silymarin and characterized by UV-visible spectrophotometer. Data shows that silymarin mediated HAP and ZnO nanoparticles have antimicrobial activity against oral pathogens such as Pseudomonas sp, Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis and Candida albicans.  相似文献   

5.
The current study evaluated the hazards of Zinc oxide nanoparticles (ZnONPs) on Nile Tilapia liver and gill antioxidants enzymes activities and antioxidants genes expressions. The ameliorative action of vitamins E and C mixture was investigated. Two hundred males of Nile Tilapia were exposed to one and two mg?L?1 of ZnONPs either with or without vitamin C and E mixture for 7 and 15?days. Glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities and gene expression as well glutathione (GSH) and lipid peroxide (LPO) levels were investigated. The results revealed that the exposure to ZnONPs could induce alterations in the liver and gills antioxidants and LPO of Nile Tilapia. Moreover, the mixture of vitamin E and C highly effective in alleviation the toxic effect of ZnONPs.  相似文献   

6.
Antifungal activities of zinc oxide nanoparticles (ZnO NPs) and their mode of action against two postharvest pathogenic fungi (Botrytis cinerea and Penicillium expansum) were investigated in this study. ZnO NPs with sizes of 70 ± 15 nm and concentrations of 0, 3, 6 and 12 mmol l−1 were used. Traditional microbiological plating, scanning electron microscopy (SEM), and Raman spectroscopy were used to study antifungal activities of ZnO NPs and to characterize the changes in morphology and cellular compositions of fungal hyphae treated with ZnO NPs. Results show that ZnO NPs at concentrations greater than 3 mmol l−1 can significantly inhibit the growth of B. cinerea and P. expansum. P. expansum was more sensitive to the treatment with ZnO NPs than B. cinerea. SEM images and Raman spectra indicate two different antifungal activities of ZnO NPs against B. cinerea and P. expansum. ZnO NPs inhibited the growth of B. cinerea by affecting cellular functions, which caused deformation in fungal hyphae. In comparison, ZnO NPs prevented the development of conidiophores and conidia of P. expansum, which eventually led to the death of fungal hyphae. These results suggest that ZnO NPs could be used as an effective fungicide in agricultural and food safety applications.  相似文献   

7.
8.
9.
Half-fin anchovy (Setipinna taty) hydrolysates (HAHp) was conjugated with zinc oxide nanoparticles (ZnO NPs) using a hydrothermal method to develop a novel antibacterial nanocomposite. The generated supernatants of the conjugate, designated as HAHp(3.0)/ZnO NPs, were characterized by transmission electron microscopy, high resolution transmission electron microscopy, and inductively coupled plasma-optical emission spectrometer. Results showed that HAHp(3.0) was absorbed on the surface of the ZnO NPs. The total content of zinc element was 9127.4 mg/kg in HAHp(3.0)/ZnO NPs. The increased antibacterial effects were observed for the HAHp(3.0)/ZnO NPs with the minimal inhibitory concentration of 3.5 μgprotein/mL against Escherichia coli (E. coli), Pseudomonas fluorescens, Salmonella and Staphylococcus aureus, compared to the bare HAHp(3.0). The antibacterial activity of HAHp(3.0)/ZnO NPs was further evaluated using E. coli as the model strain. The incubation of HAHp(3.0)/ZnO NPs increased the outer and inner membrane permeability in E. coli cells, and the leakages of potassium ions and the cytoplasmic β-galactosidase were detected during the process. Furthermore, porous structures were observed on the membrane of E. coli cells by scanning electron microscopy. In addition, the formation of intracellular reactive oxygen species was detected using fluorescence microscopy. The results suggested that the HAHp(3.0)/ZnO NPs could be a promising antibacterial nanocomposite.  相似文献   

10.
BackgroundNanotoxicology is a major field of study that reveals hazard effects of nanomaterials on the living cells.MethodsIn the present study, Copper/Copper oxide nanoparticles (Cu/CuO NPs) were prepared by the chemical reduction method and characterized by different techniques such as: X-Ray Diffraction, Transmission and Scanning Electron Microscopy. Evaluation of the toxicity of Cu/CuO NPs was performed on 2 types of cells: human lung normal cell lines (WI-38) and human lung carcinoma cell (A549). To assess the toxicity of the prepared Cu/CuOs NPs, the two cell types were exposed to Cu/CuO NPs for 72 h. The half-maximal inhibitory concentration IC50 of Cu/CuO NPs for both cell types was separately determined and used to examine the cell genotoxicity concurrently with the determination of some oxidative stress parameters: nitric oxide, glutathione reduced, hydrogen peroxide, malondialdehyde and superoxide dismutase.ResultsCu/CuO NPs suppressed proliferation and viability of normal and carcinoma lung cells. Treatment of both cell types with their IC50’s of Cu/CuO NPs resulted in DNA damage besides the generation of reactive oxygen species and consequently the generation of a state of oxidative stress.ConclusionOverall, it can be concluded that the IC50's of the prepared Cu/CuO NPs were cytotoxic and genotoxic to both normal and cancerous lung cells.  相似文献   

11.
Streptomyces similanensis 9X166 is known to be an antagonist of the black rot pathogen of orchids, Phytophthora palmivora. In this study, we investigated the production of highly viable S. similanensis 9X166 cells by solid state fermentation using agro-industrial substrates, and the shelf life of a S. similanensis 9X166 dried solid. Rice bran was found to be the most appropriate raw material for production of both viable cells and β-1,3-glucanase. A medium containing 12?g of rice bran and coconut husks at a ratio of 10:2, supplemented with 10?mL of mineral salts produced the highest number of viable cells and greatest level of β-1,3-glucanase. Ammonium sulfate was the most suitable nitrogen source, and an initial moisture content of 65% and a temperature of 30°C were found to be optimal conditions for the production of viable cells and β-1,3-glucanase. Storing the dried fermented solid under non-vacuum conditions resulted in the highest cell viability. The specific rate of degradation on viability increased as the temperature increased to 37°C, according to the Arrhenius equation. There was no difference between the storage time estimated by the Arrhenius equation from the specific rate of degradation compared to the validated storage time of S. similanensis 9X166 dried solids when maintained at the ambient temperature in Thailand. At 60 days, the product retained 106 CFU/g of S. similanensis 9X166 in dried solid, which was the minimal effective amount for 100% inhibition of P. palmivora in living orchids.  相似文献   

12.
Escherichia coli infection is considered one of the most economically important multi-systemic diseases in poultry farms. Several nanoparticles such as silver, chitosan, and copper oxide are known to be highly toxic to several microbes. However, there are no data concerning their success against in vivo experimental E. coli infection in broilers. Therefore, the present study was designed to investigate the bactericidal effect of low doses of CuO-NPs (5 mg/kg bwt), Ag-NPs (0.5 mg/kg bwt), and Ch-Ag NPs (0.5 mg/kg bwt) against E. coli experimental infection in broilers. One hundred chicks were divided into five groups as follows: (1) control; (2) E. coli (4 × 108 CFU/ml) challenged; (3) E. coli +CuO-NPs; (4) E. coli +Ag-NPs; (5) E. coli +Ch-Ag NPs. The challenged untreated group, not NPs treated groups, recorded the lowest weight gain as well as the highest bacterial count and lesion score in all examined organs. The highest liver content of silver was observed in Ag-NPs treated group compared with the Ch-Ag NPs treated group. Our results concluded that Ch-Ag NPs not only had the best antibacterial effects but also acted as a growth promoter in broilers without leaving any residues in edible organs. We recommend using Ch-Ag NPs in broiler farms instead of antibiotics or probiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号