首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of seasonal influenza viral infections using antivirals such as neuraminidase inhibitors (NAIs) has been proven effective if administered within 48 h post-infection. However, there is growing evidence that antiviral treatment of infections with avian-derived strains even as late as 6 days post-infection (dpi) can significantly reduce infection severity and duration. Using a mathematical model of in-host influenza viral infections which can capture the kinetics of both a short-lived, typical, seasonal infection and a severe infection exhibiting sustained viral titer, we explore differences in the effects of NAI treatment on both types of influenza viral infections. Comparison of our model's behavior against experimental data from patients naturally infected with avian strains yields estimates for the times at which patients were infected that are consistent with those reported by the patients, and estimates of drug efficacies that are lower for patients who died than for those who recovered. In addition, our model suggests that the sustained, high, viral titers often seen in more severe influenza virus infections are the reason why antiviral treatment delayed by as much as 6 dpi will still lead to reduced viral titers and shortened illness. We conclude that NAIs may be an effective and beneficial treatment strategy against more severe strains of influenza virus characterized by high, sustained, viral titers. We believe that our mathematical model will be an effective tool in guiding treatment of severe influenza viral infections with antivirals.  相似文献   

2.
路雅菲  薛江东  毕玉海 《微生物学报》2022,62(12):4731-4739
流感病毒包括甲(A)、乙(B)、丙(C)和丁(D)四种型。人流行性感冒是由甲型和乙型季节性流感病毒引起的一种急性呼吸道传染病。流感病毒感染患者主要表现出呼吸道症状,严重时可以导致肺炎。此外,与其他病毒、细菌和支原体等病原体混合或继发感染时,会增加流感患者的重症率和死亡率。近几年,流感病毒与其他病原协同感染的病例有增加趋势。本文归纳总结了流感病毒与其他病原混合及继发感染的研究现状,希望为流感病毒复杂感染情况的临床诊断和治疗方案的制定提供线索。  相似文献   

3.
Several mechanisms have been proposed to account for the marked increase in severity of human infections with avian compared to human influenza strains, including increased cytokine expression, poor immune response, and differences in target cell receptor affinity. Here, the potential effect of target cell tropism on disease severity is studied using a mathematical model for in-host influenza viral infection in a cell population consisting of two different cell types. The two cell types differ only in their susceptibility to infection and rate of virus production. We show the existence of a parameter regime which is characterized by high viral loads sustained long after the onset of infection. This finding suggests that differences in cell tropism between influenza strains could be sufficient to cause significant differences in viral titer profiles, similar to those observed in infections with certain strains of influenza A virus. The two target cell mathematical model offers good agreement with experimental data from severe influenza infections, as does the usual, single target cell model albeit with biologically unrealistic parameters. Both models predict that while neuraminidase inhibitors and adamantanes are only effective when administered early to treat an uncomplicated seasonal infection, they can be effective against more severe influenza infections even when administered late.  相似文献   

4.
Since the outbreak of coronavirus disease 2019 (COVID-19), biomarkers for evaluating severity, as well as supportive care to improve clinical course, remain insufficient. We explored the potential of d-amino acids, rare enantiomers of amino acids, as biomarkers for assessing disease severity and as protective nutrients against severe viral infections. In mice infected with influenza A virus (IAV) and in patients with severe COVID-19 requiring artificial ventilation or extracorporeal membrane oxygenation, blood levels of d-amino acids, including d-alanine, were reduced significantly compared with those of uninfected mice or healthy controls. In mice models of IAV infection or COVID-19, supplementation with d-alanine alleviated severity of clinical course, and mice with sustained blood levels of d-alanine showed favorable prognoses. In severe viral infections, blood levels of d-amino acids, including d-alanine, decrease, and supplementation with d-alanine improves prognosis. d-Alanine has great potentials as a biomarker and a therapeutic option for severe viral infections.  相似文献   

5.

Background

Influenza is often not recognized as an important cause of severe or fatal disease in tropical and subtropical countries in Southeast Asia. The extent to which Oseltamivir treatment may protect against a fatal outcome in severe influenza infections is not known. Thailand''s National Avian Influenza Surveillance (NAIS) system affords a unique opportunity to describe the epidemiology of laboratory-confirmed severe and fatal human influenza infections.

Methodology/Principal Findings

During January 2004 through December 2006, 11,641 notifications to the NAIS were investigated in 73 of 76 Thai provinces. Clinical and demographic data and respiratory swab specimens were collected and tested by PCR for influenza. Using the NAIS database, we identified all patients with laboratory confirmed human influenza (A/H3N2, A/H1N1 and Type B) infection. A retrospective medical record review was conducted on all fatal cases with laboratory confirmed influenza and from a sample of hospitalized cases in 28 provinces. The association of underlying risk factors, Oseltamivir treatment and risk of a fatal outcome were examined. Human influenza infections were identified in 2,075 (18%) cases. Twenty-two (1%) deaths occurred including seven deaths in children less than ten years of age. Thirty-five percent of hospitalized human influenza infections had chest X-ray confirmed pneumonia. Current or former smoking; advanced age, hypertension and underlying cardiovascular, pulmonary or endocrine disease were associated with a fatal outcome from human influenza infection. Treatment with Oseltamivir was statistically associated with survival with a crude OR of .11 (95% CI: 0.04–0.30) and .13 (95% CI: 0.04–0.40) after controlling for age.

Conclusions

Severe and fatal human influenza infections were commonly identified in the NAIS designed to identify avian A/H5N1 cases. Treatment with Oseltamivir is associated with survival in hospitalized human influenza pneumonia patients.  相似文献   

6.
Dang UJ  Bauch CT 《PloS one》2011,6(8):e23580
Vaccination can delay the peak of a pandemic influenza wave by reducing the number of individuals initially susceptible to influenza infection. Emerging evidence indicates that susceptibility to severe secondary bacterial infections following a primary influenza infection may vary seasonally, with peak susceptibility occurring in winter. Taken together, these two observations suggest that vaccinating to prevent a fall pandemic wave might delay it long enough to inadvertently increase influenza infections in winter, when primary influenza infection is more likely to cause severe outcomes. This could potentially cause a net increase in severe outcomes. Most pandemic models implicitly assume that the probability of severe outcomes does not vary seasonally and hence cannot capture this effect. Here we show that the probability of intensive care unit (ICU) admission per influenza infection in the 2009 H1N1 pandemic followed a seasonal pattern. We combine this with an influenza transmission model to investigate conditions under which a vaccination program could inadvertently shift influenza susceptibility to months where the risk of ICU admission due to influenza is higher. We find that vaccination in advance of a fall pandemic wave can actually increase the number of ICU admissions in situations where antigenic drift is sufficiently rapid or where importation of a cross-reactive strain is possible. Moreover, this effect is stronger for vaccination programs that prevent more primary influenza infections. Sensitivity analysis indicates several mechanisms that may cause this effect. We also find that the predicted number of ICU admissions changes dramatically depending on whether the probability of ICU admission varies seasonally, or whether it is held constant. These results suggest that pandemic planning should explore the potential interactions between seasonally varying susceptibility to severe influenza outcomes and the timing of vaccine-altered pandemic influenza waves.  相似文献   

7.
Introduction of a novel influenza virus into the human population leads to the occurrence of pandemic events, such as the one caused by pandemic influenza A (H1N1) 2009 virus. The severity of infections caused by this virus in young adults was greater than that observed in patients with seasonal influenza. Fatal cases have been associated with an abnormal innate, proinflammatory immune response. A critical role for natural killer cells during the initial responses to influenza infections has been suggested. In this study, we assessed the association of killer-cell immunoglobulin-like receptors (KIRs) with disease severity by comparing KIR gene content in patients with mild and severe pandemic influenza virus infections to a control group. We found that activator (KIR3DS1 and KIR2DS5) and inhibitory (KIR2DL5) genes, encoded in group B haplotypes containing the cB01, cB03 and tB01 motifs, are associated with severe pandemic influenza A (H1N1) 2009 infections. Better understanding of how genetic variability contributes to influenza virus pathogenesis may help to the development of immune intervention strategies aiming at controlling the severity of disease.  相似文献   

8.
9.
Antiviral drugs are an important measure of control for influenza in the population, particularly for those that are severely ill or hospitalised. The neuraminidase inhibitor (NAI) class of drugs, including oseltamivir, have been the standard of care (SOC) for severe influenza illness for many years. The approval of drugs with novel mechanisms of action, such as baloxavir marboxil, is important and broadens potential treatment options for combination therapy. The use of antiviral treatments in combination for influenza is of interest; one potential benefit of this treatment strategy is that the combination of drugs with different mechanisms of action may lower the selection of resistance due to treatment. In addition, combination therapy may become an important treatment option to improve patient outcomes in those with severe illness due to influenza or those that are immunocompromised. Clinical trials increasingly evaluate drug combinations in a range of patient cohorts. Here, we summarise preclinical and clinical advances in combination therapy for the treatment of influenza with reference to immunocompromised animal models and clinical data in hospitalised patient cohorts where available. There is a wide array of drug categories in development that have also been tested in combination. Therefore, in this review, we have included polymerase inhibitors, monoclonal antibodies (mAbs), host-targeted therapies, and adjunctive therapies. Combination treatment regimens should be carefully evaluated to determine whether they provide an added benefit relative to effectiveness of monotherapy and in a variety of patient cohorts, particularly, if there is a greater chance of an adverse outcome. Safe and effective treatment of influenza is important not only for seasonal influenza infection, but also if a pandemic strain was to emerge.  相似文献   

10.
Detrimental inflammation of the lungs is a hallmark of severe influenza virus infections. Endothelial cells are the source of cytokine amplification, although mechanisms underlying this process are unknown. Here, using combined pharmacological and gene-deletion approaches, we show that plasminogen controls lung inflammation and pathogenesis of infections with influenza A/PR/8/34, highly pathogenic H5N1 and 2009 pandemic H1N1 viruses. Reduction of virus replication was not responsible for the observed effect. However, pharmacological depletion of fibrinogen, the main target of plasminogen reversed disease resistance of plasminogen-deficient mice or mice treated with an inhibitor of plasminogen-mediated fibrinolysis. Therefore, plasminogen contributes to the deleterious inflammation of the lungs and local fibrin clot formation may be implicated in host defense against influenza virus infections. Our studies suggest that the hemostatic system might be explored for novel treatments against influenza.  相似文献   

11.
本研究综述了自1959年以来国内外发生的人感染H7亚型禽流感事件。大多数是在家禽爆发禽流感期间,农场工人在处置感染鸡群过程中被暴露而感染;也有曾接触活禽或曾到过活禽市场而感染;有经禽流感病毒致病的哺乳动物(海豹)感染于人或实验室感染(事故)所致。引起人感染的H7亚型中已知有H7N2、H7N3、H7N7以及2013年在中国发现的新的致病亚型H7N9。H7N2、H7N3、H7N7感染以结膜炎为主,大多为轻症;而H7N9感染以严重的呼吸道感染为特征,表现为重症肺炎,呼吸窘迫综合症,病死率高达33.6%。  相似文献   

12.
The promise of siRNAs for the treatment of influenza   总被引:3,自引:0,他引:3  
Current WHO reports on the Asian avian influenza virus outbreaks are poignant reminders of the potential for the emergence of highly virulent strains of influenza A virus (IAV) and the fact that it remains a scourge on human health. As IAV drifts and shifts its genetic and antigenic composition, it presents an ever-changing challenge for vaccines and antiviral medications. Short-interfering RNAs (siRNAs) are the latest class of potential antiviral therapeutics to be developed. Recent reports using siRNAs in mice suggest that they hold great promise for the prevention and treatment of IAV infections.  相似文献   

13.
New contemporary data about new infectious diseases of XXI century are presented. Data on morbidity and mortality from severe acute respiratory syndrome (SARS, atypical pneumonia) and avian influenza are analyzed and compared with World Health Organization data on human influenza. Biologic characteristics of avian influenza virus A/H5N1 are discussed as well as possibility of its human-to-human transmission. Principles of SARS and avian influenza infections transmission as zoonoses are described as well as mechanisms of transmission impeding their ability to infect humans. It has been argued that SARS should be regarded as contagious infection, whereas avian influenza - as non-contagious. Features of all stages of epidemic process of these infections are analyzed.  相似文献   

14.
Several chronic viral infections (such as HIV and hepatitis C virus) are highly prevalent and are a serious health risk. The adaptation of animal viruses to the human host, as recently exemplified by influenza viruses and the severe acute respiratory syndrome coronavirus, is also a continuous threat. There is a high demand, therefore, for new antiviral lead compounds and novel therapeutic concepts. In this Review, an original therapeutic concept for suppressing enveloped viruses is presented that is based on a specific interaction of carbohydrate-binding agents (CBAs) with the glycans present on viral-envelope glycoproteins. This approach may also be extended to other pathogens, including parasites, bacteria and fungi.  相似文献   

15.
Elimination of influenza virus-infected cells during primary influenza virus infections is thought to be mediated by CD8(+) T cells though perforin- and FasL-mediated mechanisms. However, recent studies suggest that CD8(+) T cells can also utilize TRAIL to kill virally infected cells. Therefore, we herein examined the importance of TRAIL to influenza-specific CD8(+) T cell immunity and to the control of influenza virus infections. Our results show that TRAIL deficiency increases influenza-associated morbidity and influenza virus titers, and that these changes in disease severity are coupled to decreased influenza-specific CD8(+) T cell cytotoxicity in TRAIL(-/-) mice, a decrease that occurs despite equivalent numbers of pulmonary influenza-specific CD8(+) T cells. Furthermore, TRAIL expression occurs selectively on influenza-specific CD8(+) T cells, and high TRAIL receptor (DR5) expression occurs selectively on influenza virus-infected pulmonary epithelial cells. Finally, we show that adoptive transfer of TRAIL(+/+) but not TRAIL(-/-) CD8(+) effector T cells alters the mortality associated with lethal dose influenza virus infections. Collectively, our results suggest that TRAIL is an important component of immunity to influenza infections and that TRAIL deficiency decreases CD8(+) T cell-mediated cytotoxicity, leading to more severe influenza infections.  相似文献   

16.
Scientific barriers to developing vaccines against avian influenza viruses   总被引:1,自引:0,他引:1  
The increasing number of reports of direct transmission of avian influenza viruses to humans underscores the need for control strategies to prevent an influenza pandemic. Vaccination is the key strategy to prevent severe illness and death from pandemic influenza. Despite long-term experience with vaccines against human influenza viruses, researchers face several additional challenges in developing human vaccines against avian influenza viruses. In this Review, we discuss the features of avian influenza viruses, the gaps in our understanding of infections caused by these viruses in humans and of the immune response to them that distinguishes them from human influenza viruses, and the current status of vaccine development.  相似文献   

17.
The World Health Organization identifies influenza as a major public health problem. While the strains commonly circulating in humans usually do not cause severe pathogenicity in healthy adults, some strains that have infected humans, such as H5N1, can cause high morbidity and mortality. Based on the severity of the disease, influenza viruses are sometimes categorized as either being highly pathogenic (HP) or having low pathogenicity (LP). The reasons why some strains are LP and others HP are not fully understood. While there are likely multiple mechanisms of interaction between the virus and the immune response that determine LP versus HP outcomes, we focus here on one component, namely macrophages (MP). There is some evidence that MP may both help fight the infection and become productively infected with HP influenza viruses. We developed mathematical models for influenza infections which explicitly included the dynamics and action of MP. We fit these models to viral load and macrophage count data from experimental infections of mice with LP and HP strains. Our results suggest that MP may not only help fight an influenza infection but may contribute to virus production in infections with HP viruses. We also explored the impact of combination therapies with antivirals and anti-inflammatory drugs on HP infections. Our study suggests a possible mechanism of MP in determining HP versus LP outcomes, and how different interventions might affect infection dynamics.  相似文献   

18.
Group A Streptococcus (GAS) are pathogenic bacteria of the genus Streptococcus and cause severe invasive infections that comprise a wide range of diverse diseases, including acute respiratory distress syndrome, renal failure, toxic shock‐like syndrome, sepsis, cellulitis and necrotizing fasciitis. The essential virulence, infected host and external environmental factors required for invasive GAS infections have not yet been determined. Superinfection with influenza virus and GAS induced invasive GAS infections was demonstrated by our team in a mouse model, after which clinical cases of invasive GAS infections secondary to influenza virus infection were reported by other investigators in Japan, USA, Canada, UK China, and other countries. However, the pathogenic mechanisms underlying influenza virus‐GAS superinfection are not yet fully understood. The present review describes the current knowledge about invasive GAS infections by superinfection. Topics addressed include the bacteriological, virological and immunological mechanisms impacting invasion upon superinfection on top of underlying influenza virus infection by GAS and other bacteria (i.e., Streptococcus pneumoniae and Staphylococcus aureus). Future prospects are also discussed.
  相似文献   

19.
Highly pathogenic H5N1 influenza infections are associated with enhanced inflammatory and cytokine responses, severe lung damage, and an overall dysregulation of innate immunity. C3, a member of the complement system of serum proteins, is a major component of the innate immune and inflammatory responses. However, the role of this protein in the pathogenesis of H5N1 infection is unknown. Here we demonstrate that H5N1 influenza virus infected mice had increased levels of C5a and C3 activation byproducts as compared to mice infected with either seasonal or pandemic 2009 H1N1 influenza viruses. We hypothesized that the increased complement was associated with the enhanced disease associated with the H5N1 infection. However, studies in knockout mice demonstrated that C3 was required for protection from influenza infection, proper viral clearance, and associated with changes in cellular infiltration. These studies suggest that although the levels of complement activation may differ depending on the influenza virus subtype, complement is an important host defense mechanism.  相似文献   

20.
Mortality after influenza is often due to secondary bacterial pneumonia with Streptococcus pneumoniae, particularly in the elderly. The reasons for the high fatality rate seen with this disease are unclear. To further characterize the pathogenesis of pneumonia after influenza in a mouse model, we examined the pathology and immunology that leads to fatal infection. Influenza-infected mice were either euthanized 24 h after secondary infection with S. pneumoniae for determination of pathology, bacterial cultures, and levels of immune effectors or were followed by use of a live imaging system for development of pneumonia. Influenza-infected mice challenged with each of 3 serotypes of pneumococcus developed a severe, necrotic pneumonia and met endpoints for euthanasia in 24 to 60 h. Strikingly elevated levels of both pro- and anti-inflammatory molecules including interleukins 6 and 10, macrophage inflammatory protein 1alpha, and chemokine KC were present in the blood. High levels of these cytokines and chemokines as well as tumor necrosis factor alpha, interleukin 1beta, and heme oxygenase 1 were present in the lungs, accompanied by a massive influx of neutrophils. Mortality correlated with the development of pneumonia and lung inflammation but not with bacteremia. This model has the potential to help us understand the pathogenesis of severe lung infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号