首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diadromus pulchellus is a solitary ichneumonid parasitoid. Its only known host is the pupa of Acrolepiopsis assectella, a specialist herbivore of Allium species. D. pulchellus females parasitize A. assectella pupae within 48 h after the caterpillars spin their cocoon and begin to pupate. Having observed that the cocoon produced by the leek moth caterpillar stimulates parasitoid egg-laying and that caterpillar leaves a silk thread, we studied the hypothesis that silk thread might be involved in host-finding by the parasitoid. Behavioral tests showed that when D. pulchellus females encounter a host silk thread, they change directions, follow the thread, and quickly locate the host. These findings show that pupal parasitoids can use signals produced by their hosts at the developmental instar preceding the one that they parasitize.  相似文献   

2.
Colonies of the social caterpillar Hylesia lineata (Lepidoptera: Satumiidae) form long, single-file, head-to-tail processions as they move between their shelters and distant feeding sites. Although investigations of other processionary species have implicated a silk trail in the processionary process, silk plays little or no role in initiating or maintaining processions in H. lineata. Studies we report here implicate both tactile stimuli and a trail pheromone in the establishment and maintenance of processions. Processionaries elicit locomotion in the individual preceding them in line by brushing their heads against prominent sulci that project from the tips of their abdomens. Caterpillars mark their pathways with a pheromone deposited by brushing the ventral surfaces of their last abdominal segments against the substrate. The persistent pheromone is soluble in hexanes and appears to be secreted from glandular setae found on the proximal regions of the anal prolegs and the venter. In Y-choice tests, caterpillars selected newer trails over older trails and stronger trails over weaker trails. They did not distinguish between trials deposited by newly fed caterpillars and those deposited by starved caterpillars. Despite the unidirectional nature of processions, there is no indication that caterpillars can determine from the trail alone the direction in which the procession advanced. The significance of these findings to the foraging ecology of the caterpillars is discussed.  相似文献   

3.
Behavioral development of three species of marine sciaenid fish larvae was examined and related to their sensory morphology and habitat. Anti-predator behavior of the larvae was examined under different experimental conditions to isolate the roles of vision and mechanoreception. Spotted seatrout larvae maintained high levels of responsiveness even without visual cues but performed very poorly without mechanoreception. Loss of visual cues had no impact on the distance at which seatrout responded to the stimulus. Atlantic croaker generally performed best when vision was available. This species had low responsiveness without visual stimuli, and had smaller reactive distances when unable to use vision. Red drum were the most flexible in their use of sensory systems. For almost the entire larva period, responsiveness of red drum was equally high regardless of which sensory system was not available. In addition, reactive distances were unaffected when either visual or mechanoreceptive stimuli were eliminated. Thus, seatrout and croaker are sensory specialists, and red drum are sensory generalists. This is corroborated by previous studies on the sensory morphology of these species which showed that seatrout had more mechanosensory specialization, croaker had more visual specialization, and red drum were intermediate, with some enhancement of both systems. Behavioral data are interpreted in terms of habitat usage of the three species. Seatrout have the most restricted distribution over seagrass beds, croaker have a somewhat more flexible distribution, encompassing more open water habitats, and red drum have the most flexible range of habitats, using both vegetated and unvegetated portions of the estuary. These results indicate that even closely related species can exhibit different behaviors in order to better exploit the habitats in which they occur.  相似文献   

4.
Leaf shelter-building caterpillars generate most of the force required to pull leaf surfaces together by stretching silk strands while spinning. Axially retractive forces produced by columns of stretched strands enabled caterpillars in our study to generate forces as great as 0.3 Newtons (i.e., a 30-g force). We found that caterpillar silk also contracts instantly when wetted, producing an additional, though smaller, axially retractive force. Contraction ratios (final length/ original length) of the wetted silk of 19 species ranged from 0.21 to 0.93 and were smallest among species that use their silk to make leaf shelters. Our study, the first to identify the specific sources of the energy harnessed by caterpillars to tie, roll, or fold leaves, indicates that silk properties and caterpillar behavior have coevolved to facilitate the leaf shelter-building process.  相似文献   

5.
Prey detect their predators through predator signals and cues and, consequently, respond with anti‐predatory behaviours to inhibit the action of their aggressors. Lepidopterans can intercept signals emitted by predators and may defend themselves through chemical, morphological or behavioural responses. In this study, we investigated the effect of acoustic stimuli of different predators on defensive behaviour of gregarious caterpillars. Our results demonstrated that Hylesia nigricans (Lepidoptera, Saturniidae) caterpillars alter their behaviour (i.e. abruptly raising the head) in response to the acoustic stimulus of the predators (i.e. predation risk signals from birds and wasps). The magnitude of this response depended on predator identity and caterpillar body size. Larger caterpillars responded more strongly to predatory stimuli than smaller caterpillars. However, regardless of the size of the caterpillars, they responded more strongly to the stimuli of wasps. In addition, we identified that H. nigricans caterpillars emit ultrasonic noise after detecting the stimuli of the predators – this noise seems to function as an alert about the risk of predation during the early stages of development (second and fifth instars). The duration of ultrasonic emission (i.e. milliseconds) increases with the number of repetitions of the stimuli (i.e. wing‐beat sounds of the wasps and insectivorous birds). These results provide novel information about predation risk in interactions among caterpillars and their predators, and indicate possible communication among invertebrates mediated by the risk of predation.  相似文献   

6.
Testing visual sensitivity in any species provides basic information regarding behaviour, evolution, and ecology. However, testing specific features of the visual system provide more empirical evidence for functional applications. Investigation into the sensory system provides information about the sensory capacity, learning and memory ability, and establishes known baseline behaviour in which to gauge deviations (Burghardt, 1977). However, unlike mammalian or avian systems, testing for learning and memory in a reptile species is difficult. Furthermore, using an operant paradigm as a psychophysical measure of sensory ability is likewise as difficult. Historically, reptilian species have responded poorly to conditioning trials because of issues related to motivation, physiology, metabolism, and basic biological characteristics. Here, I demonstrate an operant paradigm used a novel model lizard species, the Jacky dragon (Amphibolurus muricatus) and describe how to test peripheral sensitivity to salient speed and motion characteristics. This method uses an innovative approach to assessing learning and sensory capacity in lizards. I employ the use of random-dot kinematograms (RDKs) to measure sensitivity to speed, and manipulate the level of signal strength by changing the proportion of dots moving in a coherent direction. RDKs do not represent a biologically meaningful stimulus, engages the visual system, and is a classic psychophysical tool used to measure sensitivity in humans and other animals. Here, RDKs are displayed to lizards using three video playback systems. Lizards are to select the direction (left or right) in which they perceive dots to be moving. Selection of the appropriate direction is reinforced by biologically important prey stimuli, simulated by computer-animated invertebrates.  相似文献   

7.
Ku Y  Ohara S  Wang L  Lenz FA  Hsiao SS  Bodner M  Hong B  Zhou YD 《PloS one》2007,2(8):e771
Our previous studies on scalp-recorded event-related potentials (ERPs) showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA) to the ERP data, we found independent components (ICs) located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC) and the primary somatosensory cortex (SI). The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex) that are involved in sensation and perception of various stimuli.  相似文献   

8.
There is evidence that visual stimuli used to signal drug delivery in self-administration procedures have primary reinforcing properties, and that drugs of abuse enhance the reinforcing properties of such stimuli. Here, we explored the relationships between locomotor activity, responding for a visual stimulus, and self-administration of methamphetamine (METH). Rats were classified as high or low responders based on activity levels in a novel locomotor chamber and were subsequently tested for responding to produce a visual stimulus followed by self-administration of a low dose of METH (0.025 mg/kg/infusion) paired with the visual stimulus. High responder rats responded more for the visual stimulus than low responder rats indicating that the visual stimulus was reinforcing and that operant responding for a visual stimulus has commonalities with locomotor activity in a novel environment. Similarly, high responder rats responded more for METH paired with a visual stimulus than low responder rats. Because of the reinforcing properties of the visual stimulus, it was not possible to determine if the rats were responding to produce the visual stimulus, METH or the combination. We speculate that responding to produce sensory reinforcers may be a measure of sensation seeking. These results indicate that visual stimuli have unconditioned reinforcing effects which may have a significant role in acquisition of drug self-administration, a role that is not yet well understood.  相似文献   

9.
Studies of the visual system suggest that, at an early stage of form processing, a stimulus is represented as a set of contours and that a critical feature of these local contours is their orientation. Here, we characterize the ability of human observers to identify or discriminate the orientation of bars and edges presented to the distal fingerpad. The experiments were performed using a 400-probe stimulator that allowed us to flexibly deliver stimuli across a wide range of conditions. Orientation thresholds, approximately 20 degrees on average, varied only slightly across modes of stimulus presentation (scanned or indented), stimulus amplitudes, scanning speeds, and different stimulus types (bars or edges). The tactile orientation acuity was found to be poorer than its visual counterpart for stimuli of similar aspect ratio, contrast, and size. This result stands in contrast to the equivalent spatial acuity of the two systems (at the limit set by peripheral innervation density) and to the results of studies of tactile and visual letter recognition, which show that the two modalities yield comparable performance when stimuli are scaled appropriately.  相似文献   

10.

Background

We physically interact with external stimuli when they occur within a limited space immediately surrounding the body, i.e., Peripersonal Space (PPS). In the primate brain, specific fronto-parietal areas are responsible for the multisensory representation of PPS, by integrating tactile, visual and auditory information occurring on and near the body. Dynamic stimuli are particularly relevant for PPS representation, as they might refer to potential harms approaching the body. However, behavioural tasks for studying PPS representation with moving stimuli are lacking. Here we propose a new dynamic audio-tactile interaction task in order to assess the extension of PPS in a more functionally and ecologically valid condition.

Methodology/Principal Findings

Participants vocally responded to a tactile stimulus administered at the hand at different delays from the onset of task-irrelevant dynamic sounds which gave the impression of a sound source either approaching or receding from the subject’s hand. Results showed that a moving auditory stimulus speeded up the processing of a tactile stimulus at the hand as long as it was perceived at a limited distance from the hand, that is within the boundaries of PPS representation. The audio-tactile interaction effect was stronger when sounds were approaching compared to when sounds were receding.

Conclusion/Significance

This study provides a new method to dynamically assess PPS representation: The function describing the relationship between tactile processing and the position of sounds in space can be used to estimate the location of PPS boundaries, along a spatial continuum between far and near space, in a valuable and ecologically significant way.  相似文献   

11.
Mormyrid fish use active electrolocation to detect and analyze objects. The electrosensory lateral line lobe in the brain receives input from electroreceptors and an efference copy of the command to discharge the electric organ. In curarized fish, we recorded extracellularly from neurons of the electrosensory lateral line lobe while stimulating in the periphery with either a local point stimulus or with a more natural whole-body stimulus. Two classes of neurons were found: (1) three types of E-cells, which were excited by a point stimulus; and (2) two types of I-cells, which were inhibited by point stimulus and responded with excitation to the electric organ corollary discharge. While all neurons responded to a point stimulus, only one out of two types of I-units and two of the three types of E-units changed their firing behavior to a whole-body stimulus or when an object was present. In most units, the responses to whole-body stimuli and to point stimuli differed substantially. Many electrosensory lateral line lobe units showed neural plasticity after prolonged sensory stimulation. However, plastic effects during whole body stimulation were often unlike those occurring during point stimuli, suggesting that under natural conditions electrosensory lateral line lobe network effects play an important role in shaping neural plasticity.  相似文献   

12.
Tactile rivalry demonstrated with an ambiguous apparent-motion quartet   总被引:1,自引:0,他引:1  
When observers view ambiguous visual stimuli, their perception will often alternate between the possible interpretations, a phenomenon termed perceptual rivalry [1]. To induce perceptual rivalry in the tactile domain, we developed a new tactile illusion, based on the visual apparent-motion quartet [2]. Pairs of 200 ms vibrotactile stimuli were applied to the finger pad at intervals separated by 300 ms. The location of each successive stimulus pair alternated between the opposing diagonal corners of the approximately 1 cm(2) stimulation array. This stimulation sequence led all participants to report switches between the perception of motion traveling either up and down or left and right across their fingertip. Adaptation to tactile stimulation biased toward one direction caused subsequent ambiguous stimulation to be experienced in the opposing direction. In contrast, when consecutive trials of ambiguous stimulation were presented, motion was generally perceived in the direction consistent with the motion reported in the previous trial. Voluntary eye movements induced shifts in the tactile perception toward a motion axis aligned along a world-centered coordinate frame. Because the tactile quartet results in switching perceptual states despite unvaried sensory input, it is ideally suited to future studies of the neural processes associated with conscious tactile perception.  相似文献   

13.
Flower visits are complex encounters, in which animals are attracted by floral signals, guided toward the site of the first physical contact with a flower, land, and finally take up floral rewards. At close range, signals of stamens and pollen play an important role to facilitate flower handling in bees, yet the pollen stimuli eliciting behavioral responses are poorly known. In this study, we test the response of flower‐naive bumblebees (Bombus terrestris) toward single and multimodal pollen stimuli as compared to natural dandelion pollen. As artificial pollen stimuli, we used the yellow flavonoid pigment quercetin, the scent compound eugenol, the amino acid proline, the monosaccharide glucose, and the texture of pollen‐grain‐sized glass pellets as a tactile stimulus. Three test stimuli, dandelion pollen, one out of various uni‐ and multimodal stimulus combinations, and a solvent control were presented simultaneously to individual bumblebees, whose response was recorded. The results indicate that bumblebees respond in an irreversible sequence of behavioral reactions. Bumblebees approached the visual stimulus quercetin as often as natural dandelion pollen. An additional olfactory stimulus resulted in slightly more frequent landings. The multimodal stimulus combinations including visual, olfactory, gustatory, and tactile stimuli elicited approaches, antennal contacts, and landings as often as natural pollen. Subsequent reactions like proboscis extension, mandible biting, and buzzing were more often but not regularly observed at dandelion pollen. Our study shows that visual signals of pollen are sufficient to trigger initial responses of bumblebees, whereas multimodal pollen stimuli elicit full behavioral response as compared to natural pollen. Our results suggest a major role of pollen cues for the attraction of bees toward flowers and also explain, why many floral guides mimic the visual signals of pollen and anthers, that is, the yellow and UV‐absorbing color, to direct bumblebees toward the site where they access the floral rewards.  相似文献   

14.
Spider senses - technical perfection and biology   总被引:1,自引:0,他引:1  
This essay deals with sensory biology in a broad sense. It takes mechanosensory systems of spiders to illustrate a few basic issues. Particular attention is given to two aspects. 1. There is a remarkable “ingenuity” in the uptake and transformation of the adequate stimuli way out in the sensory periphery, which is reflected by an intimate relationship between the physical properties of the stimuli and the characteristics of the structures receiving and transforming them. We need to understand the details of this relationship in order to understand the relationship of an organism to its environment. 2. Sensory systems represent interfaces between the environment and behavior. As highly selective filters they have not evolved to provide abstract knowledge but to guide a particular behavior. The signals sent to the central nervous system are meaningful only in regard to their behavioral significance. – Some details of stimulus transformation in biological strain gauges (slit sensilla), airflow detectors (trichobothria) and touch receptors (tactile hairs) are described. Some of the refinement in the periphery is then meshed with the behavior of the whole organism. In this way the value shall be underlined of trying to understand reductionist details as building blocks of the complexity which enables an organism to behave in its own particular way in its species specific environment.  相似文献   

15.
We studied the responses to sensory stimulation of three diencephalic areas, the central posterior nucleus of the dorsal thalamus, the anterior tuberal nucleus of the hypothalamus, and the preglomerular complex. Units sensitive to acoustic (500 Hz tone burst), hydrodynamic (25 Hz dipole stimulus) and visual (640 nm light flash) stimuli were found in both the central posterior and anterior tuberal nucleus. In contrast, unit responses or large robust evoked potentials confined to the preglomerular complex were not found. In the central posterior nucleus, most units were unimodal. Many units responded exclusively to visual stimulation and exhibited a variety of temporal response patterns to light stimuli. In the anterior tuberal nucleus of the hypothalamus, most units responded to more than one modality and showed a stronger response decrement to stimulus repetitions than units in the central posterior nucleus. Our data suggest that units in the central posterior nucleus are primarily involved in the unimodal processing of sensory information whereas units in the anterior tuberal nucleus of the hypothalamus may be involved in multisensory integration.  相似文献   

16.
Pei YC  Hsiao SS  Craig JC  Bensmaia SJ 《Neuron》2011,69(3):536-547
How are local motion signals integrated to form a global motion percept? We investigate the neural mechanisms of tactile motion integration by presenting tactile gratings and plaids to the fingertips of monkeys, using the tactile analogue of a visual monitor and recording the responses evoked in somatosensory cortical neurons. The perceived directions of the gratings and plaids are measured in parallel psychophysical experiments. We identify a population of somatosensory neurons that exhibit integration properties comparable to those induced by analogous visual stimuli in area MT and find that these neural responses account for the perceived direction of the stimuli across all stimulus conditions tested. The preferred direction of the neurons and the perceived direction of the stimuli can be predicted from the weighted average of the directions of the individual stimulus features, highlighting that the somatosensory system implements a vector average mechanism to compute tactile motion direction that bears striking similarities to its visual counterpart.  相似文献   

17.
It is now well established that vasotocin (AVT) and its mammalian homologue vasopressin influence various social behaviors in vertebrates, but less is known about the mechanisms through which these peptides modulate behavior. In male roughskin newts, Taricha granulosa, AVT stimulates a courtship behavior, amplectic clasping. Three general explanations for how AVT affects male courtship behavior have been considered: by enhancing a central state of sexual motivation, by affecting sensorimotor integration mechanisms in individual sensory modalities, or by influencing a nonspecific state of attention, arousal, or anxiety. AVT administration enhanced appetitive responses to visual and olfactory sexual stimuli, as would be expected if AVT affects a state of sexual motivation that affects behavioral responses to sexual stimuli regardless of the sensory modality in which they are processed. However, AVT selectively enhanced responses to female olfactory stimuli (sex pheromones), but similarly enhanced responses to female and food-related visual stimuli (worms), thus questioning the utility of such a motivational mechanism, as responses to female stimuli were not selectively enhanced in all sensory modalities. We therefore propose that exogenous AVT independently influences olfactory processes associated with orientation/attraction toward a female sex pheromone and visual processes associated with orientation/attraction toward a visual feature common to females and worms. In further experiments AVT administration failed to stimulate feeding behavior but did decrease locomotor activity. Thus, AVT does not stimulate courtship behavior in this species by enhancing the animals' general state of attention or by decreasing general anxiety, as responses to nonsexual, attractive stimuli were not uniformly enhanced, nor by stimulating general arousal, as activity levels did not increase. Rather, the data support the conclusion that AVT affects courtship by influencing specific sensorimotor processes associated with behavioral responses to individual releasing stimuli, which suggests a mechanistic framework for understanding socially motivated behavior is this species.  相似文献   

18.
In order to determine precisely the location of a tactile stimulus presented to the hand it is necessary to know not only which part of the body has been stimulated, but also where that part of the body lies in space. This involves the multisensory integration of visual, tactile, proprioceptive, and even auditory cues regarding limb position. In recent years, researchers have become increasingly interested in the question of how these various sensory cues are weighted and integrated in order to enable people to localize tactile stimuli, as well as to give rise to the 'felt' position of our limbs, and ultimately the multisensory representation of 3-D peripersonal space. We highlight recent research on this topic using the crossmodal congruency task, in which participants make speeded elevation discrimination responses to vibrotactile targets presented to the thumb or index finger, while simultaneously trying to ignore irrelevant visual distractors presented from either the same (i.e., congruent) or a different (i.e., incongruent) elevation. Crossmodal congruency effects (calculated as performance on incongruent-congruent trials) are greatest when visual and vibrotactile stimuli are presented from the same azimuthal location, thus providing an index of common position across different sensory modalities. The crossmodal congruency task has been used to investigate a number of questions related to the representation of space in both normal participants and brain-damaged patients. In this review, we detail the major findings from this research, and highlight areas of convergence with other cognitive neuroscience disciplines.  相似文献   

19.
Gregarious larvae that use chemical communication to feed and move together are widespread among folivorous insects, although social behaviour has been studied almost exclusively in a few temperate zone genera. The Menapis (or variable) tigerwing butterfly Mechanitis menapis mantineus Hewitson (Lepidoptera, Nymphalidae, Danainae, Ithomiini) is a neotropical species whose larvae feed gregariously on Solanaceae host plants. In laboratory experiments conducted in the Ecuador cloud forest, M. menapis caterpillars are attracted to silk produced by conspecifics and show no evidence of pheromone production. Indeed, caterpillars consistently choose arenas with silk over bare arenas but do not show a preference for arenas marked with abdominal cuticular surface residues. Mechanitis menapis caterpillars on silk‐coated plants are both more mobile and more cohesive than those on control plants. Nonetheless, caterpillars move independently over unmarked surfaces and groups do not make rapid collective choices between two food sources. Collective behaviour in M. menapis thus appears to be based on aggregation on collectively produced silk to facilitate feeding, as well as using this silk to maintain cohesion. Silk production is common in caterpillars, although M. menapis appears to be unique among species studied so far in using silk to maintain group cohesion.  相似文献   

20.
Although it is well known that attention to a visual or auditory stimulus can enhance its perception, less is known concerning the effects of attention on the perception of natural tactile stimuli. The present study was conducted to examine the magnitude of the effect of cross-modal manipulations of attention in human subjects on the detection of weak, low-frequency vibrotactile stimuli delivered to the glabrous skin of the finger pad of the right index finger via an Optacon. Three suprathreshold vibrotactile arrays (40 Hz), varying in the number of activated pegs and hence the area of skin stimulated, were used. Subjects were trained to detect the occurrence of vibrotactile or visual stimuli and to respond by pressing a foot pedal as quickly as possible thereafter. Two instructional lights were used to cue the subjects as to which stimulus modality they should attend, in three experimental conditions. In the first cue condition, the forthcoming stimulus modality was indicated by the illumination of its associated light. In the second cue condition, both instructional lights were illuminated, and the subjects were asked to divide their attention equally between the two modalities. In the third cue condition, the stimulus modality was falsely indicated by the illumination of the cue not associated with the stimulus to be presented. Reaction times (RTs) were calculated for each trial. For each modality, tactile and visual, the RTs varied significantly with the cue condition, with the mean RT changing in a graded manner across the experimental conditions (being shortest for the correctly cued condition, intermediate for the neutrally cued condition, and longest for the incorrectly cued condition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号