首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A field experiment was carried out to quantify biological nitrogen fixation (BNF) using the 15N isotope natural abundance method in maize (Zea mays L.)/faba bean (Vicia faba L.) and wheat (Triticum aestivum L.)/faba bean intercropping systems. Faba bean was yielding more in the maize/faba bean intercropping, but not in the wheat/faba bean intercropping. Biomass, grain yield and N acquisition of faba bean were significantly increased when intercropped with maize, and decreased significantly with wheat, irrespective of N-fertilizer application, indicating that the legume could gain or lose productivity in an intercropping situation. There was yield advantage of maize/faba bean intercropping, but no in wheat/faba bean intercropping. The grain yield of the faba bean intercropped with maize was greater than that of faba bean monoculture due to increases of the stems per plant and the pods per stem of faba bean. N fertilization inhibited N fixation of faba bean in maize/faba bean and wheat/faba bean intercropping and faba bean monoculture. The responses of different cropping systems to N-fertilizer application, however, were not identical, with competitive intercropping (wheat/faba bean) being more sensitive than facilitative intercropping (maize/faba bean). Intercropping increased the percentage of N derived from air (%Ndfa) of the wheat/faba bean system, but not that of the maize/faba bean system when no N fertilizer was applied. When receiving 120 kg N/ha, however, intercropping did not significantly increase %Ndfa either in the wheat/faba bean system or in the maize/faba bean system in comparison with faba bean in monoculture. The amount of shoot N derived from air (Ndfa), however, increased significantly when intercropped with maize, irrespective of N-fertilizer application. Ndfa decreased when intercropped with wheat, albeit not significantly at 120 kg N/ha. Ndfa was correlated more closely with dry matter yield, grain yield and competitive ratio, than with %Ndfa. This indicates that that total dry matter yield (sink strength), not %Ndfa, was more critical for the legume to increase Ndfa. The results suggested that N fixation could be improved by yield maximization in an intercropping system.  相似文献   

2.
Li  Long  Yang  Sicun  Li  Xiaolin  Zhang  Fusuo  Christie  Peter 《Plant and Soil》1999,212(2):105-114
Interspecific complementary and competitive interactions between maize (Zea mays L. cv. Zhongdan No. 2) and faba bean (Vicia faba L. cv. Linxia Dacaidou) in maize/faba bean intercropping systems were assessed in two field experiments in Gansu province, northwestern China, plus a microplot experiment in one treatment of one of the field experiments in which root system partitions were used to determine interspecific root interactions. Intercropping effects were detected, with land equivalent ratio values of 1.21–1.23 based on total (grain+straw) yield and 1.13–1.34 based on grain yield. When two rows of maize were intercropped with two rows of faba bean, both total yield and grain yield of both crop species were significantly higher than those of sole maize and faba bean on an equivalent area basis. When two rows of pea (Pisum sativum L. cv. Beijing No. 5) were intercropped with two rows of faba bean, neither total yield nor grain yield of faba bean was higher than of sole faba bean on an equivalent area basis. Interspecific competition between maize and faba bean was relatively weak, with mean relative crowding coefficients of 0.99–1.02 for maize and 1.55–1.59 for faba bean. The microplot experiment in which partitions were placed between root systems showed a significant positive yield effect on maize when the root systems intermingled freely (no partition) or partly (400 mesh nylon net partition) compared with no interspecific root interaction (plastic sheet partition). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
采用水培方法,研究了不同磷水平下小麦-蚕豆间作体系根系形态变化及其与内源激素的相关关系。结果表明: 与单作小麦相比,在低磷(1/2P)水平下,小麦-蚕豆间作能显著增加小麦的根长,显著减少小麦根系的平均直径,显著增加根系的表面积;在常规磷(P)水平下,间作能显著降低小麦根系的平均直径,有增加小麦根长和根表面积的趋势;与单作蚕豆相比,间作能明显促进蚕豆根系的增长,同时增加蚕豆根表面积。在1/2P水平下,间作能显著提高小麦和蚕豆根系中的生长素(IAA)、脱落酸(ABA)、水杨酸(SA)和茉莉酸(JA)含量;在P水平下,间作能显著提高小麦根系中的IAA、ABA和JA含量,单、间作小麦根系中的SA含量没有显著差异,间作显著增加了蚕豆根系中ABA和SA含量,单、间作蚕豆根系中的IAA和JA含量无显著差异。单作条件下,小麦和蚕豆根系中的内源激素(IAA、ABA、SA和JA)含量与其根系形态(根长、根平均直径和根表面积)无显著相关性;间作条件下,小麦和蚕豆根系中的IAA含量与根长和根表面积之间存在明显的正相关关系。由此可见,小麦-蚕豆间作能够诱导小麦和蚕豆根系IAA的增加。这种变化可能是驱动间作系统根系形态变化的重要因子。  相似文献   

4.
Increasing crop nitrogen use efficiency while also simultaneously decreasing nitrogen accumulation in the soil would be key steps in controlling nitrogen pollution from agricultural systems. Long-term field experiments were started in 2003 to study the effects of intercropping on crop N use and soil mineral N accumulation in wheat (Triticum aestivum L. cv 2014)/maize (Zea mays L. cv Shendan16), wheat/faba bean (Vicia faba L. cv Lincan No. 5) and maize/faba bean intercropping and monocropping systems. Monocropping was compared with two types of strip intercropping: continuous intercropping (two crops intercropped continuously on the same strips of land every year) and rotational intercropping (two crops grown adjacently and rotated to the other crop??s strip every year). Maize/faba bean intercropping had greater crop N uptake than did wheat/faba bean or wheat/maize. Wheat/maize accumulated more mineral N in the top 140 cm of the soil profile during the co-growth stage from maize emergence to maturity of wheat or faba bean. Continuously intercropped maize substantially decreased soil mineral N accumulation under wheat and faba bean rows (60?C100 cm soil depth) at maize harvest. Soil mineral N accumulation under wheat rows increased with rotational intercropping with faba bean. Rotational intercropping may potentially alleviate the adverse effects of wheat on N use by other crops and increase the nitrogen harvest index of wheat, maize and faba bean. Intercropping using species with different maturity dates may be more effective in increasing crop N use efficiency and decreasing soil mineral N accumulation.  相似文献   

5.
董艳  董坤  汤利  郑毅  杨智仙  肖靖秀  赵平  胡国彬 《生态学报》2013,33(23):7445-7454
通过田间小区试验,研究了小麦与蚕豆间作对蚕豆枯萎病发生和根际微生物代谢功能多样性的影响。结果表明,小麦与蚕豆间作使蚕豆枯萎病的发病率和病情指数分别比单作显著降低20%和30.4%。与单作处理相比,间作显著增加了蚕豆和小麦根际微生物对31种碳源的平均利用率(AWCD),其中间作蚕豆的AWCD值最高,比单作增加82.7%,单作蚕豆最低。间作蚕豆和间作小麦根际微生物的Shannon多样性指数与丰富度指数均显著高于单作,间作使蚕豆和小麦的丰富度指数分别增加29.2%和30.3%。根际微生物对六类碳源的利用强度百分比以糖类、羧酸类和氨基酸最高,分别为41.96%,19.80%和18.13%。主成分分析表明,小麦与蚕豆间作改变了根际微生物的群落组成;相关分析表明,糖类、羧酸类和氨基酸类碳源是区分单间作处理差异的主要碳源,其中氨基酸类碳源是最敏感的碳源。小麦与蚕豆间作增加了根际微生物活性,提高了Shannon多样性指数和丰富度指数,改变了微生物群落功能多样性,是抑制蚕豆枯萎病的有效措施。该研究为阐明根际微生物功能多样性变化在间作体系病害控制中的作用与机制奠定了理论基础。  相似文献   

6.
Root rot caused by Rhizoctonia bataticola is a serious threat in cotton. Field experiments were conducted to study the influences of intercropping system in cotton with inorganic fertilizer and two bioinoculants (Azospirillum and Pseudomonas) on root rot incidence and yield of cotton. The results revealed that among the intercropping systems, cotton intercropping with Sesbania aculeata (1 : 1 ratio) recorded the highest rhizosphere colonization of Pseudomonas fluorescens in the year 2007 and 2008 and the lowest root rot incidence of 1.40, 2.49 and 3.90; 1.02, 2.22 and 5.98% at the vegetative, flowering and maturity stages in the year 2007 and 2008, respectively. From nutrient management practices, integration of Azospirillum and Pseudomonas with 50% recommended dose of NPK recorded the highest rhizosphere colonization of P. fluorescens in both years and the lowest root rot incidence of 1.40, 2.32 and 3.36; 1.07, 2.01 and 5.25% at vegetative, flowering and maturity stages in 2007 and 2008, respectively. Cotton + S. aculeata recorded the maximum number of sympodial branches (23.5 and 20.62/plant in 2007 and 2008, respectively) and the highest seed cotton yield of 2010 and 1894 kg/ha. The highest cotton equivalent yield (CEY) of 2052 and 1895 kg/ha was recorded in cotton + onion system, which was closely followed by cotton + S. aculeata system that had the CEY of 2010 and 1894 kg/ha in 2007 and 2008, respectively. The increased CEY is due to increased cost of onion compared with S. aculeata. Combined application of 100% recommended dose of NPK and bioinoculants recorded the seed cotton yield of 2227 and 1983 kg/ha and CEY of 2460 and 2190 kg/ha in 2007 and 2008, respectively. The lowest root rot incidence and increased yield in cotton + S. aculeata combined with 50% NPK and bioinoculants could be due to synergistic effect among the bioinoculants and S. aculeata.  相似文献   

7.
Understanding the effects of arbuscular mycorrhizal fungi (AMF) under different environmental contexts on overyielding in intercropping systems can be instructive in optimizing productivity and ecosystem services. A greenhouse study was conducted with maize and faba bean monocultures or intercropping at low phosphorus (P) and high P levels with three different water availabilities, and inoculated with or without AMF species Funneliformis mosseae. At low P level, overyielding was mainly due to the increase of maize biomass promoted by AMF relative to faba bean. Whereas in high P soils, overyielding was observed at all treatments, regardless of AMF. Inoculation of AMF significantly improved maize rather than faba bean P uptake, water use efficiency and photosynthesis rate, in particular at the low P level. This study identified the context dependence of AMF in influencing overyielding in maize/faba bean intercropping and demonstrates the importance of AMF in sustainable agricultural production.  相似文献   

8.
豆科与禾本科作物间作能够改变作物根系生长,但不同施磷水平下间作-根系形态-磷吸收之间的关系尚未明确。本研究通过田间定位试验和根箱模拟试验,研究不同种植模式(小麦单作、蚕豆单作和小麦-蚕豆间作)和不同磷水平下小麦和蚕豆的产量、生物量、磷吸收及根系形态特征,分析探讨不同施磷条件下小麦-蚕豆间作对根系形态和磷吸收的影响。结果表明: 根箱试验中,与单作相比,间作小麦的根干重、根冠比分别增加21.2%、61.5%,地上部干重降低14.6%,根系磷含量和总吸磷量分别提高23.8%和12.1%;间作蚕豆的地上部干重、根干重、根冠比、总根长和根体积分别增加16.5%、47.3%、24.0%、3.5%和8.4%,间作蚕豆地上部磷含量、根系磷含量和总吸磷量分别提高14.7%、26.2%和21.5%。田间试验中,与单作相比,分蘖期间作小麦地上部磷吸收量降低8.7%,而在拔节期、抽穗期、灌浆期和成熟期分别提高40.6%、19.7%、7.8%和12.4%;但种间互作导致开花期、结荚期和成熟期间作蚕豆的地上部磷吸收量分别降低9.8%、9.0%和5.2%。偏最小二乘法(PLS)回归分析表明,小麦的根表面积和根体积、蚕豆的根表面积对作物磷吸收的贡献最大,在低磷胁迫条件下,间作同时提高了小麦和蚕豆的根体积和根表面积,促进了磷的吸收。总之,在缺磷或低磷条件下,种间互作扩大了小麦和蚕豆根土接触面积,促进了苗期磷的吸收,为后期间作优势的形成奠定了基础。  相似文献   

9.
小麦/蚕豆间作作物生长曲线的模拟及种间互作分析   总被引:3,自引:0,他引:3  
物种间的相互作用与间作产量优势的形成密切相关,但很少有人注意到种间互作动态.本研究通过2年田间定位试验,运用Logistic分析模拟了不同种植模式(小麦单作、蚕豆单作和小麦/蚕豆间作)和不同磷水平下[P0,施磷量(P2O5)为0 kg·hm-2(对照);P1,施磷量(P2O5)为45 kg·hm-2;P2,施磷量(P2O5)为90 kg·hm-2]单间作小麦、蚕豆的生长模型,分析了作物种间互作的动态变化.结果表明: 小麦/蚕豆间作使小麦产量提高了10.5%~18.6%,蚕豆产量却降低了4.8%~12.3%,但间作系统仍具有产量优势,土地当量比(LER)和相对拥挤系数(K)分别为1.01~1.15 和1.12~3.20.小麦和蚕豆的产量及关键生长参数均受磷水平调控,但LER和K并不受磷水平影响.与单作相比,间作小麦的最大生长速率(Rmax)和最初生长速率(r)分别提高21.8%~38.7%和20.7%~38.9%,但间作对蚕豆的关键生长参数无影响.在小麦、蚕豆的生长初期,不同磷水平下,单间作作物的生长曲线无差异;间作群体以种间竞争为主,无间作生物量优势(LER<1,K<1).当蚕豆达到最大生长速率(Tmax)后,间作显著提高了小麦的生长速率,降低了小麦的种内竞争压力,表现出间作生物量和产量优势(LER>1,K>1).总之,在不同的生长发育阶段,小麦、蚕豆的相互作用不同,间作提高了中后期小麦的生长速率,为间作优势的形成奠定了基础.  相似文献   

10.
A survey was carried out in 1988 to determine the occurrence and distribution of the flyPhytomyza orobanchia Kaltenbach [Diptera: Agromyzidae] on broomrape (Orobanche crenata Forskal) at 21 locations in northwestern Syria. Fruit capsules of broomrape were examined in faba bean (Vicia faba L.) fields. The fly was present at 95% of the locations sampled. Of 630 broomrape plants examined over all locations, 55.5% were infested. Of the 1,890 capsules examined, 32.5% were attacked. Fly populations were highest near the coast where 79% of the broomrapes were damaged. The total seed output of broomrape plants was reduced by 29.4% in the surveyed area due to a mean seed destruction of 91.1% per infested broomrape capsule.   相似文献   

11.
Interspecific interactions and soil nitrogen supply levels affect intercropping productivity. We hypothesized that interspecific competition can be alleviated by increasing N application rate and yield advantage can be obtained in competitive systems. A field experiment was conducted in Wuwei, Gansu province in 2007 and 2008 to study intercropping of faba bean/maize, wheat/maize, barley/maize and the corresponding monocultures of faba bean (Vicia faba L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and maize (Zea mays L.) with N application rates of 0, 75, 150, 225 and 300 kg N ha?1. Total land equivalent ratios (TLER) were 1.22 for faba bean/maize, 1.16 for wheat/maize, and 1.13 for barley/maize intercropping over the 2-year study period. Maize was overyielding when intercropped with faba bean, but underyielding when intercropped with wheat or barley according to partial land equivalent ratios (PLER) based on grain yields of individual crops in intercropping and sole cropping. There was an interspecific facilitation between intercropped faba bean and maize, and interspecific competition between maize and either wheat or barley. The underyielding of maize was higher when intercropped with barley than with wheat. Fertilizer N alleviated competitive interactions in intercrops with adequate fertilizer N at 225 kg ha?1. Yield advantage of intercropping can be acquired with adequate nitrogen supply, even in an intensive competitive system such as barley/maize intercropping. This is important when using intercropping to develop intensive farming systems with high inputs and high outputs.  相似文献   

12.
Interspecific root/rhizosphere interactions affect phosphorus (P) uptake and the productivity of maize/faba bean and maize/wheat intercropping systems. The aim of these experiments was to determine whether manipulation of maize root growth could improve the productivity of the two intercropping systems. Two near isogenic maize hybrids (the larger-rooted T149 and smaller-rooted T222) were intercropped with faba bean and wheat, under conditions of high- and low-P availability. The larger-rooted T149 showed greater competitive ability than the smaller-rooted T222 in both maize/faba bean and maize/wheat intercropping systems. The higher competitive ability of T149 improved the productivity of the maize/faba bean intercropping system in P-sufficient conditions. In maize/wheat intercropping systems, root growth, shoot biomass, and P uptake of maize were inhibited by wheat, regardless of the P-supply. Compared with T222, the larger-rooted T149 suffered less in the intercropping systems. The total biomass of the maize/wheat intercropping system was higher for wheat/T149 than for wheat/T222 under low-P conditions. These data suggested that genetic improvement of maize root size could enhance maize growth and its ability to compete for P resources in maize/faba bean and maize/wheat intercropping systems. In addition, depending on the P availability, larger maize roots could increase the productivity of intercropping systems.  相似文献   

13.
Flavonoids produced by legume roots are signal molecules acting as nod gene inducers for the symbiotic rhizobium partner. Nevertheless, the changes of flavonoids in root exudates in intercropping system are still unknown. Based on pot experiment of faba bean and wheat intercropping, here we showed that faba bean and wheat intercropping increased the nodules number and dry weight, dry weight per nodule of faba bean compared with those found in monocropping, and the increase of faba bean nodulation was likely caused by the enhancement with flavonol, isoflavone, chalcone and hesperetin in its root exudates. It also promoted exudation of five types of flavonoids by wheat compared with monocropping. Our findings suggest that the flavonoids in root exudates have a positive effect on the nodulation and nitrogen fixation of faba bean in faba bean and wheat intercropping.  相似文献   

14.
《农业工程》2023,43(1):89-98
The changed phenolic acids (PAs) allelochemicals exuded by the roots induced by interspecific interactions is related to intercropping alleviates soil-borne disease. However, the presence of PAs in roots and root exudations and their rhizodeposition under intercropping are still unclear. Hydroponic and soil experiments of wheat, faba bean, and wheat intercropped with faba bean were conducted, and the major compositions and contents of PAs in roots, root exudations, and rhizospheric soil were determined. The results showed that ρ-hydroxybenzoic, vanillic, and syringic acids were the major components of PAs in roots, root exudations, and rhizospheric soil in a wheat and faba bean intercropping system. The compositions and percentages of PAs in roots of faba bean were altered when faba bean intercropped with wheat. The total exudation rate of PAs in root exudations was decreased by 30%–60% under the wheat and faba bean intercropping (W//F) system as compared to mono-cropped faba bean (MF). ρ-hydroxybenzoic acid was identified in the root exudation of both MF and mono-cropped wheat (MW), but not detected in the intercropping on 60 days after transplanting. Vanillic acid was only detected in the root exudation of MF on 30 days after transplanting. The rhizodepostion of vanillic and cumaric acid were decreased at both branching and pod setting stages in W//F as compared to MF. In conclusion, interspecific interaction changed the compositions and contents of PAs in faba bean roots and root exudations. W//F constrained vanillic acid exuded by roots and decreased vanillic and coumaric acid rhizodeposition by faba bean, which provides insight into root-soil interactions in the intercropping systems.  相似文献   

15.
数种农药对蚕豆根腐病的田间防效   总被引:3,自引:0,他引:3  
在实验室内探讨了三唑酮,甲基硫菌灵,福美双,恶霜灵和甲霜灵等5种杀菌剂单用或混用对蚕豆种子萌发和幼苗生长的影响,据此,在田间开展了杀菌剂拦种和杀菌剂与杀虫剂混用防治蚕豆根腐病的研究,第1年的结果表明,在11个处理中,三唑酮单独拌和效果最为显著,与对照相比,在0.01ga.i.kg^_1种子的剂量下,使6周龄植株的根腐病指数降低51.5%,成株累计死亡率减少36%,单株种子产量提高21%,每公顷种子产量增加97.6%,其他处理未取得显著防效,第2年开展的三唑酮拌种是防治蚕豆根腐病的有效措施之一。但杀菌拌种应与其他防治措施综合应用,方可取得更好的防治效果。  相似文献   

16.
小麦-蚕豆间作对根系分泌低分子量有机酸的影响   总被引:5,自引:0,他引:5  
通过盆栽试验收集了不同生育期单作和间作小麦、蚕豆的根系分泌物,用HPLC分析了根系分泌物中低分子量有机酸的含量和种类.结果表明: 小麦-蚕豆间作显著提高了有机酸的分泌量,在小麦分蘖期(57 d)、孕穗期(120 d)和灌浆期(142 d),间作使小麦根系有机酸分泌量分别提高155%、35.6%和92.6%;在蚕豆分枝期(57 d)和籽粒膨大期(142 d),间作使蚕豆根系有机酸分泌量提高87.4%和38.7%.小麦-蚕豆间作改变了根系分泌物中有机酸的种类,与单作小麦相比,在分蘖期,间作小麦根系分泌物中增加了乳酸;在拔节期(98 d),间作小麦根系分泌物中增加了柠檬酸,但未检测到乙酸;在蚕豆分枝期,间作蚕豆根系分泌物中增加了乙酸,但未检测到乳酸;在蚕豆籽粒膨大期,间作蚕豆根系分泌物中增加了乳酸.小麦-蚕豆间作提高了小麦根系有机酸的分泌速率,在小麦孕穗期,间作小麦分泌柠檬酸、富马酸的速率是单作小麦的179和184倍;在小麦灌浆期,间作小麦分泌乳酸的速率是单作的2.53倍.总之,小麦-蚕豆间作增加了有机酸的分泌量,改变了根系分泌物中有机酸的种类,提高了小麦根系有机酸的分泌速率.  相似文献   

17.
李玉英 《生态学报》2011,31(6):1617-1630
为河西走廊绿洲灌区豆科/禾本科间作体系的养分管理提供科学依据,于2007年在武威绿洲农业试验站应用田间原位根系行分隔技术研究了蚕豆/玉米种间互作和施氮对玉米抽雄期的根系空间分布、根系形态和作物地上部生长的影响。研究结果表明:种间互作和施氮均增加了玉米和蚕豆在纵向和横向两个尺度上的根重密度、根长密度、根表面积、根系体积。根长密度和根表面积与两种作物产量和氮素吸收均呈正相关,而与蚕豆的根瘤重呈负相关;抽雄期的土壤含水量与玉米产量和养分吸收呈显著的负相关。玉米根系可以占据蚕豆地下部空间,但蚕豆的根却较少到间作玉米的地下部空间,也就是间作后增加了玉米根系水平尺度的生态位。蚕豆和玉米根系主要分布分别在0-40 cm浅土层和0-60 cm 土层,且间作玉米根系在60-120 cm比单作和分隔的多。因此,种间互作和施氮扩大了两作物根系纵向和横向的空间生态位,改变了作物根系形态,即扩展了两者水分和养分吸收的生态位,增加了作物吸收养分的有效空间,从而提高了间作生态系统的生产力。  相似文献   

18.
间作缓解蚕豆连作障碍的根际微生态效应   总被引:7,自引:0,他引:7  
胡国彬  董坤  董艳  郑毅  汤利  李欣然  刘一鸣 《生态学报》2016,36(4):1010-1020
通过田间小区试验,研究了3个品种蚕豆(92-24、云豆324、凤豆6号)与小麦间作对蚕豆产量、枯萎病病情指数、根际镰刀菌数量、根际真菌代谢功能多样性和土壤酶活性的影响。结果表明:与单作蚕豆相比,云豆324与小麦间作(YD324/W)和凤豆6号与小麦间作(FD6/W)处理均显著提高了蚕豆地上部干重、籽粒产量和百粒重。YD324/W和FD6/W处理使蚕豆枯萎病发病初期病情指数分别降低57.14%和41.67%,镰刀菌数量分别降低32.06%和29.88%,而92-24与小麦间作(92-24/W)处理蚕豆产量、枯萎病病情指数和镰刀菌数量与单作蚕豆均无显著差异。YD324/W和FD6/W处理显著提高了蚕豆根际真菌的多样性指数和丰富度指数,并使蚕豆根际真菌的AWCD值分别比单作蚕豆提高了61.75%和46.49%;YD324/W和FD6/W处理明显改变了蚕豆根际真菌的群落结构。而92-24/W处理对蚕豆根际真菌的多样性指数、丰富度指数和AWCD值均无显著影响,也未明显改变真菌的群落结构。不同发病时期,YD324/W和FD6/W处理均显著提高了蚕豆根际土壤的蔗糖酶、脲酶和过氧化氢酶活性;而92-24/W处理蚕豆根际蔗糖酶、脲酶和过氧化氢酶活性与单作蚕豆均无显著差异。总之,小麦与不同品种蚕豆间作改变了蚕豆根际的真菌群落结构,提高了蚕豆根际真菌的活性、多样性和丰富度,提高土壤酶活性并改善蚕豆生长,增加了蚕豆产量。表明小麦与蚕豆间作改善了根际土壤的微生态环境,降低了镰刀菌的数量,缓解了蚕豆连作障碍,但蚕豆品种的差异影响间作控病效果。  相似文献   

19.
Zhang  F.  Shen  J.  Li  L.  Liu  X. 《Plant and Soil》2004,260(1-2):89-99
Rhizosphere processes of individual plants have been widely investigated since 1904 when the term “rhizosphere” was first put forward. However, little attention has been paid to rhizosphere effects at an agro-ecosystem level. This paper presents recent research on the rhizosphere processes in relation to plant nutrition in main cropping systems in China. In the peanut (Arachis hypogaea L.)/maize (Zea mays L.) intercropping system, maize was found to improve the Fe nutrition of peanut through influencing its rhizosphere processes, suggesting an important role of phytosiderophores released from Fe-deficient maize. Intercropping between maize and faba bean (Vicia faba L.) was found to improve nitrogen and phosphorus uptake in the two crops compared with corresponding sole crop. There was a higher land equivalent ratio (LER) in the intercropping system of maize and faba bean than the treatment of no root interactions between the two crops. The increased yield of maize intercropped with faba bean resulted from an interspecific facilitation in nutrient uptake, depending on interspecific root interactions of the two crops. In the rotation system of rice (Oryza sativa L.)-wheat (Triticum aestivum L.) crops, Mn deficiency in wheat was caused by excessive Mn uptake by rice and Mn leaching from topsoil to subsoil due to periodic cycles of flooding and drying. However, wheat genotypes tolerant to Mn deficiency tended to distribute more roots to deeper soil layer and thus expand their rhizosphere zones in the Mn-deficient soils and utilize Mn from the subsoil. Deep ploughing also helped root penetration into subsoil and was propitious to correcting Mn deficiency in wheat rotated with rice. In comparison, oilseed rape (Brassica napus L.) took up more Mn than wheat through mobilizing sparingly soluble soil Mn due to acidification and reduction processes in the rhizosphere. Thus, oilseed rape was tolerant to the Mn-deficient conditions in the rice-oilseed rape rotation. Oxidation reactions on root surface of rice also resulted in the formation of Fe plaque in the rice rhizosphere. Large amounts of Zn were accumulated on the Fe plaque. Zinc uptake by rice plants increased as Fe plaque formed, but decreased at high amounts of Fe plaque. It is suggested that to fine-tune cropping patterns and optimize nutrient management based on a better understanding of rhizosphere processes at an agro-ecosystem level is crucial for increasing nutrient use efficiency and developing sustainable agriculture in China.  相似文献   

20.
Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7–12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号