首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
首次报道了产D-海因酶的巨大芽孢杆菌,通过对该菌进行离子束诱变,获得酶活最高增加3倍的突变株M5,对M5的产酶条件进行优化,得到最佳的发酵条件为玉米浆1.5%,葡萄糖1%,油酸1.5%,氯化钠0.5%,并添加50 mg.L-1的Mn2+、Zn2+及500 mg.L-1的Mg2+,pH8.0,30℃发酵24 h,酶活力可达到每毫升2.119 U,比优化前突变株提高了300%,比出发菌株提高了850%。  相似文献   

2.
In this study, plant growth-promoting potential isolates from rhizosphere of 10 weed species grown in heavy metal-contaminated areas were identified and their effect on growth, antioxidant enzymes, and cadmium (Cd) uptake in Arundo donax L. was explored. Plant growth-promoting traits of isolates were also analyzed. These isolates were found to produce siderophores and enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and aid in solubilization of mineral nutrients and modulate plant growth and development. Based on the presence of multiple plant growth-promoting traits, isolates were selected for molecular characterization and inoculation studies. Altogether, 58 isolates were obtained and 20% of them were able to tolerate Cd up to 400 ppm. The sequence analysis of the 16S rRNA genes indicates that the isolates belong to the phylum Firmicutes. Bacillus sp. along with mycorrhizae inoculation significantly improves the growth, the activity of antioxidants enzymes, and the Cd uptake in A. donax than Bacillus alone. Highly significant correlations were observed between Cd uptake, enzymatic activities, and plant growth characteristics at 1% level of significance. The synergistic interaction effect between these organisms helps to alleviate Cd effects on soil. Heavy metal-tolerant isolate along with arbuscular mycorrhizae (AM) could be used to improve the phytoremedial potential of plants.  相似文献   

3.
Caper (Capparis ovata Desf.) is a perennial shrub (xerophyte) and drought resistant plant which is well adapted to Mediterranean Ecosystem. In the present study we investigated the plant growth, relative water content (RWC), chlorophyll fluorescence (FV/FM), lipid peroxidation (TBA-reactive substances content) as parameters indicative of oxidative stress and antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POX), catalase (CAT) and glutathione reductase (GR) in relation to the tolerance to polyethylene glycol mediated drought stress in C. ovata seedlings. For induction of drought stress, the 35 days seedlings were subjected to PEG 6000 of osmotic potential −0.81 MPa for 14 days. Lipid peroxidation increased in PEG stressed seedlings as compared to non-stressed seedlings of C. ovata during the experimental period. With regard to vegetative growth, PEG treatment caused decrease in shoot fresh and dry weights, RWC and FV/FM but decline was more prominent on day 14 of PEG treatment. Total activity of antioxidative enzymes SOD, APX, POX, CAT and GR were investigated in C. ovata seedlings under PEG mediated drought. Induced activities of SOD, CAT and POX enzymes were high and the rate of increment was higher in stressed seedling. APX activity increased on both days of PEG treatment, however, increase in GR activity was highest on day 14 of drought stress. We concluded that increased drought tolerance of C. ovata is correlated with diminishing oxidative injury by functioning of antioxidant system at higher rates under drought stress.  相似文献   

4.
    
In order to study bio fertilizers and zinc effects on some physiological parameters of triticale under a water-limitation condition, a factorial experiment was conducted based on randomized complete block design with three replications in 2014 and 2015. Experimental factors consisted of three irrigation treatments [normal irrigation (W0); moderate water limitation (W1) and severe water limitation (W2)]; four bio fertilizers’ levels [(no bio fertilizer (F0), application of mycorrhiza (F1), plant-growth-promoting rhizobacteria (PGPR) (F2) and both application PGPR and mycorrhiza (F3)] and four nano zinc oxide levels [(without nano zinc oxide (Zn0) as control, application of 0.3 (Zn1), 0.6 (Zn2) and 0.9 (Zn3) g?L?1)]. Results showed that water limitation decreased chlorophyll content, relative water content, stomatal conductance, quantum yield and grain yield of triticale, whereas electrical conductivity and the activity of catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and polyphenol oxidase (PPO, EC 1.14.18.1) enzymes were increased. Inoculation of plants with bio fertilizers and zinc application improved these traits (except electrical conductivity) under water-limitation condition as well as normal irrigation. Based on the results, it was concluded that bio fertilizers and nano zinc oxide application can be recommended for profitable triticale production under water-limitation condition.  相似文献   

5.
Fungal and bacterial pathogens infect a diverse range of hosts including various plant and animal species. Fungal and bacterial diseases, especially of plants and aquatic animals, such as fish, lead to significant damage to crops and aquaculture, respectively, worldwide. The present study was conducted to isolate and characterize potent Bacillus strains with significant antagonistic activity against the major plant and fish pathogenic fungi and bacteria. We randomly collected 22 isolates of Bacillus from the soil, rhizosphere, and sediment from different parts of Bangladesh. Initial characterization, based on in vitro antagonistic activity on the culture plate, resulted in the selection of four gram-positive Bacillus sp. isolates. Among these, the isolate BC01, obtained from soil demonstrated the highest broad-spectrum anti-bacterial and anti-fungal activities. We confirmed the genus of BC01 to be Bacillus by morphological and biochemical tests as well as using molecular data analysis tools, including the study of 16s rDNA, phylogenetic relationship, and evolutionary divergence scores. The isolate significantly inhibited the mycelial growth of the plant pathogen, Penicillium digitatum and fish pathogen, Aphanomyces invadans in vitro. The anti-bacterial effect of the isolate was also evaluated against Pseudomonas spp. and Xanthomonas spp., the two deadliest plant pathogens, and Aeromonas veronii, Pseudomonas fluorescens, and Streptococcus iniae, three major fish pathogens that are primarily responsible for global aquaculture loss. The results of the present study could pave the way for developing potent drugs to combat microbial infection of plants and fish.  相似文献   

6.
Brassinolide (BR) is a relatively new plant growth regulator. To test whether BR could be used to increase tolerance to water deficits in soybean, the effects of BR application on photosynthesis, assimilate distribution, antioxidant enzymes and seed yield were studied. BR at 0.1 mg l−1 was foliar applied at the beginning of bloom. Two levels of soil moisture (80% field capacity for well-watered control and 35% for drought-stressed treatment) were applied at pod initiation. BR treatment increased biomass accumulation and seed yield for both treatments. Drought stress inhibited translocation of assimilated 14C from the labeled leaf, but BR increased the translocation for both treatments. Drought stress depressed chlorophyll content and assimilation rate (A), while chlorophyll content and A of BR-treated plants were greater than that of drought-stressed plants. BR treatment increased maximum quantum yield of PS II, the activity of ribulose-1,5-bisphosphate carboxylase, and the leaf water potential of drought-stressed plants. Treatment with BR also increased the concentration of soluble sugars and proline, and the activities of peroxidase and superoxide dismutase of soybean leaves when drought-stressed. However, it decreased the malondialdehyde concentration and electrical conductivity of leaves under drought stress. This study show that BR can be used as a plant growth regulator to enhance drought tolerance and minimize the yield loss of soybean caused by water deficits.  相似文献   

7.
Sesamia inferens (W.) is polyphagous agricultural pests and prevalent in the India, China, South Asia and South East Asia. Insecticides is not recommended because, apart from the hazardous effects of chemicals, its larvae tunnel throughout the stem from first instar. Associated bacteria with insects provide several benefits to their host, revealing the types of bacteria associated with S. infersns will give basic information, which may throw light on management of this noxious pest. The culture dependant, 16S rRNA gene technique revealed thirty two bacterial isolates from gut of S. inferens from different region of India and host, comprising phyla Proteobacteria, Firmicutes and Bacteroidetes. Among which proteobacteria phyla was dominant with families and genus like Enterobacteriaceae (Citrobacter, Enterobacter, Serratia, Klebsiella and Xenorhabdus), Pseudomonadaceae (Pseudomans), Moraxellaceae (Acinetobactor) and Comamonadaceae (Comamonas). The phyla Firmicutes less dominant with four families and one genus each viz., Staphylococcaceae (Staphylococcus), Bacillaceae (Lysinibacillus), Streptococcaceae (Lactococcus) and Enterococcaceae (Enterococcus). Third phyla had only one family viz., Flavobacteriaceae (Chryseobacterium). The bacterial diversity varied greatly among insects that were from different host plants than those from the same host plant of different locations. This result suggested that the type of host plant greatly influences the mid-gut bacterial diversity more than the location of the host plant of S.inferens. These bacterial populations may have a key role in digestion, as well as other benefits to the S. inferens larvae. Determination of the bacterial community and its biological functions within the insect could provide us with basic information for future pest control research.  相似文献   

8.
    
The present attempt was made to determine the effects of untreated municipal wastewater (MW) on growth and physiology of maize and to evaluate the role of Ag nanoparticle and plant-growth-promoting rhizobacteria (PGPR) when interacting with MW used for irrigation. It was used for the isolation of PGPR. The isolates were identified and characterized based on the colony morphology, C/N source utilization pattern using miniaturized identification system (QTS 24), catalase (CAT) and oxidase tests, and 16S rRNA sequence analyses. The three PGPR isolates were Planomicrobium chinense (accession no. NR042259), Bacillus cereus (accession no. CP003187) and Pseudomonas fluorescens (accession no. GU198110). The isolates solubilized phosphate and exhibited antibacterial activities against pathogenic bacteria i.e., Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Klebsiella pneumoniae and Escherichia coli and antifungal activities against Helminthosporium sativum and Fusarium solani. The untreated MW irrigation as well as Ag nanoparticle treatment resulted in significant accumulation of Ni in the rhizosphere soil. PGPR induced accumulation of Ni and Pb in the rhizosphere soil and maize shoot. Ag nanoparticle also caused Ni and Pb accumulation in maize shoot. Combined treatment with PGPR, Ag nanoparticle and MW resulted in decreased accumulation of Pb and Ni both in the rhizosphere soil and maize shoot. Combined treatment of Ag nanoparticle, MW and PGPR decreased Na accumulation and increased K accumulation. Ag nanoparticle increased Fe and Co accumulation but decreased Zn and Cu accumulation in MW treatment; in combined treatment, it reduced PGPR-induced accumulation of Co and Fe in the rhizosphere and Co accumulation in shoot. PGPR significantly increased root weight, shoot weight, root length, shoot length, leaf area, and proline, chlorophyll and carotenoid content of the maize plant. Ag nanoparticle also enhanced the leaf area, fresh weight, root length and antioxidant activities of maize. Treatment with Ag nanoparticle increased the gibberellic acid (GA) and abscisic acid (ABA) content of maize leaves but decreased the accumulation of GA in the presence of PGPR and MW.  相似文献   

9.
    
Two separate field experiments were conducted in 2018 and 2019 as split-plot based on randomized complete block design with three replications to evaluate physiological responses of rapeseed to fertilization treatments (control, chemical fertilizer, inoculation of seeds with PGPR, vermicompost and combined fertilizers) under different irrigation levels (irrigation after 70,100, 130, and 160 mm evaporation). Water stress increased the activities of catalase, polyphenol oxidase, peroxidase and superoxide dismutase and the contents of proline, soluble sugars and malondialdehyde and also leaf temperature, but decreased membrane stability index, chlorophyll content, leaf water content, stomatal conductance and grain yield. Application of fertilizers particularly combined fertilizers decreased proline content and leaf temperature, but increased the antioxidant enzymes activities, soluble sugars, chlorophyll content, leaf water content, membrane stability index, and stomatal conductance under different irrigation intervals. These superiorities of fertilization treatments were led to considerable improvement in grain yield. The results revealed that the combined fertilizer application improved most of the physiological parameters. It was deducted that the application of combined fertilizers reduced chemical fertilizer by about 67% and alleviated the deleterious effects of water limitation on field performance of rapeseed.  相似文献   

10.
In this study we used the cuttings of Populus przewalskii Maximowicz as experimental material and sodium nitroprusside (SNP) as nitric oxide (NO) donor to determine the physiological and biochemical responses to drought stress and the effect of NO on drought tolerance in woody plants. The results indicated that drought stress not only significantly decreased biomass production, but also significantly increased hydrogen peroxide content and caused oxidative stress to lipids and proteins assessed by the increase in malondialdehyde and total carbonyl contents, respectively. The cuttings of P. przewalskii accumulated many amino acids for osmotic adjustment to lower water potential, and activated the antioxidant enzymes such as superoxide dismutase, guaiacol peroxidase and ascorbate peroxidase to maintain the balance of generation and quenching of reactive oxygen species. Moreover, exogenous SNP application significantly heightened the growth performance of P. przewalskii cuttings under drought treatment by promotion of proline accumulation and activation of antioxidant enzyme activities, while under well-watered treatment the effect of SNP application was very little.  相似文献   

11.
    
Shrimps from the genus Lysmata are known because of their wide diversity of lifestyles, mating systems, symbiotic partnerships, and conspicuous coloration. They can occur in crowds (large aggregations), in small groups, or as socially monogamous pairs. Shrimps from this genus are rare, if not unique among crustaceans, because of their unusual sexual system. To date, the sexual system of all species investigated comprises a protandric simultaneous hermaphroditism: shrimps initially mature and reproduce as males and later in life turn into functional simultaneous hermaphrodites. The evolutionary relationships of the species within the genus are unsettled. A molecular phylogeny of the group may shed light on the evolutionary origins of the peculiar sexual and social systems of these shrimps and help resolve standing taxonomic questions long overdue. Using a 647-bp alignment of the 16S rRNA mitochondrial DNA, we examined the phylogenetic relationship of 21 species of shrimps from the genus Lysmata from several biogeographical regions; the Atlantic, Pacific, and Indo-Pacific. The resulting phylogeny indicates that the genus is paraphyletic and includes the genus Exhippolysmata . The constituent species are subdivided into three well supported clades: one group exclusively composed of neotropical species; a second clade comprising the Indo-Pacific and Atlantic symbiotic fish cleaner shrimps; and a third clade including tropical and temperate species from the Atlantic and Pacific. The molecular phylogeny presented here does not support a historical contingency hypothesis, previously proposed to explain the origins of protandric simultaneous hermaphroditism within the genus. Furthermore, the present study shows that monogamous pair-living is restricted to one monophyletic group of shrimps and therefore probably evolved only once.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 415–424.  相似文献   

12.
    
The effects of three rhizobacterial isolates namely Pseudomonas fluorescens (M1), Pseudomonas putida (M2) and Bacillus subtilis (M3) were examined to enhance growth and chemical components such as chlorophyll and proline of three cultivars of soybean (Glycine max L.) under two levels of salinity stress (S1 = 200 mM and S2 = 400 mM of NaCl salt). Several morphological and physiological parameters were investigated. The highest mean values of final germination percent (FGP) were registered in cultivar Crawford (95%) followed by Giza111 cultivar (93%) in the presence of P. fluorescens, while, FGP of Clark was 85%. Mean germination time was decreased by the application of P. fluorescens or P. putida in both salt stressed and unstressed traits. All growth parameters were significantly decreased by salinity treatments, particularly at S2. A significant increase in stem length and shoot fresh weight was recorded in plants treated with P. fluorescens. This enhancing trend was followed by the application of P. putida then B. subtilis. Chlorophyll contents and plant soluble proteins were decreased, while proline content was increased as compared with control treatment. Results showed that the salt tolerant cultivar, Crawford, may have a better tolerance strategy against oxidative damages by increasing antioxidant enzymes activities under high salinity stress. These results suggest that salt induced oxidative stress in soybean is generally counteracted by enzymatic defense systems stimulated under harsh conditions. Our results showed that inoculation with plant growth-promoting rhizobacterial (PGPR) alleviated the harmful effects of salinity stress on soybean cultivars. The diversity in the phylogenetic relationship and in the level of genetic among cultivars was assessed by SDS-PAGE and RAPD markers. Among the polymorphism bands, only few were found to be useful as positive or negative markers associated with salt stress. The maximum number of bands (17) was recorded in Crawford, while the minimum number of bands (11) was recorded in Clark. Therefore, the ISSR can be used to identify alleles associated with the salt stress in soybean germplasm.  相似文献   

13.
In this study, we compared the efficacy of defense mechanisms against severe water deficit in the leaves of two olive (Olea europaea L.) cultivars, ‘Chemlali’ and ‘Meski’, reputed drought resistant and drought sensitive, respectively. Two-year old plants growing in sand filled 10-dm3 pots were not watered for 2 months. Changes in chlorophyll fluorescence parameters and malondialdehyde content as leaf relative water content (RWC) decreased showed that ‘Chemlali’ was able to maintain functional and structural cell integrity longer than ‘Meski’. Mannitol started to accumulate later in the leaves of ‘Chemlali’ but reached higher levels than in the leaves of ‘Meski’. The latter accumulated several soluble sugars at lower dehydration. ‘Chemlali’ leaves also accumulated larger quantities of phenolic compounds which can improve its antioxidant response. Furthermore, the activity of three antioxidant enzymes catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) increased as leaf RWC decreased. However, differences were observed between the two cultivars for CAT and POD but not for APX. The activity of the first two enzymes increased earlier in ‘Meski’, but reached higher levels in ‘Chemlali’. At low leaf hydration levels, ‘Chemlali’ leaves accumulated mannitol and phenolic compounds and had increased CAT and POD activities. These observations suggest that ‘Chemlali’ was more capable of maintaining its leaf cell integrity under severe water stress because of more efficient osmoprotection and antioxidation mechanisms.  相似文献   

14.
This research presented here, for the first time, elucidates the responses of several antioxidants in Pennisetum leaves exposed to varying concentrations of atrazine (0–200 mgkg?1). Pennisetum has been reported to be resistant to atrazine; however, its physiological response to high concentrations (≥50 mgkg?1) of atrazine is not well documented. The contents of reduced (AsA) and oxidized (DHA) ascorbate increased significantly with increase in atrazine concentration and exposure time; but the increase was more evident under higher (50 and 100 mgkg?1) atrazine concentrations. Increase in atrazine concentration to 200 mgkg?1 significantly decreased AsA, but increased DHA content, throughout the experiment. Seedlings treated with 200 mgkg?1 atrazine showed significantly lowest reduced glutathione (GSH) content, while oxidized glutathione (GSSG) was not significantly affected, after 68 d. Seedlings treated with 100 mgkg?1 atrazine showed increased glutathione-S-transferase (GST) activity after 48 d and 68 d, while treatment with 200 mgkg?1 atrazine significantly increased glutathione reductase (GR) after 58 d. This result suggests that Pennisetum may tolerate lower atrazine concentrations. However, higher concentrations (≥50 mg kg?1), which could have longer residency period in the soil, could induce more physiological damage to the plant.  相似文献   

15.
目的:证实抗氧化酶活性上调是肢体远程预处理(remote preconditioning,RPC)诱导兔脊髓缺血耐受效应的主要机制之一。方法:60只雄性新西兰大白兔随机分成对照组、远程预处理组、缺血组及RPC 缺血组(对照组n=6,余组n=18)。RPC组行双下肢短暂缺血2次(每次10min,间隔10min);缺血组仅行脊髓缺血模型;RPC 缺血组在远程预处理后1h行脊髓缺血;对照组为假手术组。对照组于脊髓缺血再灌注后48h行神经功能评分后取脊髓,作为对照。余三组分别于再灌注后6h、24h及48h评分后取材,各时间点各取6只。所有动物于缺血前、缺血20min、再灌注20min及再灌注6h采动脉血测血清抗氧化酶活性和丙二醛(MDA)含量;于取材后测定脊髓匀浆抗氧化酶活性和MDA含量。结果:再灌注后6h、24h及48h时对照组、远程预处理组及远程预处理 缺血组神经功能评分均明显高于缺血组(P<0.05)。血浆超氧化物歧化酶(SOD)活性和过氧化氢酶(CAT)活性在每个时间点RPC组均高于对照组,RPC 缺血组高于缺血组(P<0.05);其中缺血20min时,缺血组血浆SOD、CAT活性低于对照组,RPC 缺血组低于RPC组(P<0.05);而与缺血前相比,缺血20min时缺血组及RPC 缺血组SOD和CAT活性显著下降(P<0.05)再灌注24h和48h时,脊髓匀浆SOD、CAT活性对照组低于RPC组,缺血组低于RPC 缺血组(P<0.01);而MDA含量再灌注24h时对照组高于RPC组,缺血组高于RPC 缺血组(P<0.05)。脊髓匀浆SOD、CAT活性与神经功能评分具有显著相关性。结论:RPC诱导脊髓缺血耐受的机制可能为上调抗氧化酶活性,增强机体在缺血再灌注过程中清除氧自由基的能力,从而减少氧自由基介导的损伤,发挥脊髓保护作用。  相似文献   

16.
    
The present study deals with the isolation and characterization of exopolysaccharides (EPS) produced by the plant growth-promoting rhizobacteria (PGPR) from arid and semiarid regions of Pakistan, and to investigate the drought tolerance potential of these PGPR on maize when used as bioinoculant alone and in combination with their respective EPS. Three bacterial strains Proteus penneri (Pp1), Pseudomonas aeruginosa (Pa2), and Alcaligenes faecalis (AF3) were selected as EPS-producing bacteria on the basis of mucoid colony formation. All these strains were gram negative, motile, and positive for catalase. Strain Pp1 was positive for oxidase test and was phosphate solubilizing, while Pa2 and AF3 were negative. The isolated strains were sequenced using 16SrRNA. Total soluble sugar, protein, uronic acid, emulsification activity, and Fourier-transformed infrared spectroscopy of EPS were determined. Drought stress had significant adverse effects on growth of maize seedlings. Seed bacterization of maize with EPS-producing bacterial strains in combination with their respective EPS improved soil moisture contents, plant biomass, root and shoot length, and leaf area. Under drought stress, the inoculated plants showed increase in relative water content, protein, and sugar though the proline content and the activities of antioxidant enzymes were decreased. The Pa2 strain isolated from semiarid region was most potent PGPR under drought stress. Consortia of inocula and their respective EPS showed greater potential to drought tolerance compared to PGPR inocula used alone.  相似文献   

17.
Lisosan G is a powder of grain registered as an alimentary integrator. The treatment of rats for 4 days with 0.5 g Lisosan G/kg had no effect on various drug metabolizing enzymes. Experiments in vitro showed that Lisosan G had radical scavenger activity. A confirmation of the antioxidative property of Lisosan G was also confirmed when it was administered in vivo to carbon tetrachloride (CCl4)-intoxicated rats. The toxicity caused by CCl4-treatment of rats was restored to the control levels when the rats were given Lisosan G for 4 days before CCl4. Lisosan G thus does not interfer with drug metabolizing system but has antioxidant properties and protects against CCl4-induced hepatotoxicity.  相似文献   

18.
    
Drought stress substantially impedes crop productivity throughout the world. Microbial based approaches have been considered a potential possibility and are under study. Based on our prior screening examination, two distinct and novel biofilm-forming PGPR strains namely Bacillus subtilis-FAB1 and Pseudomonas azotoformans-FAP3 are encompassed in this research. Bacterial biofilm development on glass surface, microtiter plate and seedling roots were assessed and characterized quantitatively and qualitatively by light and scanning electron microscopy. Above two isolates were further evaluated for their consistent performance by inoculating on wheat plants in a pot-soil system under water stresses. Bacterial moderate tolerance to ten-day drought was recorded on the application of individual strains with wheat plants; however, the FAB1 + FAP3 consortium expressively improved wheat survival during drought. The strains FAB1 and FAP3 displayed distinct and multifunctional plant growth stimulating attributes as well as effective roots and rhizosphere colonization in combination which could provide sustained wheat growth during drought. FAB1 and FAP3-induced alterations cooperatively conferred improved plant drought tolerance by controlling physiological traits (gs, Ci, E, iWUE and PN), stress indicators (SOD, CAT, GR, proline and MDA content) and also maintained physico-chemical attributes and hydrolytic enzymes including DHA, urease, ALP, protease, ACP and β glucosidase in the soil. Our findings could support future efforts to enhance plant drought tolerance by engineering the rhizobacterial biofilms and associated attributes which requires in-depth exploration and exploiting potential native strains for local agricultural application.  相似文献   

19.
从129株南极海冰细菌筛选到1株耐盐细菌NJ82, 该菌最适生长盐度是12%, 能够耐受最高盐度为18%。对该菌株进行16S rRNA基因序列的同源性和系统发育分析, 结果表明:菌株NJ82属于Pseudoalteromonas属。从总蛋白质、脯氨酸、丙二醛(MDA)含量及膜透性变化等方面对高盐的适应性进行初步探讨。结果表明, 当盐度介于3.3%~12.0%时, 随着盐度升高, 菌株的蛋白质和脯氨酸含量呈快速增加趋势, 而MDA含量和膜透性变化幅度不大; 随着盐度进一步升高, 蛋白质含量呈下降趋势, 脯氨酸变化幅度不大; 而MDA含量升高和膜透性变化都达到极显著水平(P<0.01)。这些重要生理参数的变化将有助于了解海冰细菌在高盐环境下的适应机制。  相似文献   

20.
从129株南极海冰细菌筛选到1株耐盐细菌NJ82,该菌最适生长盐度是12%,能够耐受最高盐度为18%.对该菌株进行 16S rRNA 基因序列的同源性和系统发育分析,结果表明:菌株NJ82 属于 Pseudoalteromonas 属.从总蛋白质、脯氨酸、丙二醛(MDA)含量及膜透性变化等方面对高盐的适应性进行初步探讨.结果表明,当盐度介于3.3%~12.0%时,随着盐度升高,菌株的蛋白质和脯氨酸含量呈快速增加趋势,而 MDA 含量和膜透性变化幅度不大;随着盐度进一步升高,蛋白质含量呈下降趋势,脯氨酸变化幅度不大;而 MDA 含量升高和膜透性变化都达到极显著水平(P<0.01).这些重要生理参数的变化将有助于了解海冰细菌在高盐环境下的适应机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号