首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
BackgroundSeveral infectious diseases and therapeutic interventions cause gut microbe dysbiosis and associated pathology. We characterised the gut microbiome of children exposed to the helminth Schistosoma haematobium pre- and post-treatment with the drug praziquantel (PZQ), with the aim to compare the gut microbiome structure (abundance and diversity) in schistosome infected vs. uninfected children.MethodsStool DNA from 139 children aged six months to 13 years old; with S. haematobium infection prevalence of 27.34% was extracted at baseline. 12 weeks following antihelminthic treatment with praziqunatel, stool DNA was collected from 62 of the 139 children. The 16S rRNA genes were sequenced from the baseline and post-treatment samples and the sequence data, clustered into operational taxonomic units (OTUs). The OTU data were analysed using multivariate analyses and paired T- test.ResultsPre-treatment, the most abundant phyla were Bacteroidetes, followed by Firmicutes and Proteobacteria respectively. The relative abundance of taxa among bacterial classes showed limited variation by age group or sex and the bacterial communities had similar overall compositions. Although there were no overall differences in the microbiome structure across the whole age range, the abundance of 21 OTUs varied significantly with age (FDR<0.05). Some OTUs including Veillonella, Streptococcus, Bacteroides and Helicobacter were more abundant in children ≤ 1 year old compared to older children. Furthermore, the gut microbiome differed in schistosome infected vs. uninfected children with 27 OTU occurring in infected but not uninfected children, for 5 of these all Prevotella, the difference was statistically significant (p <0.05) with FDR <0.05. PZQ treatment did not alter the microbiome structure in infected or uninfected children from that observed at baseline.ConclusionsThere are significant differences in the gut microbiome structure of infected vs. uninfected children and the differences were refractory to PZQ treatment.  相似文献   

2.
Uveitis (UVT), an inflammatory disease of the eye significantly contributes to vision impairment and blindness. Uveitis is associated with systemic infectious and autoimmune diseases, but in most cases, the aetiology remains unidentified. Dysbiosis in the gut microbiome has been implicated in autoimmune diseases, inflammatory diseases, cancers and mental disorders. In a mice model of autoimmune UVT, it was observed that manipulating the gut microbiome reduces the inflammation and disease severity. Further, alterations in the bacterial gut microbiome and their metabolites were reported in UVT patients from a Chinese cohort. Hence, it is worth comparing the bacterial gut microbiome of UVT patients with that of healthy controls (HC) to ascertain whether dysbiosis of the gut microbiome has implications in UVT. Our analyses showed reduced diversity of several anti-inflammatory organisms including Faecalibacterium, Bacteroides, Lachnospira, Ruminococcus and members of Lachnospiraceae and Ruminococcaceae families, and enrichment of Prevotella (proinflammatory) and Streptococcus (pathogenic) OTUs in UVT microbiomes compared to HC. In addition, decrease in probiotic and antibacterial organisms was observed in UVT compared to HC microbiomes. Heatmap and PCoA plots also indicated significant variations in the microbiomes of UVT versus HC. This is the first study demonstrating dysbiosis in the gut bacterial communities of UVT patients in an Indian cohort and suggests a role of the gut microbiome in the pathophysiology of UVT.  相似文献   

3.
Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.Subject terms: Metagenomics, Metabolomics  相似文献   

4.
In mammals, the gut microbiome is vertically transmitted during maternal lactation at birth. In this study, we investigated the gut microbiome and diets of muskox, a large herbivore inhabiting in the high Arctic. We compared the microbiota composition using bacterial 16S rRNA gene sequencing and diets using stable isotope analysis of muskox feces of six female adults and four calves on Ella Island, East Greenland. Firmicutes were the most abundant bacterial phylum in both the adults and calves, comprising 94.36% and 94.03%, respectively. Significant differences were observed in the relative abundance of the two Firmicutes families. The adults were primarily dominated by Ruminococcaceae (73.90%), and the calves were dominated by both Ruminococcaceae (56.25%) and Lachnospiraceae (24.00%). Stable isotope analysis of the feces in the study area revealed that both adults and calves had similar ranges of 13C and 15N, likely derived from the dominant diet plants. Despite their similar diets, the different gut microbiome compositions in muskox adults and calves indicate that the gut microbiome of the calves may not be fully colonized to the extent of that of the adults.  相似文献   

5.
Hepatic encephalopathy (HE) has been related to gut bacteria and inflammation in the setting of intestinal barrier dysfunction. We aimed to link the gut microbiome with cognition and inflammation in HE using a systems biology approach. Multitag pyrosequencing (MTPS) was performed on stool of cirrhotics and age-matched controls. Cirrhotics with/without HE underwent cognitive testing, inflammatory cytokines, and endotoxin analysis. Patients with HE were compared with those without HE using a correlation-network analysis. A select group of patients with HE (n = 7) on lactulose underwent stool MTPS before and after lactulose withdrawal over 14 days. Twenty-five patients [17 HE (all on lactulose, 6 also on rifaximin) and 8 without HE, age 56 ± 6 yr, model for end-stage liver disease score 16 ± 6] and ten controls were included. Fecal microbiota in cirrhotics were significantly different (higher Enterobacteriaceae, Alcaligeneceae, and Fusobacteriaceae and lower Ruminococcaceae and Lachnospiraceae) compared with controls. We found altered flora (higher Veillonellaceae), poor cognition, endotoxemia, and inflammation (IL-6, TNF-α, IL-2, and IL-13) in HE compared with cirrhotics without HE. In the cirrhosis group, Alcaligeneceae and Porphyromonadaceae were positively correlated with cognitive impairment. Fusobacteriaceae, Veillonellaceae, and Enterobacteriaceae were positively and Ruminococcaceae negatively related to inflammation. Network-analysis comparison showed robust correlations (all P < 1E-5) only in the HE group between the microbiome, cognition, and IL-23, IL-2, and IL-13. Lactulose withdrawal did not change the microbiome significantly beyond Fecalibacterium reduction. We concluded that cirrhosis, especially when complicated with HE, is associated with significant alterations in the stool microbiome compared with healthy individuals. Specific bacterial families (Alcaligeneceae, Porphyromonadaceae, Enterobacteriaceae) are strongly associated with cognition and inflammation in HE.  相似文献   

6.
Polymorphisms have been identified in several HSP70 genes, which may affect HSP70 repair efficiency. We investigated the association of the polymorphisms in HSPA1A, HSPA1B, and HSPA1L genes in the HSPs repair pathway with the risk of cataract in a Chinese population. The study included 415 cataract patients and 386 controls. Genotyping was done by the polymerase chain reaction-restriction fragment length polymorphism method. HSPA1B 1267 A/A genotype seems to have a protective role against cataract (p = 0.014, odds ratio (OR) = 0.664, 95 % confidence intervals (CI) = 0.480–0.919), and the G allele (p = 0.057, OR = 1.216, 95 % CI = 0.999–1.479) does not seem to have a deleterious role in the development of cataract. Haplotypes with frequencies of GAT were significantly different than those of controls (p = 0.005). In HSPA1A G190C and HSPA1L T2437C polymorphisms, there were no significant differences in frequencies of the variant homozygous in patients compared to controls. We conclude that the A/A genotype of HSPA1B A1267G polymorphism seem to have a protective role against age-related cataract.  相似文献   

7.
HSP70 genes have been considered as promising schizophrenia candidate genes based on their protective role in the central nervous system under stress conditions. In this study, we analyzed the potential implication of HSPA1A +190G/C, HSPA1B +1267A/G, and HSPA1L +2437T/C polymorphisms in the susceptibility to paranoid schizophrenia in a homogenous Caucasian Polish population. In addition, we investigated the association of the polymorphisms with the clinical variables of the disease. Two hundred and three patients with paranoid schizophrenia and 243 healthy controls were enrolled in the study. Polymorphisms of HSPA1A, -1B, and -1L genes were genotyped using the PCR-RFLP technique. Analyses were conducted in entire groups and in subgroups that were stratified according to gender. There were significant differences in the genotype and allele frequencies of HSPA1A polymorphism between the patients and controls. The +190CC genotype and +190C allele were over-represented in the patients and significantly increased the risk for developing schizophrenia (OR = 3.45 and OR = 1.61, respectively). Interestingly, such a risk was higher for females with the +190CC genotype than for males with the +190CC genotype (OR = 5.78 vs. OR = 2.76). We also identified the CGT haplotype as a risk haplotype for schizophrenia and demonstrated the effects of HSPA1A and HSPA1B genotypes on the psychopathology and age of onset. Our study provided the first evidence that the HSPA1A polymorphism may potentially increase the risk of developing paranoid schizophrenia. Further independent analyses in different populations to evaluate the role of gender are needed to replicate these results.  相似文献   

8.
PurposeTo investigated the changes of gut microbiome and fecal metabolome during anti-tuberculosis chemotherapy with isoniazid (H)-rifampin (R)-pyrazinamide (Z)-ethambutol (E).Patients and methods(1) In this study, we recruited 168 stool specimens from 49 healthy volunteers without M. tuberculosis (Mtb), 30 healthy volunteers with latently infected by Mtb, 41 patients with active tuberculosis (ATB), 28 patients with 2-month HRZE treatment and 20 patients with 2-month HRZE followed by 4-month HR treatment. (2) We used 16S rRNA sequencing and an untargeted Liquid Chromatograph Mass Spectrometer-based metabolomics to investigate the changes of gut microbiome and the alteration of fecal metabolome, respectively, during anti-TB chemotherapy.ResultsMtb infection can reduce the diversity of intestinal flora of ATB patients and change their taxonomic composition, while the diversity of intestinal flora of ATB patients were restored during anti-TB chemotherapy. Especially, family Veillonellacea and Bateroidaceae and their genera Veillonella and Bacteroides significantly increased in the gut microbiota during anti-TB chemotherapy. Additionally, Mtb infection dynamically regulates fecal metabolism in ATB patients during anti-TB chemotherapy. Interestingly, the altered abundance of fecal metabolites correlated with the altered gut microbiota, especially the change of gut Clostridium, Bacteroides and Prevotella was closely related to the change of fecal metabolites such as Trans-4-Hydroxy-L-proline and Genistein caused by Mtb infection or anti-TB chemotherapy.ConclusionAnti-TB chemotherapy with HRZE can disrupt both gut microbiotas and metabolome in ATB patients. Some specific genera and metabolites are depleted or enriched during anti-TB chemotherapy. Therefore, revealing potential relevance between gut microbiota and anti-TB chemotherapy will provide potential biomarkers for evaluating the therapeutic efficacy in ATB patients.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12088-022-01003-2.  相似文献   

9.
There are multiple lines of evidence for the existence of communication between the central nervous system (CNS), gut, and intestinal microbiome. Despite extensive analysis conducted on various neurological disorders, the gut microbiome was not yet analyzed in neuroinfections. In the current study, we analyzed the gut microbiome in 47 consecutive patients hospitalized with neuroinfection (26 patients had viral encephalitis/meningitis; 8 patients had bacterial meningitis) and in 20 matched for age and gender health controls. Using the QIIME pipeline, 16S rRNA sequencing and classification into operational taxonomic units (OTUs) were performed on the earliest stool sample available. Bacterial taxa such as Clostridium, Anaerostipes, Lachnobacterium, Lachnospira, and Roseburia were decreased in patients with neuroinfection when compared to controls. Alpha diversity metrics showed lower within-sample diversity in patients with neuroinfections, though there were no differences in beta diversity. Furthermore, there was no significant change by short-term (1–3 days) antibiotic treatment on the gut microbiota, although alpha diversity metrics, such as Chao1 and Shannon’s index, were close to being statistically significant. The cause of differences between patients with neuroinfections and controls is unclear and could be due to inflammation accompanying the disease; however, the effect of diet modification and/or hospitalization cannot be excluded.  相似文献   

10.
Since the outset of the coronavirus disease 2019 (COVID-19) pandemic, the gut microbiome in COVID-19 has garnered substantial interest, given its significant roles in human health and pathophysiology. Accumulating evidence is unveiling that the gut microbiome is broadly altered in COVID-19, including the bacterial microbiome, mycobiome, and virome. Overall, the gut microbial ecological network is significantly weakened and becomes sparse in patients with COVID-19, together with a decrease in gut microbiome diversity. Beyond the existence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the gut microbiome of patients with COVID-19 is also characterized by enrichment of opportunistic bacteria, fungi, and eukaryotic viruses, which are also associated with disease severity and presentation. Meanwhile, a multitude of symbiotic bacteria and bacteriophages are decreased in abundance in patients with COVID-19. Such gut microbiome features persist in a significant subset of patients with COVID-19 even after disease resolution, coinciding with ‘long COVID’ (also known as post-acute sequelae of COVID-19). The broadly-altered gut microbiome is largely a consequence of SARS-CoV-2 infection and its downstream detrimental effects on the systemic host immunity and the gut milieu. The impaired host immunity and distorted gut microbial ecology, particularly loss of low-abundance beneficial bacteria and blooms of opportunistic fungi including Candida, may hinder the reassembly of the gut microbiome post COVID-19. Future investigation is necessary to fully understand the role of the gut microbiome in host immunity against SARS-CoV-2 infection, as well as the long-term effect of COVID-19 on the gut microbiome in relation to the host health after the pandemic.  相似文献   

11.
The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae.This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics.  相似文献   

12.
13.
《Gender Medicine》2012,9(2):68-75.e3
BackgroundSex is suggested to be an important determinant of ischemic stroke risk factors, etiology, and outcome. However, the basis for this remains unclear. The Y chromosome is unique in males. Genes expressed in males on the Y chromosome that are associated with stroke may be important genetic contributors to the unique features of males with ischemic stroke, which would be helpful for explaining sex differences observed between men and women.ObjectiveWe compared Y chromosome gene expression in males with ischemic stroke and male controls.MethodsBlood samples were obtained from 40 male patients ≤3, 5, and 24 hours after ischemic stroke and from 41 male controls (July 2003–April 2007). RNA was isolated from blood and was processed using Affymetrix Human U133 Plus 2.0 expression arrays (Affymetrix Inc., Santa Clara, California). Y chromosome genes differentially expressed between male patients with stroke and male control subjects were identified using an ANCOVA adjusted for age and batch. A P < 0.05 and a fold change >1.2 were considered significant.ResultsSeven genes on the Y chromosome were differentially expressed in males with ischemic stroke compared with controls. Five of these genes (VAMP7, CSF2RA, SPRY3, DHRSX, and PLCXD1) are located on pseudoautosomal regions of the human Y chromosome. The other 2 genes (EIF1AY and DDX3Y) are located on the nonrecombining region of the human Y chromosome. The identified genes were associated with immunology, RNA metabolism, vesicle fusion, and angiogenesis.ConclusionsSpecific genes on the Y chromosome are differentially expressed in blood after ischemic stroke. These genes provide insight into potential molecular contributors to sex differences in ischemic stroke.  相似文献   

14.
BackgroundThe exact impact of chemotherapy on the immune system of older patients with breast cancer is not well known. A longitudinal study was performed investigating the evolution of the blood immune profile during and after chemotherapy in this population.Patients and MethodsThe study included 39 patients receiving adjuvant chemotherapy (chemotherapy group, CTG) and 32 patients receiving only hormone therapy (control group, CG). A 10-gene panel associated with immunosenescence was measured in peripheral blood mononuclear cells (PBMC) before (T1), at 3 months (T2) and at 12 months (T3) after initiation of adjuvant therapy. Nutrition status was assessed by using a mini nutritional assessment scale. Linear mixed model analyses were performed for trajectory evolution, with or without adjusting for age, tumor stage, breast cancer phenotype, and/or corresponding baseline gene levels.ResultsSix genes relating to T cell activation (CD28, CD27, CD86, LCK, GRAP, LRRN3), and two genes relating to oxidative stress (PRDX6, HMOX1) exhibited a significant group-by-time effect, even after adjusting covariates(p≤ 0.01). In CTG, the T cell activation genes substantially declined from T1 to T2 and bounced back to a level higher than baseline at T3 (p<0.03), which was not observed in CG (p>0.26). Patients with malnutrition detected at T1 experienced more pronounced perturbation regarding CD27, LCK, CD69, VAMP5, and LRRN3 (p<0.05).ConclusionChemotherapy leads to transient perturbation of immune-related gene expression and potentially stimulates immunity in the long term. Well-nourished patients experience less impact of chemotherapy on immune-related gene expression profiles.  相似文献   

15.
Recent research in mammals supports a link between cognitive ability and the gut microbiome, but little is known about this relationship in other taxa. In a captive population of 38 zebra finches (Taeniopygia guttata), we quantified performance on cognitive tasks measuring learning and memory. We sampled the gut microbiome via cloacal swab and quantified bacterial alpha and beta diversity. Performance on cognitive tasks related to beta diversity but not alpha diversity. We then identified differentially abundant genera influential in the beta diversity differences among cognitive performance categories. Though correlational, this study provides some of the first evidence of an avian microbiota–gut–brain axis, building foundations for future microbiome research in wild populations and during host development.  相似文献   

16.
Dysbiosis, or imbalance in the gut microbiome, has been implicated in auto-immune, inflammatory, neurological diseases as well as in cancers. More recently it has also been shown to be associated with ocular diseases. In the present study, the association of gut microbiome dysbiosis with bacterial Keratitis, an inflammatory eye disease which significantly contributes to corneal blindness, was investigated. Bacterial and fungal gut microbiomes were analysed using fecal samples of healthy controls (HC, n?=?21) and bacterial Keratitis patients (BK, n?=?19). An increase in abundance of several anti-inflammatory organisms including Dialister, Megasphaera, Faecalibacterium, Lachnospira, Ruminococcus and Mitsuokella and members of Firmicutes, Veillonellaceae, Ruminococcaceae and Lachnospiraceae was observed in HC compared to BK patients in the bacterial microbiome. In the fungal microbiome, a decrease in the abundance of Mortierella, Rhizopus, Kluyveromyces, Embellisia and Haematonectria and an increase in the abundance of pathogenic fungi Aspergillus and Malassezia were observed in BK patients compared to HC. In addition, heatmaps, PCoA plots and inferred functional profiles also indicated significant variations between the HC and BK microbiomes, which strongly suggest dysbiosis in the gut microbiome of BK patients. This is the first study demonstrating the association of gut microbiome with the pathophysiology of BK and thus supports the gut–eye axis hypothesis. Considering that Keratitis affects about 1 million people annually across the globe, the data could be the basis for developing alternate strategies for treatment like use of probiotics or fecal transplantation to restore the healthy microbiome as a treatment protocol for Keratitis.  相似文献   

17.
BackgroundGut microbiota play important roles in insulin homeostasis and the pathogenesis of non-alcoholic fatty liver diseases (NAFLD). Yijin-Tang (YJT), a traditional Korean and Chinese medicine, is used in the treatment of gastrointestinal diseases and obesity-related disorders such as insulin resistance (IR) and NAFLD.PurposeOur aim was to identify the microbiome-mediated effects of YJT on IR and associated NAFLD by integrating metagenomics and hepatic lipid profile.MethodsC57BL/6J mice were fed a normal chow diet (NC) or high-fat/high-cholesterol (HFHC) diet with or without YJT treatment. Hepatic lipid profiles were analyzed using liquid chromatography/mass spectrometry, and the composition of gut microbiota was investigated using 16S rRNA sequencing. Then, hepatic lipid profiles, gut microbiome, and inflammatory marker data were integrated using multivariate analysis and bioinformatics tools.ResultsYJT improved NAFLD, and 39 hepatic lipid metabolites were altered by YJT in a dose-dependent manner. YJT also altered the gut microbiome composition in HFHC-fed mice. In particular, Faecalibaculum rodentium and Bacteroides acidifaciens were altered by YJT in a dose-dependent manner. Also, we found significant correlation among hepatic phosphatidylglycerol metabolites, F. rodentium, and γδ-T cells. Moreover, interleukin (IL)-17, which is secreted by the γδ-T cell when it recognizes lipid antigens, were elevated in HFHC mice and decreased by YJT treatment. In addition, YJT increased the relative abundance of B. acidifaciens in NC or HFHC-fed mice, which is a gut microbiota that mediates anti-obesity and anti-diabetic effects by modulating the gut environment. We also confirmed that YJT ameliorated the gut tight junctions and increased short chain fatty acid (SCFA) levels in the intestine, which resulted in improved IR.ConclusionThese data demonstrated that gut microbiome and hepatic lipid profiles are regulated by YJT, which improved the IR and NAFLD in mice with diet-induced obesity.  相似文献   

18.
Gut microbiome balance plays a key role in human health and maintains gut barrier integrity. Dysbiosis, referring to impaired gut microbiome, is linked to a variety of diseases, including cancers, through modulation of the inflammatory process. Most studies concentrated on adenocarcinoma of different sites with very limited information on gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). In this study, we have analyzed the gut microbiome (both fungal and bacterial communities) in patients with metastatic GEP-NENs. Fecal samples were collected and compared with matched healthy control samples using logistic regression distances utilizing R package MatchIt (version 4.2.0, Daniel E. Ho, Stanford, CA, USA). We examined differences in microbiome profiles between GEP-NENs and control samples using small subunit (SSU) rRNA (16S), ITS1, ITS4 genomic regions for their ability to accurately characterize bacterial and fungal communities. We correlated the results with different behavioral and dietary habits, and tumor features including differentiation, grade, primary site, and therapeutic response. All tests are two-sided and p-values ≤ 0.05 were considered statistically significant. Gut samples of 34 patients (12 males, 22 females, median age 64 years) with metastatic GEP-NENs (22 small bowel, 10 pancreatic, 1 gall bladder, and 1 unknown primary) were analyzed. Twenty-nine patients had well differentiated GEP-neuroendocrine tumors (GEP-NETs), (G1 = 14, G2 = 12, G3 = 3) and five patients had poorly differentiated GEP-neuroendocrine carcinomas (GEP-NECs). Patients with GEP-NENs had significantly decreased bacterial species and increased fungi (notably Candida species, Ascomycota, and species belonging to saccharomycetes) compared to controls. Patients with GEP-NECs had significantly enriched populations of specific bacteria and fungi (such as Enterobacter hormaechei, Bacteroides fragilis and Trichosporon asahii) compared to those with GEP-NETs (p = 0.048, 0.0022 and 0.034, respectively). In addition, higher grade GEP-NETs were associated with significantly higher Bacteroides fragilis (p = 0.022), and Eggerthella lenta (p = 0.00018) species compared to lower grade tumors. There were substantial differences associated with dietary habits and therapeutic responses. This is the first study to analyze the role of the microbiome environment in patients with GEP-NENs. There were significant differences between GEP-NETs and GEP-NECs, supporting the role of the gut microbiome in the pathogenesis of these two distinct entities.  相似文献   

19.
ObjectivesSelenium (Se) was a potential anticancer micronutrient with proposed epigenetic effect. However, the Se-induced epigenome in breast cancer cells was yet to be studied.MethodsThe profiles of DNA methylation, microRNA (miRNA), long non-coding RNA (lncRNA), and message RNA (mRNA) in breast cancer cells treated with sodium selenite were examined by microarrays. We verified the epigenetic modifications by integrating their predicted target genes and differentially expressed mRNAs. The epigenetically regulated genes were further validated in a breast cancer cohort by associating with tumor progression. We conducted a series of bioinformatics analyses to assess the biological function of these validated genes and identified the critical genes.ResultsThe Se-induced epigenome regulated the expression of 959 genes, and 349 of them were further validated in the breast cancer cohort. Biological function analyses suggested that these validated genes were enriched in several cancer-related pathways, such as PI3K/Akt and metabolic pathways. Based on the degrees of expression change, hazard ratio difference, and connectivity, NEDD4L and FMO5 were identified as the critical genes.ConclusionsThese results confirmed the epigenetic effects of sodium selenite and revealed the epigenetic profiles in breast cancer cells, which would help understand the mechanisms of Se against breast cancer.  相似文献   

20.
BackgroundThere is an abundant link between the gut microbiota and human health and it plays a critical role in the clinic. It is recognized that microbial dysregulation contributes to the pathogenesis of tuberculosis (TB) but the underlying mechanisms remain unclear. In this study, we investigated the association of gut microbiome composition with TB as well as its possible roles in the development of this disease.MethodsFecal samples were collected from 10 TB patients and 20 healthy control samples. DNA extracted from fecal samples was subjected to 16S rDNA gene sequencing analysis on the Illumina MiSeq platform.ResultsCompared with healthy control samples, the gut microbiome of patients with TB was characterized by the decreased Alpha diversity. Perhaps, the decrease of microbial diversity which results in microbial dysregulation is the reason for clinical patients with more symptoms. The PTB group showed the most unique microbiota by higher abundance of Bifidobacteriaceae, Bifidobacteriales, Coriobacteriaceae, Coriobacteriales, Actinobacteria, Caulobacteraceae, Phyllobacteriaceae, Rhizobiales, Burkholderiaceae, Burkholderiaceae. Inflammatory status in PTB patients may be associated with the increased abundance of Clostridia and decreased abundance of Prevotella. We found that the abundance of Solobacterium and Actinobacteria was higher in the patients. There were 4 significant differences (p < 0.05) in the two groups which belonged to four metabolic categories, including endocytosis, phosphotransferase system (PTS), toluene degradation, and amoebiasis.ConclusionWe applied the approach of metagenomic sequencing to characterize the features of gut microbiota in PTB patients. The present study provided a detailed analysis of the characterization of the gut microbiota in patients based on the clinic. According to the metagenome analysis, our results indicated that the gut microbiota in PTB patients was significantly different from healthy control samples as characterized by the bacteria and metabolic pathway. The richness of the gut microbiota in patients was revealed. It was hypothesized that the above-mentioned changes of the gut microbiota could exert an impact on the development of PTB through the downstream regulation of the immune status of the host by way of the gut–lung axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号