首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant–AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p?=?0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p?<?0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar 13C/12C isotope ratios (δ 13C). A positive correlation between AMF colonization and δ 13C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ 13C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p?=?0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p?=?0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.  相似文献   

2.
The influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Rhizophagus intraradices, on plant growth, leaf water status, chlorophyll concentration, photosynthesis, nutrient concentration, and fractal dimension (FD) characteristics of black locust (Robinia pseudoacacia L.) seedlings was studied in pot culture under well-watered, moderate drought stress, and severe drought stress treatments. Mycorrhizal seedlings had higher dry biomass, leaf relative water content (RWC), and water use efficiency (WUE) compared with non-mycorrhizal seedlings. Under all treatments, AMF colonization notably enhanced net photosynthetic rate, stomatal conductance, and transpiration rate, but decreased intercellular CO2 concentration. Leaf chlorophyll a and total chlorophyll concentrations were higher in AM seedlings than those in non-AM seedlings although there was no significant difference between AMF species. AMF colonization improved leaf C, N, and P concentrations, but decreased C:N, C:P, and N:P ratios. Mycorrhizal seedlings had a larger FD value than non-mycorrhizal seedlings. The FD value was positively and significantly correlated to the plant growth parameters, photosynthesis, RWC, WUE, and nutrient concentration but negatively correlated to leaf/stem ratio, C:N and C:P ratios, and intercellular CO2 concentration. We conclude that AMF lead to an improvement of growth performance of black locust seedlings under all growth conditions, including drought stress via improving leaf water status, chlorophyll concentration, photosynthesis, and nutrient uptake. Moreover, FD technology proved to be a powerful non-destructive method to characterize the effect of AMF on the physiology of host plants during drought stress.  相似文献   

3.
A pot culture experiment was performed to study the effects of infection with different proportions of arbuscular mycorrhizal fungus (AMF) and phosphate-solubilizing fungus (PSF) on the rhizosphere soil property of castor bean (Ricinus communis L.). One AMF, Glomus mosseae, and one PSF, Mortierella sp. (Ms), were applied to non-sterilized coastal saline soil. The plant dry mass, leaf chlorophyll content, and P-uptake of castor bean were assessed. In coastal saline soil, the different proportions of both fungi-inoculated seedlings showed significantly greater shoot and root dry weight than the controls, which had lower root-to-shoot ratios than the inoculated seedlings. An increase in phosphorus (P) and chlorophyll contents was also observed in the inoculated seedlings compared with the controls. The appropriate Ms proportion seemed to be advantageous for AMF colonization. However, available P content of fungi-treated soil increased in proportion to the increase in Ms population and AMF colonization. By contrast, the pH of inoculated soil decreased because of the increased proportion of Mortierella, and electrical conductivity values showed a negative correlation with AMF colonization. Soil enzyme activities (i.e., urease, invertase, neutral phosphatase, and alkaline phosphatase) and soil organic matter were also stimulated by inoculation with different proportions of both fungi. However, the catalase activities of inoculated soil were inhibited compared with those of the control soil. Results from this study prove that castor bean planting associated with an appropriate proportion of AMF and PSF will benefit the amelioration of coastal saline soils of eastern China.  相似文献   

4.
In the current study, we investigated the impact of inoculation with a selected indigenous arbuscular mycorrhizal fungi (AMF) complex on the growth and physiology of carob plants at increasing levels of watering (25, 50, 75 and 100% field capacity). The following growth and stress parameters were monitored in carob seedlings after 6 months of growth and 2 months of applied drought stress: fresh and dry weight, root and shoot lengths, leaf surface area, relative water content, stomatal conductance and membrane stability. Chlorophyll a and b, total soluble sugars, proline and protein contents were also determined along with the activities of stress enzymes: Catalase, Peroxidase and Superoxide dismutase. The obtained results indicate that inoculation with the indigenous AMF complex has a positive impact on the plant’s growth as all the assessed parameters were significantly improved in the mycorrhizal plants. Additionally, our results show that mycorrhization contributes to the minimization of the impact of drought stress on the carob plants and allows a better adaptation to dry conditions.  相似文献   

5.
6.
Piriformospora indica association has been reported to increase biotic as well as abiotic stress tolerance of its host plants. We analyzed the beneficial effect of P. indica association on rice seedlings during high salt stress conditions (200 and 300 mM NaCl). The growth parameters of rice seedlings such as root and shoot lengths or fresh and dry weights were found to be enhanced in P. indica-inoculated rice seedlings as compared with non-inoculated control seedlings, irrespective of whether they are exposed to salt stress or not. However, salt-stressed seedlings performed much better in the presence of the fungus compared with non-inoculated control seedlings. The photosynthetic pigment content [chlorophyll (Chl) a, Chl b, and carotenoids] was significantly higher in P. indica-inoculated rice seedlings under high salt stress conditions as compared with salt-treated non-inoculated rice seedlings, in which these pigments were found to be decreased. Proline accumulation was also observed during P. indica colonization, which may help the inoculated plants to become salt tolerant. Taken together, P. indica rescues growth diminution of rice seedlings under salt stress.  相似文献   

7.
Stress induced by water deficit is considered to be a global problem and one of the most important factors limiting crop production in arid and semi-arid regions of the world. Application of certain microorganisms, including arbuscular mycorrhizal fungi (AMF), is considered to be an effective and sustainable strategy to mitigate the problem. A pot experiment was conducted in the field (from Feb. to Sep. in 2013–2014 in Isfahan, Iran) to assess the effectiveness of AMF inoculation on changes in biomass, essential oils, nutrient uptake and water-use efficiency of rose geranium (Pelargonium graveolens L.) experiencing stress induced by a deficit of water. The experiment was planned as a factorial experiment, using a completely randomized design, with two factors, including four AMF inoculation (non-mycorrhizal, Rhizophagus intraradices and Funneliformis mosseae inoculated, and the combination of both species) and three irrigation levels including well-watered (WW), moderate water deficiency (MWD) and severe water deficiency (SWD). The results indicated the occurrence of an adverse effect of water deficit on plant total biomass; however, AMF inoculation positively increased plant biomass compared to the non-inoculated ones under three irrigation levels. MWD condition resulted in higher essential oil (EO) content (12.4 %), water-use efficiency (WUE) (29.5 %) and glomalin-related soil proteins (GRSP) (19.1 %) in the plants compared to WW condition. Furthermore, all AMF inoculation improved EO content by at least 12 k%. The results also showed that severe water deficiency adversely affected the uptake of most nutrients by plants especially in non-inoculated plants. The results also revealed that, although EO production was under the control of irrigation regime, nutrient uptake was critically dependent on an association with mycorrhizae. Notwithstanding the fact that rose geranium can tolerate moderate drought stress, the high responsiveness of rose geranium to AMF under water deficiency stress confirms the key role of AMF in facilitating the production of this valuable crop in harsh environments. Dual infection of rose geranium with two AMF species could also synergistically affect biomass, essential oil content and mineral elements absorption.  相似文献   

8.
Low-temperature damage is a common problem for tropical and subtropical plants during their early-growth stage. In this study, an experiment with a L18 (21?×?37) mixed orthogonal array in a greenhouse was conducted to determine whether arbuscular mycorrhizal fungi (AMF) inoculation and paclobutrazol (PBZ) application through foliar spray would enhance the chilling tolerance of teak seedlings. One-month-old seedlings of clones 8301, 7544, and 7552 from a Myanmar provenance propagated by tissue culture techniques were inoculated with Glomus versiforme and cultivated for 6?months. The foliar surface of both mycorrhizal and nonmycorrhizal treated plants was sprayed with PBZ at concentrations of 0, 50, and 100?mg?l?1 once a week for 3?weeks prior to exposure to low temperatures of 6, 3, and 0°C for 12?h in an artificial climate chamber, followed by 12?h of recovery at 20°C room temperature. AMF colonization significantly promoted height and RCD growth and dry biomass accumulation of shoot and root. Under low-temperature stress, AM symbiosis increased leaf chlorophyll content by 22.8%, soluble protein content by 19.6%, superoxide dismutase (SOD) activity by 10.6%, and peroxidase (POX) activity by 9.5%, whereas malondialdehyde content was decreased by 14.1%. Both AMF colonization and the foliar spray PBZ at 50 and 100?mg?l?1 were capable of alleviating the damage caused by low-temperature stress on teak seedlings by increasing the photosynthetic pigments, accumulation of osmotic adjustment compounds, and antioxidant enzyme (SOD and POX) activity, and by decreasing membrane lipid peroxidation. AMF colonization and foliar spraying of PBZ at 50?mg?l?1 produced a positive interaction and appears to be a good way to enhance chilling tolerance of teak seedlings experiencing stress at 6, 3 and 0°C for 12?h.  相似文献   

9.
Inoculum of an indigenous mixture of arbuscular mycorrhizal fungi (AMF) containingGlomus mosseae, Glomus fasciculatum, Glomus etunicatum, Glomus intraradices andScutellospora sp. was applied to four of the most frequently used crop species in Slovenia: green pepper (Capsicum annuum), parsley (Petroselinum crispum), carrot (Daucus carrota) and tomato (Lycopersicon esculentum). A simple, feasible, and effective protocol for application of AMF biotechnology in horticulture was adopted.Mycorrhizal inoculation significantly increased the plant biomass parameters of pepper, and parsley and the root biomass of carrots. Statistically significant correlations between biomass parameters of pepper, parsley, and the root biomass of carrots with mycorrhizal colonization parameters (mycorrhizal frequency (F%), global mycorrhizal intensity (M%) and arbuscular richness (A%) were calculated. A significant increase in chlorophyll content was observed in mycorrhizal parsley and a significant increase in carotenoids was observed in mycorrhizal parsley, carrots, and tomato fruits. A significant increase in titratable acidity of fruits from inoculated tomato plants indicates prolonged fruiting period of mycorrhizal tomatoes. In addition, inoculation with an indigenous AMF mixture significantly increased the mycorrhizal potential of soil and thus the growth of non-inoculated plants in the second season. Thus, the results confirmed the potential of applying mycorrhizal biotechnology in sustainable horticulture.  相似文献   

10.
Pot culture experiments were established to determine the effects of colonization by arbuscular mycorrhizal fungi (AMF) (Glomus mosseae and G. sp) on maize (Zea mays L.) grown in Pb, Zn, and Cd complex contaminated soils. AMF and non-AMF inoculated maize were grown in sterilized substrates and subjected to different soil heavy metal (Pb, Zn, Cd) concentrations. The root and shoot biomasses of inoculated maize were significantly higher than those of non-inoculated maize. Pb, Zn, and Cd concentrations in roots were significantly higher than those in shoots in both the inoculated and non-inoculated maize, indicating the heavy metals mostly accumulated in the roots of maize. The translocation rates of Pb, Zn, and Cd from roots to shoots were not significantly difference between inoculated and non-inoculated maize. However, at high soil heavy metal concentrations, Pb, Zn, and Cd in the shoots and Pb in the roots of inoculated maize were significantly reduced by about 50% compared to the non-inoculated maize. These results indicated that AMF could promote maize growth and decrease the uptake of these heavy metals at higher soil concentrations, thus protecting their hosts from the toxicity of heavy metals in Pb, Zn, and Cd complex contaminated soils.  相似文献   

11.
Arbuscular mycorrhizal fungi (AMF) form symbioses with many plants. Black locust (Robinia pseudoacacia L.) is an important energy tree species that can associate with AMF. We investigated the effects of AMF (Rhizophagus irregularis and Glomus versiforme) on the growth, gas exchange, chlorophyll (Chl) fluorescence, carbon content, and calorific value of black locust seedlings in the greenhouse. The total biomass of the arbuscular mycorrhizal (AM) seedlings was 4 times greater than that of the nonmycorrhizal (NM) seedlings. AMF greatly promoted the photosynthesis of black locust seedlings. AM seedlings had a significantly greater leaf area, higher carboxylation efficiency, Chl content, and net photosynthetic rate (P N) than NM seedlings. AMF also significantly increased the effective photochemical efficiency of PSII and significantly enhanced the carbon content and calorific value of black locust seedlings. Seedlings inoculated with G. versiforme had the largest leaf area and highest biomass, Chl content, P N, and calorific value.  相似文献   

12.
Compound leaves of Ceratonia siliqua L. (carob tree) exhibit a long life span and are exposed to environmental stimuli for approximately twenty months. The micromorphology of the adaxial and the abaxial leaflet surfaces was studied, in comparison with treated waxless epidermises (after the removal of cuticle and epicuticular waxes) and corresponding replicas, respectively. The microstructural surface features are evaluated as possible consistent parameters related to the wetness of leaves. The abaxial leaflet surface is more hydrophobic than the adaxial leaflet surface in C. siliqua, which may be particularly important for the ecophysiological status of its hypostomatic leaves.  相似文献   

13.
The effect of arbuscular mycorrhizal fungi (AMF) on olive (Olea europaea) growth and development was followed for 4 years after transplanting in irrigated commercial orchards under arid conditions. Sites I and II were irrigated with saline water (EC?=?4.5 dS/m). In site I, the soil was infested with Verticillium dahliae and olive varieties ‘Picual’ (Verticillium susceptible) and ‘Barnea’ (relatively Verticillium tolerant) were tested. In site II, the soil was virgin soil (previously non-cultivated soil) and olive varieties ‘Souri’ and ‘Barnea’ were tested. Plants for all sites were inoculated in the nursery with Glomus intraradices alone or in a mixture with G. mosseae. Relative to non-inoculated trees, AMF colonization enhanced vegetative growth, expressed as tree height and trunk circumference, at all sites. At first commercial harvest, AMF-treated trees had higher fruit and oil yields than non-mycorrhitic controls. Under saline water irrigation, differences between inoculated and non-inoculated treatments were reduced in the slow-growing ‘Souri’ but remained apparent in the modern fast-growing ‘Barnea’. AMF colonization did not appear to improve tolerance of either ‘Picual’ or ‘Barnea’ to V. dahliae, and both were more susceptible than the non-inoculated controls. Thus inoculation of olive plants with AMF improves transplant growth and adaptation in arid areas during the first 3 years of growth and until the first commercial harvesting season.  相似文献   

14.
Anomocytic stomatal complexes observed with light and scanningelectron microscopes on the primary roots of Ceratonia siliqua(carob tree) are described. Stomata are randomly distributedthroughout the surface of the root zones which possess maturevascular tissues, i.e. from the zone of root hairs to the transitionzone. Stomatal orientation does not follow that of the rootepidermal cells whilst their distribution does not seem to forma regular pattern. Ceratonia siliqua, primary root, stomata  相似文献   

15.
Al-Asbahi AA 《Gene》2012,494(2):209-213
Association between arbuscular mycorrhizal fungi (AMF) and majority of terrestrial plant species provides many benefits to plants that range from stress alleviation and bioremediation in soils polluted with heavy metals to plant growth promotion and yield quantity. Some non-arbuscular mycorrhizal fungi such as, Trichoderma harzianum, are known to enhance the AMF symbiosis with vascular plants. However, information about their role in AMF symbiosis is still limited. Shoots of (Avocet S) wheat seedlings were sprayed with the fungal culture filtrate and gene expression patterns were analyzed in the treated tissues. An increase in the level of mRNA of arbuscular mycorrhizal protein comparing with control was found. The over-expression of this protein in wheat tissues might contribute in initiation of AMF colonization in wheat tissues. The result of this study can spark future researches to elucidate possible role of this protein in the symbiotic interaction mechanisms between soil AMF and various plant roots.  相似文献   

16.
以濒危植物七子花二年生幼苗为研究材料,采用盆栽试验方法,研究干旱胁迫和接种丛枝菌根真菌(AMF)处理对幼苗不同器官C、N、P化学计量关系和非结构性碳水化合物(NSC)含量的影响。试验共设计4个处理:对照(CK)、干旱胁迫(D)、接种AMF(AMF)、干旱胁迫和接种AMF(D+AMF)。结果表明: 在干旱胁迫下七子花根系AMF的侵染率显著下降,但接种AMF处理植株的株高、叶片数显著高于未接种处理。接种AMF显著提高了干旱胁迫下植株根、叶可溶性糖和NSC含量及茎、叶淀粉含量,且茎和叶可溶性糖与淀粉比显著下降。干旱胁迫导致植株C含量在根和叶中显著增加,P含量在茎中显著减少;与干旱胁迫相比,胁迫下接种AMF植株根、茎、叶P含量及叶C含量显著提高,而根C、N含量及茎C含量显著降低。胁迫下接种AMF植株根、茎C∶N、C∶P、N∶P和叶N∶P均显著低于单一胁迫处理。NSC与C∶N∶P计量比的相关性分析表明,根、叶P含量与可溶性糖和NSC含量呈显著正相关,茎P含量与淀粉和NSC含量呈显著正相关,各器官N∶P与NSC含量呈显著负相关。综上,干旱胁迫显著抑制了七子花幼苗的生长,接种AMF通过提高植株根和叶的可溶性糖含量、根的可溶性糖/淀粉,增加地上部分淀粉含量,促进P元素吸收和降低各器官N∶P来增强植株耐旱性,从而提高七子花幼苗在干旱环境中的存活率。  相似文献   

17.
The objective of this study was to investigate the effects of arbuscular mycorrhizal fungus (AMF) inoculation on plant growth and drought tolerance in seedlings of a promising oilseed crop, Sacha Inchi (Plukenetia volubilis L.), under well-watered or drought conditions. AMF inoculation was applied in four treatments: without AMF inoculation, Glomus versiforme, Paraglomus occultum, or combination of both microorganism inoculations. The results showed that AMF colonization significantly enhanced the growth of Sacha Inchi seedlings regardless of soil water conditions, and the greatest development was reached in plants dually inoculated under well-watered conditions. G. versiforme was more efficient than P. occultum. Plants inoculated with both symbionts had significantly greater specific leaf area, leaf area ratio and root volume when compared with the uninoculated control, G. versiforme, and P. occultum treatments alone, indicating a synergistic effect in the two AMF inoculation. Photosynthetic rate and water-use efficiency were stimulated by AMF, but not stomatal conductance. Inoculation with AM fungus increased antioxidant enzymes activities including guaiacol peroxidase and catalase, thus lowering hydrogen peroxide accumulation and oxidative damage, especially under drought stress conditions. However, proline content showed little change during drought stress and AMF colonization conditions, which suggested that proline accumulation might not serve as the main compound for osmotic adjustment of the studied species. These results indicate that AMF inoculation stimulated growth and enhanced drought tolerance of Sacha Inchi seedlings, through alterations in morphological, physiological and biochemical traits. This microbial symbiosis might be an effective cultivation practice in improving the performance and development for Sacha Inchi plants.  相似文献   

18.
To identify the importance of arbuscular mycorrhizal fungi (AMF) colonizing wetland seedlings following flooding, we assessed the effects of AMF on seedling establishment of two pioneer species, Bidens frondosa and Eclipta prostrata grown under three levels of water availability and ask: (1) Do inoculated seedlings differ in growth and development from non-inoculated plants? (2) Are the effects of inoculation and degree of colonization dependent on water availability? (3) Do plant responses to inoculation differ between two closely related species? Inoculation had no detectable effects on shoot height, or plant biomass but did affect biomass partitioning and root morphology in a species-specific manner. Shoot/root ratios were significantly lower in non-inoculated E. prostrata plants compared with inoculated plants (0.381 ± 0.066 vs. 0.683 ± 0.132). Root length and surface area were greater in non-inoculated E. prostrata (259.55 ± 33.78 cm vs. 194.64 ± 27.45 cm and 54.91 ± 7.628 cm2 vs. 46.26 ± 6.8 cm2, respectively). Inoculation had no detectable effect on B. frondosa root length, volume, or surface area. AMF associations formed at all levels of water availability. Hyphal, arbuscular, and vesicular colonization levels were greater in dry compared with intermediate and flooded treatments. Measures of mycorrhizal responsiveness were significantly depressed in E. prostrata compared with B. frondosa for total fresh weight (−0.3 ± 0.18 g vs. 0.06 ± 0.06 g), root length (−0.78 ± 0.28 cm vs.−0.11 ± 0.07 cm), root volume (−0.49 ± 0.22 cm3 vs. 0.06 ± 0.07 cm3), and surface area (−0.59 ± 0.23 cm2 vs.−0.03 ± 0.08 cm2). Given the disparity in species response to AMF inoculation, events that alter AMF prevalence in wetlands could significantly alter plant community structure by directly affecting seedling growth and development.  相似文献   

19.
The sunflower (Helianthus annuus L. cv. PAC 36) seedlings were inoculated with plant growth promoting rhizobacteria (PGPR), viz. Azotobacter chroococcum (A+), Bacillus polymyxa (B+), separately and in combination of the two (AB+). Relative water content and seedling growth were maximum in AB+ seedlings under control. Water stress significantly decreased the RWC, growth and dry mass of non-inoculated seedlings. However, inoculated seedlings maintained higher growth even under water stress. Pigments and protein contents decreased under water stress, but higher amount of the same was observed in stressed AB+ seedlings. Enhanced activity of nitrate reductase was recorded in AB+ seedlings with maximum in control. Water stress significantly decreased the nitrate reductase activity. A significant increase in the activity of superoxide dismutase (SOD) in leaves was recorded under water stress except in B+ with maximum increase in non-inoculated seedlings. Catalase (CAT) activity decreased in stressed non-inoculated seedlings while increased in the leaves of A+ and AB+ seedlings. Almost similar trends were recorded for both leaves and cotyledons. PGPR improved the water status in stressed seedlings and thereby physiological and biochemical parameters and thus ameliorated the severe effects of water stress.  相似文献   

20.
Arbuscular mycorrhizal fungi (AMF) colonisation of plant root facilitates the absorption of nutrients such as phosphorus (P) and enhances plant biotic and abiotic resistance generally. However, arbuscular mycorrhiza (AM) colonisation decreases with application of chemical fertiliser. Here, we investigated whether AMF inoculation in nurseries would facilitate AM colonisation and take physiological and ecological functions in watermelon (Citrullus lanatus) in the field. Pot experiments were carried out to study the change of AMF colonised seedling on physiology and gene expression in nursery site. Field experiments were performed to investigate the effect of nursery AMF inoculation on yield, quality and disease resistance of watermelon in the field. The results showed that nursery‐inoculated seedlings produced more dry matter and root surface area than non‐inoculated seedlings. Expression of the secretory purple acid phosphatase (PAP) genes ClaPAP10 and ClaPAP26 was up‐regulated following AMF colonisation. Accordingly, acid phosphatase activities at the root surface and P concentrations in seedling were enhanced. After transplantation to the field, the shoot dry matter and P concentration in old stem were higher in the nursery AMF inoculated seedlings than that in non‐AMF inoculated seedling. AMF inoculation also induced increase of yields and decrease of wilt disease indexes and soluble sugar content. In addition, acid phosphatase activities and AMF spore densities were increased by nursery‐inoculation in watermelon rhizosphere soil in the field. In conclusion, nursery colonisation AMF seedling enhanced watermelon growth and yield by improving the root growth and P acquisition in nursery cultivating stage, as well as optimised soil properties in the field. Nursery cultivation of watermelon seedling with AMF was an effective technique to reduce wilt disease in continuous cropped management in watermelon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号