首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Punicic acid (PuA; 18:3Δ9cis,11trans,13cis), a conjugated linolenic acid isomer bearing three conjugated double bonds, is associated with various health benefits and has potential for industrial use. The major nature source of this unusual fatty acid is pomegranate (Punica granatum) seed oil, which contains up to 80% (w/w) of its fatty acids as PuA. Pomegranate seed oil, however, is low yielding with unstable production and thus limits the supply of PuA. Metabolic engineering of established temperate oil crops for PuA production, therefore, has the potential to be a feasible strategy to overcome the limitations associated with sourcing PuA from pomegranate. In this study, the cDNAs encoding a pomegranate fatty acid conjugase and a pomegranate oleate desaturase were co-expressed in canola-type Brassica napus. Transgenic B. napus lines accumulated up to 11% (w/w) of the total fatty acids as PuA in the seed oil, which is the highest level of PuA reported in metabolically engineered oilseed crops so far. Levels of seed oil PuA were stable over two generations and had no negative effects on seed germination. The transgenic B. napus lines with the highest PuA levels contained multiple transgene insertions and the PuA content of B. napus seed oil was correlated with efficiency of oleic acid desaturation and linoleic acid conjugation. In addition, PuA accumulated at lower levels in polar lipids (5.0–6.9%) than triacylglycerol (7.5–10.6%), and more than 60% of triacylglycerol-associated PuA was present at the sn-2 position. This study provides the basis for the commercial production of PuA in transgenic oilseed crops and thus would open new prospects for the application of this unusual fatty acid in health and industry.  相似文献   

2.
This work describes the enzymatic transesterification of the oil extracted from SCGs for synthesis of biodiesel as a promising alternative to diesel fuels based on petroleum. Biocatalysts from various sources were tested for biodiesel synthesis using coffee oil among which CaCO3- immobilized Staphylococcus aureus and Bacillus stearothermophilus showed the highest conversion yields (61 ± 2.64% and 64.3 ± 1.53%, respectively) in 4 h. In further optimizing reaction parameters, methanol to oil molar ratio, biocatalyst quantity, water content, as well as incubation time and temperature markedly improved oil-to-biodiesel conversion up to 99.33 ± 0.57 % in a solvent free reaction after 12 h at 55 °C. A mixture of inexpensive CaCO3-immobilized bacterial lipases at a 1:1 ratio was the best environment-friendly catalyst for biofuel synthesis as well as the ideal trade-off between conversion and cost. Obtained coffee biodiesel remained stable beyond 40 days at ambient storage conditions and its chemical characteristics were comparable to those of other known biodiesels according to the European requirements (EN14214). Collectively, SCGs, after oil extraction, could be an ideal substrate for the production of an environment-friendly biodiesel by using appropriate mixture of CaCO3-immobilized lipases.  相似文献   

3.
4.
5.
Drought and salinity are potential threats in arid and semi arid regions. The current study was conducted with objective to optimize the production of different exotic genotypes of mungbean (NM-121-25, Chakwal M-6, DM-3 and PRI-Mung-2018) under drought and salinity stresses using humic acid in field experiments. One year tri-replicate field experiment was performed in RCBD using three factorial arrangement and effects of humic acid (60 kg ha?1) were evaluated at physiological, biochemical, molecular and agronomical level under individual and integrated applications of drought (no irrigation till 15 days) and salinity (EC 6.4 dSM?1). Data for physiological parameters (total chlorophyll, photosynthesis rate, stomatal conductance, transpiration rate and membrane damage), antioxidant enzymes (superoxide dismutase, catalase, peroxidase) and proline were collected on weekly basis since after the initiation of drought and salinity stresses. However data for agronomic characteristics (plant height, branches plant?1, LAI, pods plant?1, pod length and hundred seed weight) and grain carbohydrate content were collected after harvesting, while sampling for drought (VrDREB2A, VrbZIP17 and VrHsfA6a) and salinity (VrWRKY73, VrUBC1 and VrNHX1) related genes expression study was done after plants attained seedling stage. Under both individual and integrated applications of drought and salinity, all genotypes showed significant (p ≤ 0.05) increase in all traits excluding Cell membrane damage and proline during humic acid application. Likewise, genes expression revealed statistically distinct (p ≤ 0.05) up-regulation under humic acid treatment as compared to no humic acid treatment during both individual and integrated applications of drought and salinity. The genotype PRI-Mung-2018 recorded noteworthy performance during study. Moreover correlation and PCA analysis revealed that ultimate agronomical yield due to humic acid is an outcome of interconnection of physiological and biochemical parameters.  相似文献   

6.
Microbial synthesis of wax esters (WE) from low-cost renewable and sustainable feedstocks is a promising path to achieve cost-effectiveness in biomanufacturing. WE are industrially high-value molecules, which are widely used for applications in chemical, pharmaceutical, and food industries. Since the natural WE resources are limited, the WE production mostly rely on chemical synthesis from rather expensive starting materials, and therefore solution are sought from development of efficient microbial cell factories. Here we report to engineer the yeast Yarrowia lipolytica and bacterium Escherichia coli to produce WE at the highest level up to date. First, the key genes encoding fatty acyl-CoA reductases and wax ester synthase from different sources were investigated, and the expression system for two different Y. lipolytica hosts were compared and optimized for enhanced WE production and the strain stability. To improve the metabolic pathway efficiency, different carbon sources including glucose, free fatty acid, soybean oil, and waste cooking oil (WCO) were compared, and the corresponding pathway engineering strategies were optimized. It was found that using a lipid substrate such as WCO to replace glucose led to a 60-fold increase in WE production. The engineered yeast was able to produce 7.6 g/L WE with a yield of 0.31 (g/g) from WCO within 120 h and the produced WE contributed to 57% of the yeast DCW. After that, E. coli BL21(DE3), with a faster growth rate than the yeast, was engineered to significantly improve the WE production rate. Optimization of the expression system and the substrate feeding strategies led to production of 3.7–4.0 g/L WE within 40 h in a 1-L bioreactor. The predominant intracellular WE produced by both Y. lipolytica and E. coli in the presence of hydrophobic substrates as sole carbon sources were C36, C34 and C32, in an order of decreasing abundance and with a large proportion being unsaturated. This work paved the way for the biomanufacturing of WE at a large scale.  相似文献   

7.
A spiral-shaped, highly motile bacterium was isolated from freshwater sulfidic sediment. Strain J10T is a facultative autotroph utilizing sulfide, thiosulfate, and sulfur as the electron donors in microoxic conditions. Despite high 16S rRNA gene sequence sequence identity to Magnetospirillum gryphiswaldense MSR-1 T (99.6 %), digital DNA-DNA hybridisation homology and average nucleotide identity between the two strains was of the different species level (25 % and 83 %, respectively). Strain J10T is not magnetotactic. The DNA G + C content of strain J10T is 61.9 %. The predominant phospholipid ester-linked fatty acids are C18:1ω7, C16:1ω7, and C16:0. Strain J10T (=DSM 23205 T = VKM B-3486 T) is the first strain of the genus Magnetospirillum showing lithoautotrophic growth and is proposed here as a novel species, Magnetospirillum sulfuroxidans sp. nov. In addition, we propose to establish a framework for distinguishing genera and families within the order Rhodospirillales based on phylogenomic analysis using the threshold values for average amino acid identity at ̴ 72 % for genera and ̴ 60 % for families. According to this, we propose to divide the existing genus Magnetospirillum into three genera: Magnetospirillum, Paramagnetospirillum, and Phaeospirillum, constituting a separate family Magnetospirillaceae fam. nov. in the order Rhodospirillales. Furthermore, phylogenomic data suggest that this order should accomodate six more new family level groups including Magnetospiraceae fam. nov., Magnetovibrionaceae fam. nov., Dongiaceae fam. nov., Niveispirillaceae fam. nov., Fodinicurvataceae fam. nov., and Oceanibaculaceae fam. nov.  相似文献   

8.
Poultry production has been developing in Vietnam with challenges of disease. Thus, feed additive should be investigated not only growth but also health enhancement. Here, we aimed to determine the effects of Saccharomyces cerevisiae-fermented rice (FR) and β-glucan on turkey’s growth performance, carcass characteristics, immune and fatty acid (FA) profiles. A total of 180 turkey chicks aged 1–56 days were randomly assigned to five sextuplicate groups and the birds had ad libitum feed and water access throughout the experiment. The five treatment groups were given the same diet with different proportions of FR and β-glucan. Broilers supplemented with 4% β-glucan and 4% FR presented the highest and second-highest growth performance, respectively. The 4% β-glucan and 4% FR treatments resulted in the highest carcass characteristic values without significantly affecting the breast or thigh meat pH or cooking loss. The 4% β-glucan and 4% FR treatments maximally increased the Newcastle disease (ND) antibody titers at 28, 42 and 56 days, respectively as well as thymus organ index. The foregoing treatments did not significantly affect the blood profiles relative to the control. However, the 4% FR treatment lowered the blood cholesterol levels (p > 0.05). The total FA profiles did not significantly differ among treatments. Nevertheless, both the β-glucan and FR treatments increased the MUFA levels compared to that of the control (p > 0.05). Hence, the dietary administration of 4% β-glucan and FR to turkey broilers could effectively improve their growth performance and immunity.  相似文献   

9.
The present study investigates the potential effect of externally added unsaturated fatty acids on P. falciparum growth. Our results indicate that polyunsaturated fatty acids (PUFAs) inhibit the growth of Plasmodium in proportional to their degree of unsaturation. At higher concentration the PUFA Docosahexaenoic acid (DHA) induces pyknotic nuclei in infected erythrocytes. When Plasmodium stages were treated transiently with DHA, the ring stage culture recovered from the drug effect and parasitemia was increased post DHA removal with delayed growth of 12 h, compared to untreated control. Schizont stage treated culture displayed a 36 h delay in growth to infect fresh erythrocytes signifying its recovery is less than the ring stage. However the trophozoite stage failed to recover and showed a decrease in parasitemia, similar to that of continuous treated culture. PUFAs inhibited β- hematin polymerization by binding to free heme derived from hemoglobin degradation. Digestive vacuole neutral lipid bodies, which are pivotal for β- hematin polymerization, decreased and subsequently abrogated with increasing concentration of DHA in trophozoite stage treated culture. Our study concludes that DHA interacts with heme monomers and inhibits the β- hematin polymerization and growth of mature stages i.e., trophozoite and schizont stages of plasmodium.  相似文献   

10.
Pomegranate peels (PPW) as municipal waste is inexpensive biomass that could be a renewable source of sugars particularly rich in hemicellulosic contents. The subsequent conversion of available sugars in PPW can provide prospective strategy for cost-effective bioenergy production. In this study, an experimental setup based on CCD was implemented with the aim of bioconversion of biomass into bioethanol. The factors considered were Hydrochloric acid concentration (X1), the hydrolysis temperature (X2) and time (X3) for optimization with dilute Hydrochloric acid (HCl) saccharification. The present study investigates the optimised level of bioethanol synthesis from acid pre-treated PPW explained by RSM. Subsequently, three yeasts viz. Saccharomyces cerevisiae K7, Metschnikowia sp. Y31 and M. cibodasensis Y34 were utilized for fermentation of acid hydrolysed and detoxified feed stocks. Optimum values of reducing sugars 48.02 ± 0.02 (gL?1) and total carbohydrates 205.88 ± 0.13 (gL?1) were found when PPW was hydrolyzed with 1% HCl concentration at 100?C of temperature for 30 min. Later on, fermentation of PPWH after detoxification with 2.5% activated charcoal. The significant ethanol (g ethanol/g of reducing sugars) yields after fermentation with Metschnikowia sp. Y31 and M. cibodasensis Y34 found to be 0.40 ± 0.03 on day 5 and 0.41 ± 0.02 on last day of experiment correspondingly. Saccharomyces cerevisiae K7 also produce maximum ethanol 0.40 ± 0.00 on last day of incubation utilizing the PPWH. The bioconversion of commonly available PPW into bioethanol as emphasize in this study could be a hopeful expectation and also cost-effective to meet today energy crisis.  相似文献   

11.
The aim of this study is to assess the antioxidative profile and related pharmacological potentialities of the ethanolic extract of Amischotolype mollissima leaves, traditionally used in treating pain, injury, malarial fever, epilepsy and hyperacidity, followed by a computational approach for the analysis of bioactive compounds identified by GC–MS. In GC–MS analysis, the extract yielded ten compounds, with 4,6-di-t-butyl-2-alpha-methyl benzyl phenol having the highest amount. In vitro investigation of the antioxidative properties of the plant was conducted with 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical and hydrogen peroxide scavenging assays. The amounts of secondary metabolites phenolics, flavonoids, and tannins were measured at 142 mg GAE/g, 534 mg QE/g, and 110 mg GAE/g, respectively. An acute toxicity study was carried out on mice, which revealed no toxicity up to the dosage of 4000 mg/kg bw. For the dosages of extract at 250 and 500 mg/kg bw, the writhing response test induced by acetic acid exhibited a statistically significant (p < 0.05) analgesic effect in mice. The oral glucose tolerance test (OGTT) and alpha-glucosidase enzyme inhibitory activity assay were used to examine the antihyperglycemic potential, in which the extract reduced the blood glucose level to 6.22 mmol/l and 3.82 mmol/l, at dosages of 250 and 500 mg/kg bw, respectively at 60 min in OGTT even though no activity was observed in the α-glucosidase enzyme inhibitory assay. In an antibacterial assay, the extract's minimum inhibitory concentration (MIC) against E. coli, P. aeruginosa, and S. aureus was determined to be 8, 16, and 8 µg/ml, respectively. This study shows that the usage of A. mollissima leaves in folklore medication is justified.  相似文献   

12.
The strains designed PP-18T, JC-4 and JC-7 isolated from soils, were Gram-stain-positive rods, facultative anaerobe, endospore-forming bacteria. The strains produced l-lactic acid from glucose. They showed positive for catalase but negative for oxidase, nitrate reduction and arginine hydrolysis. Strains P-18T, JC-4 and JC-7 were closely related to Weizmannia coagulans LMG 6326T (97.27–97.64%) and W. acidiproducens KCTC 13078T (96.46–96.74%) based on 16S rRNA gene sequence similarity, respectively. They contained meso-diaminopimelic acid in cell wall peptidoglycan and had seven isoprene units (MK-7) as the predominant menaquinone. The major cellular fatty acids of strain PP-18T were iso-C15:0, anteiso-C17:0, iso-C16:0 and anteiso-C15:0. The ANIb and ANIm values among the genomes of strains PP-18T, JC-4 and JC-7 are above 99.4% while their ANIb and ANIm values among them and W. coagulans LMG 6326T and W. acidiproducens KCTC 13078T were ranged from 76.61 to 79.59%. These 3 strains showed the digital DNA-DNA hybridization (dDDH) values of 20.7–23.6% when compared with W. coagulans LMG 6326T and W. acidiproducens DSM 23148T. The DNA G + C contents of strains PP-18T, JC-4 and JC-7 were 45.82%, 45.86% and 45.86%, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphoglycolipids. The results of phenotypic and chemotaxonomic characteristics and whole-genome analysis indicated that the strains PP-18T, JC-4 and JC-7 should be represented as a novel species within the genus Weizmannia for which the name Weizmannia acidilactici sp. nov. is proposed. The type strain is PP-18T (=KCTC 33974T = NBRC 113028T = TISTR 2515T).  相似文献   

13.
BackgroundSetaria italica (common name- foxtail, kangni) is one of the major food crops which is prominently cultivated in southern regions of India and in certain regions of Uttar Pradesh. Besides the crop’s consumption as a general source of carbohydrate rich cereal, the seeds of the crop are comprised of more fiber. So, it is recommended to add in the dietary supplementation of the diabetic people across the country.ObjectiveIn this paper, it intends to investigate the antidiabetic activity and antioxidant activity of S. italica (foxtail millet) seeds in diabetic rats.MethodsThe six genotypes of foxtail millets (S. italica) namely Kangni-1, Kangni-4, Kangni-5, Kangni-6, Kangni-7 & Kangni-10 respectively were subjected to in vitro investigations via. comprehensive metabolic panel (CMP) involving blood glucose study, Kidney & Liver function test, and antioxidant study (Catalase test; Glutathione S-transferase (GST); Superoxide Dismutase (SOD); glutathione (GSH); hiobarbituric acid reactive substances (TBARS) & Glutathione peroxidase (GPx) and were performed in vivo animal investigations in Wistar rats. The STZ induced diabetic rats were fed with doses of different S. italica seed aqueous extract to evaluate its anti-hyperglycemic activity by oral administration of SISAE. Further, it was compared with Glibenclamide which acts as one of the standard oral hypoglycemic agents.ResultsFrom achieved outcomes, a significant fall of blood glucose level (70%) produced 300 mg SISAE/kg b.w. after 6 h of extract administration. However, no change could be produced by these doses of the SISAE in normal rats’ blood glucose levels. A significant fall in glucose level along with significant glycemic control by lower HbA1c levels was observed in diabetic treated rats after 3 weeks of treatment with 300 mg of SISAE/kg b.w./day when comparing to untreated diabetic rats. Among these five genotypes of S. italica, the differences in the glycemic index were found. a significant fall could be found in blood glucose levels of Wistar rats, when every experimental rat was incorporating with the extract of different genotypes of Setaria italica L. Beauv than the rats treated with Glibenclamide in every 7 days of interval. The level of catalase, SOD, GST, GPx, GSH and TBARS showed variation while the rats were fed with the extract of S. italica in the liver test of rats. In kidney function test, the result shows that there is significant relationship between foxtail extract and kidney function of STZ induced diabetes rats. They show the change in their serum creatinine level, serum urea and serum uric acid.ConclusionThe result obtained from the study shows that the extract of S. italica seeds is capable for the hypolipidemic and antihyperglycemic activities, thereby, they serve as one of the good sources for herbal medicinal items.  相似文献   

14.
Improving grain filling in the presernt farming systems is crucial where grain filling is a concern due to the extreme use of chemical fertilizers (CF). A field experiment was conducted at the experimental station of Guangxi University, China in 2019 to test the hypothesis that cattle manure (CM) and poultry manure (PM) combined with CF could improve rice grain filling rate, yield, biochemical and qualitative attributes. A total of six treatments, i.e., no fertilizer (T1), 100% CF (T2), 60% CM + 40% CF (T3), 30% CM + 70% CF (T4), 60% PM + 40% CF (T5), and 30% PM + 70% CF (T6) were used in this study. Results showed that the combined treatment T6increased starch metabolizing enzymes activity (SMEs), such as ADP-glucose phosphorylase (ADGPase) by 8 and 12%, soluble starch synthase (SSS) by 7 and 10%, granule bound starch synthesis (GBSS) by 7 and 9%, and starch branching enzyme (SBE) by 14 and 21% in the early and late seasons, respectively, compared with T2. Similarly, higher rice grain yield, grain filling rate, starch, and amylose content were also recorded in combined treatments. In terms of seasons, higher activity of SMEs , grain starch, and amylose content was noted in the late-season compared to the early season. The increment in these traits was mainly attributed to a lower temperature in the late season during the grain filling period. Furthermore, our results suggested that an increment in starch accumulation and grain filling rate were mainly associated with the enhanced sink capacity by regulating key enzyme activities involved in Suc-to-starch conversion. In-addition, RT-qPCR analysis showed higher expression levels of AGPS2b, SSS1, GBSS1, and GBSE11b genes, which resultantly increased the activities of SMEs during the grain filling period under combined treatments. Linear regression analysis revealed that the activity of ADGPase, SSS, GBSS, and SBE were highly positively correlated with starch and amylose accumulation. Thus, we concluded that a combination of 30% N from PM or CM with 70% N from CF is a promising option in terms of improving rice grain yield and quality. Our study provides a sustainable fertilizer management strategy to enhance rice grain yield and quality at the lowest environmental cost.  相似文献   

15.
Autotaxin (ATX), a glycoprotein (~125 kDa) isolated as an autocrine motility factor from melanoma cells, belongs to a seven-membered family of ectonucleotide pyrophosphatase/phosphodiesterase (ENPP), and exhibits lysophospholipase D activity. ATX is responsible for the hydrolysis of lysophosphatidylcholine (LPC) to produce the bioactive lipid lysophosphatidic acid (LPA), which is upregulated in a variety of pathological inflammatory conditions, including fibrosis, cancer, liver toxicity and thrombosis. Given its role in human disease, the ATX-LPA axis is an interesting target for therapy, and the development of novel potent ATX inhibitors is of great importance. In the present work a novel class of ATX inhibitors, optically active derivatives of 2-pyrrolidinone and pyrrolidine heterocycles were synthesized. Some of them exhibited interesting in vitro activity, namely the hydroxamic acid 16 (IC50 700 nM) and the carboxylic acid 40b (IC50 800 nM), while the boronic acid derivatives 3k (IC50 50 nM), 3l (IC50 120 nM), 3 m (IC50 180 nM) and 21 (IC50 35 nM) were found to be potent inhibitors of ATX.  相似文献   

16.
17.
Several epidemiological studies suggest a correlation between eating time and obesity. Night eating syndrome characterized by a time-delayed eating pattern is positively associated with obesity in humans as well as in experimental animals. Here, we show that oil intake at night significantly makes more fat than that at day in wild-type mice, and circadian Period 1 (Per1) contributes to this day–night difference. Per1-knockout mice are protected from high-fat diet–induced obesity, which is accompanied by a reduction in the size of the bile acid pool, and the oral administration of bile acids restores fat absorption and accumulation. We identify that PER1 directly binds to the major hepatic enzymes involved in bile acid synthesis such as cholesterol 7alpha-hydroxylase and sterol 12alpha-hydroxylase. A biosynthesis rhythm of bile acids is accompanied by the activity and instability of bile acid synthases with PER1/PKA-mediated phosphorylation pathways. Both fasting and high fat stress enhance Per1 expression, increasing the fat absorption and accumulation. Our findings reveal that Per1 is an energy regulator and controls daily fat absorption and accumulation. Circadian Per1 controls daily fat absorption and accumulation, suggesting Per1 is a potential candidate of a key regulator in stress response and the relevant obesity risk.  相似文献   

18.
Porphyromonas gingivalis, the cause of periodontitis, is also linked to many systemic disorders due to its citrullination capability from a unique peptidyl arginine deiminase (PPAD). Protein citrullination is able to trigger an autoimmune response, increasing the severity of rheumatoid arthritis. The main objective of this study is to evaluate the inhibitory activity of Cratoxylym cochinchinense leaves extract towards the PPAD in vitro and in silico. Methanolic extract of Cratoxylum cochinchinense (CCM) was tested for total phenolic and flavonoid contents along with antioxidative assays. Inhibition of PPAD activities was conducted thereafter using recombinant PPAD in cell lysate. Phytocompounds postulated present in the CCM such as mangiferin, vismiaquinone A, δ-tocotrienol and α-tocotrienol and canophyllol were used as ligands in a simulated docking study against PPAD. Results obtained indicated high antioxidant potential in CCM while recording abundant phenolic (129.0 ± 2.5495 mg GA/g crude extract) and flavonoid (159.0 ± 2.1529 mg QE/g crude extract) contents. A dose-dependent inhibition of PPAD was observed when CCM was evaluated at various concentrations. CCM at 1 mg/mL exhibited citrulline concentration of 24.37 ± 3.25 mM which was 5 times lower than the negative control (114.23 ± 3.31 mM). Molecular docking simulation revealed that mangiferin and vismiaquinone A engaged in H-bonding and pi-pi interactions with important active site residues (Asp130, Arg152, Arg154 and Trp127) of PPAD and could be the potential phytochemicals that accounted for the inhibitory activities observed in the methanolic leaves extract. As such, CCM could be further explored for its therapeutic properties not only for periodontitis, but also for other systemic diseases like rheumatoid arthritis.  相似文献   

19.
20.
This study aimed to investigate the prevalence and intensity of external parasites in domestic pigeons in Giza, Egypt, from January 2020 to December 2020. A total of 300 domestic pigeons (25 pigeons per month) were examined. The birds were divided into groups based on their age. The oxidative stress parameters; serum zinc concentration, serum malondialdehyde (MDA), and serum Nitric oxide were evaluated in single and mixed external parasitic infestations. The prevalence of external parasites in examined pigeons was 80.3%. The detected parasites were Pseudolynchia canariensis (P. canariensis), Hippobosca equina (H. equina), Columbicola columbae (C. columbae), Menopon gallinae (M. gallinae), Knemidocoptes species (spp.) and Dermanyssus gallinae (D. gallinae); their incidences were 41.6, 26, 7, 5,0.33 and 0.33%, respectively. The highest infestation was recorded in both spring and summer. . The incidence of disease was higher in squabs and young birds than in adults. The mixed external parasitic infestation was recorded in this study. The infected birds showed decreased serum zinc concentration and elevated MDA and serum Nitric oxide levels. In conclusion, regular monthly treatment with deltamethrin is recommended as an effective drug in the treatment of the infested birds and succeeded in reducing the incidence of externalparasites in the treated birds; in addition, pigeon management measures must be implemented to reduce the risk of external parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号