首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
严飞  周在豹  王朔  曹玉成  李凯 《生态学报》2012,32(7):2230-2238
以北京大兴农区农林复合系统为对象,围绕灌木篱墙(沙棘绿篱和杨树萌条带)上和麦田中的主要捕食性天敌——异色瓢虫对栖息地的选择趋向及灌木篱墙对异色瓢虫种群分布的影响进行了研究。结果表明:(1)小麦生长前期(返青期至抽穗期或扬花期)灌木篱墙上异色瓢虫种群密度是麦田的3.25—9.57倍,是异色瓢虫由越冬地向麦田过渡前的主要栖息地,是农林复合系统中异色瓢虫种群建立的"种库";(2)异色瓢虫对栖息生境有较强的选择性,明显趋向于蚜虫密集分布的生境,小麦生长前期趋向于灌木篱墙,小麦生后期(扬花期或灌浆期至完熟期)趋向于麦田,整个小麦生长期内异色瓢虫种群在不同生境斑块间存在明显的移动现象;(3)麦收后,邻近麦田的杨树萌条带上异色瓢虫种群密度相比于完熟期增加了42%,为异色瓢虫提供了重要的庇护场所。  相似文献   

2.
The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ) in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt)+CpTI (Cowpea trypsin inhibitor) cotton field in 2011. The aphid population growth in the open field (control) was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1%) and spiders (1.5%). The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma). Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation). The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.  相似文献   

3.
The spatial structure of agricultural landscapes can have a strong impact on the distribution and diversity of insects. Here we studied the effects of within-field position (edge or center) as well as adjacent habitats on the community structure of the natural enemies of cereal aphids. Twelve agricultural sites were included in the study, with two spring wheat fields selected for each site (one adjacent to an alfalfa field, the other adjacent to a corn field). We sampled two rows per field (1 and 20 m from the edge) using pitfall trapping for ground-dwelling predators, sweep netting for leaf-dwelling predators and hand collecting of aphid mummies for parasitoids. Adjacent alfalfa areas, as opposed to corn fields, can significantly increase the abundance and diversity of leaf-dwelling predators and parasitoids near the field edges. Abundance and diversity were found significantly higher near the edges than in the centers of fields adjacent to alfalfa areas. In contrast, no significant differences were found between edges and centers of fields adjacent to corn fields. Of the fifteen most abundant species, Aphidius avenae (Haliday), A. gifuensis (Ashmead), Hippodamia variegata (Goeze) and Chrysopa sinica (Tjeder) were significantly more abundant near the edge than in the center. Being adjacent to alfalfa habitats could enhance parasitism and predator/prey ratios of leaf-dwelling predators at the edges, but has no effects on ground-dwelling predators. In conclusion, the effect of within-field position and adjacent habitats on natural enemies of agricultural pests was species specific. This should be considered for designing efficient plans of biological control.  相似文献   

4.

Background

Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program.

Methodology

The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008–2010.

Principal Finding

Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ13C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C3- to a C4-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C4 resources within one week. Approximately 80–100% of the diet of P. japonica adults in maize originated from a C3-based resource in June, July and August, while approximately 80% of the diet originated from a C4-based resource in September.

Conclusion/Significance

Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton.  相似文献   

5.
Microorganisms in insect guts have been recognized as having a great impact on their hosts' nutrition, health, and behavior. Spiders are important natural enemies of pests, and the composition of the gut microbiota of spiders remains unclear. Will the bacterial taxa in spiders be same as the bacterial taxa in insects, and what are the potential functions of the gut bacteria in spiders? To gain insight into the composition of the gut bacteria in spiders and their potential function, we collected three spider species, Pardosa laura, Pardosa astrigera, and Nurscia albofasciata, in the field, and high‐throughput sequencing of the 16S rRNA V3 and V4 regions was used to investigate the diversity of gut microbiota across the three spider species. A total of 23 phyla and 150 families were identified in these three spider species. The dominant bacterial phylum across all samples was Proteobacteria. Burkholderia, Ralstonia, Ochrobactrum, Providencia, Acinetobacter, Proteus, and Rhodoplanes were the dominant genera in the guts of the three spider species. The relative abundances of Wolbachia and Rickettsiella detected in Nalbofasciata were significantly higher than those in the other two spider species. The relative abundance of Thermus, Amycolatopsis, Lactococcus, Acinetobacter Microbacterium, and Koribacter detected in spider gut was different among the three spider species. Biomolecular interaction networks indicated that the microbiota in the guts had complex interactions. The results of this study also suggested that at the genus level, some of the gut bacteria taxa in the three spider species were the same as the bacteria in insect guts.  相似文献   

6.
7.
Habitat manipulation has long been used as strategy to enhance beneficial insects in agroecosystems. Non-crop weed strips have the potential of supplying food resources to natural enemies, even when pest densities are low. However, in tropical agroecosystems there is a paucity of information pertaining to the resources provided by non-crop weeds and their interactions with natural enemies. In this study we evaluated (a) whether weeds within chili pepper fields affect the diversity and abundance of aphidophagous species; (b) whether there are direct interactions between weeds and aphidophagous arthropods; and (c) the importance of weed floral resources for survival of a native and exotic coccinellid in chili pepper agroecosystems. In the field, aphidophagous arthropods were dominated by Coccinellidae, Syrphidae, Anthocoridae, Neuroptera and Araneae, and these natural enemies were readily observed preying on aphids, feeding on flowers or extrafloral nectaries, and using plant structures for oviposition and/or protection. Survival of native Cycloneda sanguinea (Coleoptera: Coccinellidae) differed between plant species, with significantly greater survival on Ageratum conyzoides and Bidens pilosa. However, no evidence was gathered to suggest that weed floral resources provided any nutritional benefit to the exotic Harmonia axyridis (Coleoptera: Coccinellidae). This research has provided evidence that naturally growing weeds in chili pepper agroecosystems can affect aphid natural enemy abundance and survival, highlighting the need for further research to fully characterize the structure and function of plant resources in these and other tropical agroecosystems.  相似文献   

8.
The upper respiratory tract is inhabited by diverse range of commensal microbiota which plays a role in protecting the mucosal surface from pathogens. Alterations of the bacterial community from respiratory viral infections could increase the susceptibility to secondary infections and disease severities. We compared the upper respiratory bacterial profiles among Thai patients with influenza or COVID-19 by using 16S rDNA high-throughput sequencing based on MiSeq platform. The Chao1 richness was not significantly different among groups, whereas the Shannon diversity of Flu A and Flu B groups were significantly lower than Non-Flu & COVID-19 group. The beta diversity revealed that the microbial communities of influenza (Flu A and Flu B), COVID-19, and Non-Flu & COVID-19 were significantly different; however, the comparison of the community structure was similar between Flu A and Flu B groups. The bacterial classification revealed that Enterobacteriaceae was predominant in influenza patients, while Staphylococcus and Pseudomonas were significantly enriched in the COVID-19 patients. These implied that respiratory viral infections might be related to alteration of upper respiratory bacterial community and susceptibility to secondary bacterial infections. Moreover, the bacteria that observed in Non-Flu & COVID-19 patients had high abundance of Streptococcus, Prevotella, Veillonella, and Fusobacterium. This study provides the basic knowledge for further investigation of the relationship between upper respiratory microbiota and respiratory disease which might be useful for better understanding the mechanism of viral infectious diseases.  相似文献   

9.
Han B Y  Zhou C S 《农业工程》2007,27(9):3637-3643
The rhythm of honeydew excretion by the tea aphid Toxoptera aurantii (Boyer) and its attraction to following 9 species (or subspecies) of beneficial insects, Aphidius sp., Chrysopa sinica Tjeder, Chrysopa septempunctata Wesmael, Sphaerophoria menthastri L., Coccinella septempunctata L., Leis axyridis (Pallas) ab. bimaculata Hemmelmann, L. axyridis (Pallas) ab. conspicua Faldermaenn, L. axyridis (Pallas) var. spectabilis Faldermaenn and L. axyridis (Pallas) var. novemdecimpunctata Faldermaenn, were investigated. Forty-five wingless virginoparae nymphs, reproduced by the same wingless virginogenia adult within 1 h, were introduced onto tea seedlings with one aphid per seedling. The honeydews excreted from different instars of nymphs and adults were collected under 21°C, 85% RH, 3500 lx and 12 L:12 D photoperiod. It took 32.4 d ±5.8 d for the tested tea aphids to complete the development of their nymph and adult stages, during which 325.6±35.8 droplets (ca. 41.98 μl ±6.14 μl and 45.34 mg ± 8.76 mg) of honeydews were secreted. During the 1st and 4th instars, there was a logistic regression relationship between the amount of honeydews excreted and the time (days). The honeydew secretion during the first two instars was less than that from the later instars. Adult aphids survived for 22.0 d ± 0.0 d, and excreted 176.31 ± 22.38 droplets (ca. 30.38 μl ± 5.32 μl) of honeydews in a rate of 1 drop per ca. 30–50 min for 5–8 h with a pause for 2–5 h before next secretion series. A batch of forty-five virginoparae female adults, reproduced by the same virginoparae female adult within 1 h, were introduced onto the tea seedlings (one aphid/seedling) under 13–21°, 85% RH, 3500 lx and 12 L:12 D photoperiod. Temperature showed a significant effect on the amounts of honeydews excreted within the range of 13–21°. Honeydews excreted by the aphids significantly increased the searching and retention time of the tested 9 species of natural enemies in a positive dose-response fashion. The searching times of Aphidius sp. and S. menthastri were the longest and the shortest, respectively, among all the 9 species, while the searching and retention time of L. axyridis (Pallas) var. spectabilis was the longest among the four varieties of L. axyridis. Tea aphid oneydew is considered as an important contact kairomone for the tested natural enemies.  相似文献   

10.
Yun  Jianmin  Zhao  Fengqin  Zhang  Wenwei  Yan  Haijiao  Zhao  Fengyun  Ai  Duiyuan 《Annals of microbiology》2019,69(3):279-289

This study reveals the microbial community succession and diversity during the whole solid-fermentation processes of naturally fermented Liangzhou fumigated vinegar (LZFV). Dynamics and diversity of microbial community succession in “Daqu” starter and other fermentation stages (starch saccharification, alcoholic fermentation, and acetic acid fermentation) were monitored using a metagenomic approach involving high-throughput sequencing. Meanwhile, dynamic changes of characteristic flavor compounds of vinegar were determined by gas chromatograph (GC) analysis. The result showed that the microbiota composition exhibited rich diversity. Twenty-five bacterial and 18 fungal genera were found in the whole fermentation process where Lactobacillus, Acetobacter, Aspergillus, Saccharomyces, and Alternaria were the predominant microorganisms. Alpha diversity metrics showed that bacterial diversity in Daqu was greater than that in AF and AAF. By contrast, fungal diversity increased from Daqu to AF and decreased in the initial stage (5–8 days) of AAF then remained relatively steady. Hence, these results could help understand dynamics of microbial community succession in continuous fermentation of traditional Chinese vinegars. The LZFV fermentation is a continuous process with spontaneous growth that affects the dynamics of microbial communities. Continuous changes of micro-environment conditions in substrate affect the diversity and structure of microbiota. Microbial growth and metabolism were closely related to the changes in the physicochemical characteristics of the cultures. The microbial flora composition showed rich diversity, and with the increase in brewing time and the change in micro-ecological environmental conditions; the microbial community showed a complex dynamic changes.

  相似文献   

11.
We examined succession of the rhizosphere microbiota of three model plants (Arabidopsis, Medicago and Brachypodium) in compost and sand and three crops (Brassica, Pisum and Triticum) in compost alone. We used serial inoculation of 24 independent replicate microcosms over three plant generations for each plant/soil combination. Stochastic variation between replicates was surprisingly weak and by the third generation, replicate microcosms for each plant had communities that were very similar to each other but different to those of other plants or unplanted soil. Microbiota diversity remained high in compost, but declined drastically in sand, with bacterial opportunists and putative autotrophs becoming dominant. These dramatic differences indicate that many microbes cannot thrive on plant exudates alone and presumably also require carbon sources and/or nutrients from soil. Arabidopsis had the weakest influence on its microbiota and in compost replicate microcosms converged on three alternative community compositions rather than a single distinctive community. Organisms selected in rhizospheres can have positive or negative effects. Two abundant bacteria are shown to promote plant growth, but in Brassica the pathogen Olpidium brassicae came to dominate the fungal community. So plants exert strong selection on the rhizosphere microbiota but soil composition is critical to its stability. microbial succession/ plant–microbe interactions/rhizosphere microbiota/selection.  相似文献   

12.
Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was underestimated due to the possible loss of environmental or transient taxa.  相似文献   

13.
秋末苏南茶园昆虫的群落组成及其趋色性   总被引:2,自引:0,他引:2  
苏南地区名茶荟萃,而虫害历来较为严重。秋末选丹阳市一片无公害茶园,使用纯白、桃红、墨绿、果绿、湖蓝、天蓝、素馨黄、芽绿、土黄、桔黄、大红和紫色12种粘性色板诱虫。结果表明:① 4日内捕获7目42科85种30455头昆虫,其中优势类群是同翅目、膜翅目和双翅目,三者个体数分别占总个体数的86.5%、8.8%和2.5%。②主要害虫是假眼小绿叶蝉和茶蚜,分别占总个体数的15%和71.5%。③ 捕获的中华蜜蜂占总个体数8.2%。④捕获天敌昆虫1034头,其中,瓢虫类32头,占3.1%,主要种类是异色瓢虫和黄斑盘瓢虫;草蛉类582头,占56.3%,包括中华草蛉、大草蛉和丽草蛉;伞裙追寄蝇和蚕饰腹寄蝇等5种寄生蝇类111头,占10.7%;门氏食蚜蝇和黑带食蚜蝇等7种食蚜蝇类110头,占10.6%;螟蛉瘤姬蜂和花胸姬蜂等5种姬蜂类、茶尺蠖绒茧蜂和单白绵绒茧蜂等7种茧蜂类个体数分别占3.9%和9.4%。⑤ 芽绿、素馨黄和桔黄色板显著地引诱假眼小绿叶蝉和茶蚜;芽绿、素馨黄色板显著地引诱姬蜂和茧蜂;芽绿、土黄和果绿色板明显地引诱草蛉类;果绿、天蓝和紫色色板引诱较多的蝇类和蚊类等双翅目昆虫;素馨黄引诱的各类昆虫种数最多;纯白板上各类昆虫的多样性指数最大,表明其对许多昆虫都有引诱效应。秋末时节查明即将越冬的害虫和天敌昆虫种类、数量和益害比、以及优势种害虫和优势种天敌数量,探明多种色彩引诱益、害虫的差异,对于有效实施无公害封园防治,以压低越冬基数有重要意义。  相似文献   

14.
From insects to mammals, a large variety of animals hold in their intestines complex bacterial communities that play an important role in health and disease. To further our understanding of how intestinal bacterial communities assemble and function, we study the C. elegans microbiota with a bottom-up approach by feeding this nematode with bacterial monocultures as well as mixtures of two to eight bacterial species. We find that bacteria colonizing well in monoculture do not always do well in co-cultures due to interspecies bacterial interactions. Moreover, as community diversity increases, the ability to colonize the worm gut in monoculture becomes less important than interspecies interactions for determining community assembly. To explore the role of host–microbe adaptation, we compare bacteria isolated from C. elegans intestines and non-native isolates, and we find that the success of colonization is determined more by a species’ taxonomy than by the isolation source. Lastly, by comparing the assembled microbiotas in two C. elegans mutants, we find that innate immunity via the p38 MAPK pathway decreases bacterial abundances yet has little influence on microbiota composition. These results highlight that bacterial interspecies interactions, more so than host–microbe adaptation or gut environmental filtering, play a dominant role in the assembly of the C. elegans microbiota.Subject terms: Microbiome, Microbial ecology  相似文献   

15.
Rhynchophorus ferrugineus, also known as the red palm weevil, is regarded as the major pest of palm trees. Although studies of the microbiota associated with this species have been performed in recent years, little attention has been dedicated to the influence of the diet in shaping the host bacterial community. Here, we investigated the influence of food sources (i.e. palm tissues vs apple based substrate) on the microbial diversity associated with RPW, which was compared with the microbiota associated with wild individuals of the sister species Rhynchophorus vulneratus. The bacterial characterization was performed using a culture independent approach, i.e. the 16S rRNA pyrotag, and a culture dependent approach for a subset of the samples, in order to obtain bacterial isolates from RPW tissues. The bacterial community appeared significantly influenced by diet. Proteobacteria resulted to be the most abundant clade and was present in all the specimens of the three examined weevil groups. Within Proteobacteria, Enterobacteriaceae were identified in all the organs analysed, including hemolymph and reproductive organs. The apple-fed RPWs and the wild R. vulneratus showed a second dominant taxon within Firmicutes that was scarcely present in the microbiota associated with palm-fed RPWs. A comparative analysis on the bacteria associated with the palm tissues highlighted that 12 bacterial genera out of the 13 identified in the plant tissues were also present in weevils, thus indicating that palm tissues may present a source for bacterial acquisition.  相似文献   

16.

Background

The gut of most insects harbours nonpathogenic microorganisms. Recent work suggests that gut microbiota not only provide nutrients, but also involve in the development and maintenance of the host immune system. However, the complexity, dynamics and types of interactions between the insect hosts and their gut microbiota are far from being well understood.

Methods/Principal Findings

To determine the composition of the gut microbiota of two lepidopteran pests, Spodoptera littoralis and Helicoverpa armigera, we applied cultivation-independent techniques based on 16S rRNA gene sequencing and microarray. The two insect species were very similar regarding high abundant bacterial families. Different bacteria colonize different niches within the gut. A core community, consisting of Enterococci, Lactobacilli, Clostridia, etc. was revealed in the insect larvae. These bacteria are constantly present in the digestion tract at relatively high frequency despite that developmental stage and diet had a great impact on shaping the bacterial communities. Some low-abundant species might become dominant upon loading external disturbances; the core community, however, did not change significantly. Clearly the insect gut selects for particular bacterial phylotypes.

Conclusions

Because of their importance as agricultural pests, phytophagous Lepidopterans are widely used as experimental models in ecological and physiological studies. Our results demonstrated that a core microbial community exists in the insect gut, which may contribute to the host physiology. Host physiology and food, nevertheless, significantly influence some fringe bacterial species in the gut. The gut microbiota might also serve as a reservoir of microorganisms for ever-changing environments. Understanding these interactions might pave the way for developing novel pest control strategies.  相似文献   

17.
Aquatic animals have a close relationship with water, but differences in their symbiotic bacteria and the bacterial composition in water remains unclear. Wild or domestic Chinese mitten crabs (Eriocheir sinensis) and the water in which they live were collected from four sampling sites in Jiangsu and Shanghai, China. Bacterial composition in water, gills or guts of E. sinensis, were compared by high-throughput sequencing using 16S rRNA genes. Analysis of >660,000 sequences indicated that bacterial diversity was higher in water than in gills or guts. Tenericutes and Proteobacteria were dominant phyla in guts, while Actinobacteria, Proteobacteria and Bacteroidetes were dominant in gills and water. Non-metric multidimensional scaling analysis indicated that microbiota from gills, guts or water clearly separated into three groups, suggesting that crabs harbor a more specific microbial community than the water in which they live. The dominant OTUs in crab gut were related to Mycoplasmataceae, which were low in abundance in gills, showing that, like mammals, crabs have body-site specific microbiota. OTUs related to Ilumatobacter and Albimonas, which are commonly present in sediment and seawater, were dominant in gills but almost absent from the sampled water. Considering E. sinensis are bottom-dwelling crustacean and they mate in saline water or seawater, behavior and life cycle of crabs may play an important role in shaping the symbiotic bacterial pattern. This study revealed the relationship between the symbiotic bacteria of Chinese mitten crab and their habitat, affording information on the assembly factors of commensal bacteria in aquatic animals.  相似文献   

18.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

19.
Composition and diversity in gut microbiota are impacted by a wide variety of factors. The similarity of gut microbiota in related or sympatric species has been gaining recent traction. Here, 16S rRNA gene sequencing technology was employed to study the gut microbiota of three sympatric frog species, namely Odorrana tormota, O. graminea, and Amolops wuyiensis. In these three frog species, the most abundant phylum was Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, and Firmicutes. The most abundant family was Burkholderiaceae in three species. The most dominant genera were Burkholderia, Caballeronia, and Paraburkholderia with the highest relative abundance in O. tormota, O. graminea, and A. wuyiensis, respectively. No differences were observed in alpha diversity indexes among the three frog species. However, bacterial similarity of gut microbiota was significantly different between O. tormota and A. wuyiensis and between O. graminea and A. wuyiensis. Metabolism‐related gene function was predominantly enriched in the gut microbiota of the three evaluated frog species. From these findings, that the relative abundance of the gut microbiota and predicted gene functions differed in three species, we conclude that there were significant differences in the gut microbiota of the three species. Similar alpha diversity and interspecific bacterial similarity in the gut might be related to bacterial transmission among the three Anura frogs evaluated in this study.  相似文献   

20.
Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly''s bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号