首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The green silver nanoparticles (green AgNPs) exhibit an exceptional antimicrobial property against different microbes, including bacteria and fungi. The current study aimed to compare the antifungal activities of both the crude aqueous extract of Portulaca oleracea or different preparations of green AgNPs biosynthesized by mixing that aqueous extract with silver nitrate (AgNO3). Two preparations of the green AgNPs were synthesized either by mixing the aqueous extract of P. oleracea with silver nitrate (AgNO3) (normal AgNPs) or either irradiation of the AgNPs, previously prepared, under 60Co γ-ray using chitosan (gamma-irradiated AgNPs). Characterization of different AgNPs were tested by Zeta potential analyzer, Ultraviolet (UV) Visible Spectroscopy, and Fourier-Transform Infrared (FTIR) spectrometry. Three different plant pathogenic fungi were tested, Curvularia spicifera, Macrophomina phaseolina, and Bipolaris sp. The antifungal activities were evaluated by Transmission Electron Microscope (TEM) for either the crude aqueous extract of P. oleracea at three doses (25%, 50%, and 100%) or the newly biosynthesized AgNPs, normal or gamma-irradiated. With a few exceptions, the comparative analysis revealed that the irradiated green AgNPs at all three concentrations showed a relatively stronger antifungal effect than the normal AgNPs against all the three selected fungal strains. UV–visible spectroscopy of both preparations showed surface plasmon resonance at 421 nm. TEM results showed that both AgNPs were aggregated and characterized by a unique spherical shape, however, the gamma-irradiated AgNPs were smaller than the non-irradiated AgNPs (0.007–0.026 µM vs. 0.009–0.086 µM). TEM photographs of the fungal strains treated with the two AgNPs preparations showed flaccid structures, condensed hyphae, and shrunken surface compared with control cells. The data suggested that the biosynthesized P. oleracea AgNPs have antifungal properties against C. spicifera, M. phaseolina, and Bipolaris sp. These AgNPs may be considered a fungicide to protect different plants against phytopathogenic fungi.  相似文献   

2.
The emergence of multidrug resistance in pathogenic bacteria limits the utilization of available antibiotics. The development of alternate options to treat infectious diseases is the need of the day.The present study was aimed to synthesize, characterize and evaluate the bioactive properties of silver nanoparticles. Endophytic bacterium Bacillus cereus (MT193718) isolated from Berberis lycium was used to synthesize biocompatible silver nanoparticles. Antibacterial properties of AgNPs were evaluated against clinically isolated multidrug-resistant strains of Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. AgNPs indicated significant antibacterial activity against S. aureus and K. pneumoniae fwith a zone of inhibition of 17 and 18 mm at a concentration of 1000 µg/ mL with minimum inhibitory concentration of 15.6 and 62.5 µg/mL respectively. Significant antioxidant activity with an IC50 value of 9.5 µg/mL was recorded. Biosynthesized AgNPs were found compatible with red blood cells at a concentration of 31.5 µg/ml with no clumping of erythrocytes. The study suggested that AgNPs synthesized by the endophytic bacterium Bacillus cereus are biologically active and can be used as antioxidant and antibacterial agents against drug-resistant bacteria.  相似文献   

3.
The aim of this study was to biosynthesis silver nanoparticles from the fungus Nigrospora sphaerica isolated from soil samples and to examine their activity against five human pathogenic strains of bacteria viz. Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi and Staphylococcus aureus using disc diffusion method. The synergistic effect of silver nanoparticles in combination with commonly used antibiotic Gentamycin against the selected bacteria was also examined. The synthesized silver nanoparticles from free-cell filtrate were characterized by using UV–Vis spectrophotometer analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). UV–Vis spectrophotometer analysis showed a peak at 420 nm indicating the synthesis of silver nanoparticles, FTIR analysis verified the detection of protein capping of silver nanoparticles while SEM micrographs revealed that the silver nanoparticles are dispersed and aggregated and mostly having spherical shape within the size range between 20 and 70 nm. The synthesized silver nanoparticles exhibited a varied growth inhibition activity (15–26 mm diam inhibition zones) against the tested pathogenic bacteria. A remarkable increase of bacterial growth inhibition (26–34 mm diam) was detected when a combination of silver nanoparticles and Gentamycin was used. A significant increase in fold area of antibacterial activity was observed when AgNPs in combination with Gentamycin was applied. The synthesized silver nanoparticles produced by the fungus N. sphaerica is a promising to be used as safe drug in medical therapy due to their broad spectrum against pathogenic bacteria.  相似文献   

4.
Hybrid materials based on polyvinylpyrrolidone (PVP) with silver nanoparticles (AgNps) were synthesized applying two different strategies based on thermal or chemical reduction of silver ions to silver nanoparticles using PVP as a stabilizer. The formation of spherical silver nanoparticles with diameter ranging from 9 to 16 nm was confirmed by TEM analysis. UV-vis and FTIR spectroscopy were also applied to confirm the successful formation of AgNps. The antibacterial activity of the synthesized AgNPs/PVP against etalon strains of three different groups of bacteria—Staphylococcus aureus (S. aureus; gram-positive bacteria), Escherichia coli (E. coli; gram-negative bacteria), Pseudomonas aeruginosa (P. aeruginosa; non-ferment gram-negative bacteria), as well as against spores of Bacillus subtilis (B. subtilis) was studied. AgNps/PVP were tested for the presence of fungicidal activity against different yeasts and mold such as Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Aspergillus brasiliensis. The hybrid materials showed a strong antimicrobial effect against the tested bacterial and fungal strains and therefore have potential applications in biotechnology and biomedical science.  相似文献   

5.
Production of protein encapsulated silver nanoparticles (AgNPs) assisted by marine actinomycetes strain has been investigated. The selective isolate was identified as Streptomyces parvulus SSNP11 based on chemotaxonomic and 16S rRNA analysis. Maximum AgNPs production was observed within 24 h incubation time. The produced AgNPs are spherical in shape with monodispersive and crystalline in nature. The particle size distribution ranges from 1.66 to 11.68 nm with a mean size of 2.1 nm. The biosynthesized AgNPs revealed stretching vibrations of primary and secondary amines along with C–H and C–N, suggesting that metabolically produced proteins are involved in size regulation of reduced AgNPs. These particles possess an average negative zeta potential value of 81.5 mV with an electrophoretic mobility of 0.000628 cm2/Vs. The biosynthesized nanoparticles revealed antimicrobial property against gram negative as well as gram positive bacterial strains.  相似文献   

6.
The bacterial strain Pseudomonas sp. SSA has capacity to produce extracellular melanin that sequesters heavy metals. The brown-black melanin pigment was observed in the culture liquid and mediated synthesis of silver nanoparticles (AgNPs). The AgNPs were characterized using UV–visible, dynamic light scattering, energy dispersive X-ray, Fourier transform infrared and surface plasmon resonance spectroscopy, scanning electron and transmission electron microscopy and selected area electron diffraction analysis. The synthesized nanoparticles were found to be spherical in shape with size in the range of 14–30 nm and showed high antimicrobial activity against pathogenic bacteria and fungi. These nanoparticles revealed binding affinity towards fungal and human tyrosinases with KD 4.601 × 10–10 and 2.816 × 10–5 M, respectively. In addition, produced nanoparticles did not show any toxic effect towards HeLa cells up to 20 μg/mL. These nanoparticles could find application in medicine and cosmetics due to their enzyme inhibition and antimicrobial activities.  相似文献   

7.
Due to drug addiction and the emergence of antibiotic resistance in pathogens, the disease load and medication intake have risen worldwide. The alternative treatment for drug-resistant infections is Nano formulation-based antimicrobial agents. The plant extract of Conocarpus Lancifolius fruits was used to synthesize silver nanoparticles in the current study, and it was further employed as an antimicrobial and anticancer agent. Nanoparticles have been characterized by UV–visible spectrometer revealed the notable peak of λmax = 410–442 nm, which confirms the reduction of silver ion to elemental silver nanoparticles, and the biological moieties in the synthesis were further confirmed by FTIR analysis. The stability and crystalline nature of materials were approved by XRD analysis and expected the size of the nanomaterials of 21 to 173 nm analyzed by a nanophox particle-size analyzer. In vitro, synthesized materials act as an antibacterial agent against Streptococcus pneumonia and Staphylococcus aureus. The inhibition zones of 18 and 24 mm have been estimated to be antibacterial activity against both bacteria. The potency of up to 100% of AgNPs for bacterial strains was incubated overnight at 60 μg/ml. Based on our results, biogenic AgNPs reveal significant activity against fungal pathogen Rhizopusus stolonifera and Aspergillus flavus that cause leading infectious diseases. Additionally, nanomaterials were biocompatible and demonstrated the potential anticancer activities against MDA MB-231 cells after 24-hour exposure.  相似文献   

8.
In green chemistry, the application of a biogenic material as a mediator in nanoparticles formation is an innovative nanotechnology. Our current investigation aimed at testing the cytotoxic potential and antimicrobial ability of silver nanoparticles (AgNPs) that were prepared using Calligonum comosum roots and Azadirachta indica leaf extracts as stabilizing and reducing agents. An agar well diffusion technique was employed to detect synthesized AgNPs antibacterial ability on Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus bacterial strains. Furthermore, their cytotoxic capability against LoVo, MDA-MB231 and HepG2 ca cells was investigated. For phyto-chemical detection in the biogenic AgNPs the Fourier-transform infrared spectroscopy (FT-IR) was considered. Zeta sizer, TEM (Transmission Electron Microscope) and FE-SEM (Field Emission Scanning Electron Microscope) were used to detect biogenic AgNPs’ size and morphology. The current results showed the capability of tested plant extract for conversion of Ag ions to AgNPs with a mean size ranging between 90.8 ± 0.8 and 183.2 ± 0.7 nm in diameter. Furthermore, prepared AgNPs exhibited apoptotic potential against HepG2, LoVo, and MDA-MB 231cell with IC50 ranging between 10.9 and 21.4 μg/ml and antibacterial ability in the range of 16.0 ± 0.1 to 22.0 ± 1.8 mm diameter. Activation of caspases in AgNPs treated cells could be the main indicator for their positive effect causing apoptosis. The current investigation suggested that the green production of AgNPs could be a suitable substitute to large-scale production of AgNPs, since stable and active nanoparticles could be obtained.  相似文献   

9.
The present study focused on the green synthesis of silver nanoparticles from Coriander sativum (CS) containing structural polymers, phenolic compounds and glycosidic bioactive macromolecules. Plant phenolic compounds can act as antioxidants, lignin, and attractants like flavonoids and carotenoids. Henceforth, silver nanoparticles (AgNPs) were prepared extracellularly by the combinatorial action of stabilizing and reduction of the CS leaf extract. The biologically synthesized CS-AgNPs were studied by UV-spectroscopy, zeta potential determination, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis to characterize and confirm the formation of crystalline nanoparticles. The synthesized nanoparticles demonstrated strong antimicrobial activity against all microbial strains examined with varying degrees. The scavenging action on free radicals by CS-AgNPs showed strong antioxidant efficiency with superoxide and hydroxyl radicals at different concentrations as compared with standard ascorbic acid. The presence of in vitro anticancer effect was confirmed at different concentrations on the MCF-7 cell line as revealed with decrease in cell viability which was proportionately related to the concentration of CS-AgNPs illustrating the toxigenic nature of synthesized nanoparticles on cancerous cells.  相似文献   

10.
We report synthesis of silver nanoparticles (AgNPs) from Streptomyces xinghaiensis OF1 strain, which were characterised by UV–Vis and Fourier transform infrared spectroscopy, Zeta sizer, Nano tracking analyser, and Transmission electron microscopy. The antimicrobial activity of AgNPs alone, and in combination with antibiotics was evaluated against bacteria, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, and yeasts viz., Candida albicans and Malassezia furfur by using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum biocidal concentration of AgNPs against bacterial and yeast strains were determined. Synergistic effect of AgNPs in combination with antibacterial and antifungal antibiotics was determined by FIC index. In addition, MTT assay was performed to study cytotoxicity of AgNPs alone and in combination with antibiotics against mouse fibroblasts and HeLa cell line. Biogenic AgNPs were stable, spherical, small, polydispersed and capped with organic compounds. The variable antimicrobial activity of AgNPs was observed against tested bacteria and yeasts. The lowest MIC (16 µg ml?1) of AgNPs was found against P. aeruginosa, followed by C. albicans and M. furfur (both 32 µg ml?1), B. subtilis and E. coli (both 64 µg ml?1), and then S. aureus and Klebsiella pneumoniae (256 µg ml?1). The high synergistic effect of antibiotics in combination with AgNPs against tested strains was found. The in vitro cytotoxicity of AgNPs against mouse fibroblasts and cancer HeLa cell lines revealed a dose dependent potential. The IC50 value of AgNPs was found in concentrations of 4 and 3.8 µg ml?1, respectively. Combination of AgNPs and antibiotics significantly decreased concentrations of both antimicrobials used and retained their high antibacterial and antifungal activity. The synthesis of AgNPs using S. xinghaiensis OF1 strain is an eco-friendly, cheap and nontoxic method. The antimicrobial activity of AgNPs could result from their small size. Remarkable synergistic effect of antibiotics and AgNPs offer their valuable potential in nanomedicine for clinical application as a combined therapy in the future.  相似文献   

11.

Background

Biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, time-effective and environmentally friendly technologies for nano-materials synthesis. This paper reports the one pot green synthesis of silver nanoparticles (AgNPs) using the leaf bud extract of a mangrove plant, Rhizophora mucronata and their antimicrobial effects against aquatic pathogens. Highly stable AgNPs were synthesized by treating the mangrove leaf bud extract with aqueous silver nitrate solution at 15?psi pressure and 121°C for 5 minutes.

Results

The biosynthesized AgNPs were characterized by UV-visible spectrum, at 426?nm. The X-Ray Diffraction (XRD) pattern revealed the face-centered cubic geometry of AgNPs. Fourier Transform Infra Red (FTIR) spectroscopic analysis was carried out to identify the possible biomolecules responsible for biosynthesis of AgNPs from the leaf bud extract. The size and shape of the well-dispersed AgNPs were documented with the help of High Resolution Transmission Electron Microscopy (HRTEM) with a diameter ranged from 4 to 26?nm. However a maximum number of particles were observed at 4?nm in size. The antibacterial effects of AgNPs were studied against aquatic pathogens Proteus spp., Pseudomonas fluorescens and Flavobacterium spp., isolated from infected marine ornamental fish, Dascyllus trimaculatus.

Conclusion

This study reveals that the biosynthesized AgNPs using the leaf bud extract of a mangrove plant (R. mucronata) were found equally potent to synthetic antibiotics. The size of the inhibition zone increases when the concentration of the AgNPs increased and varies according to species.  相似文献   

12.
The plant Cassia angustifolia belongs to Saudi Arabia, which is one of the native places and now cultured throughout the global countries. Medical care in the Arab world is an essential outlet for medicinal plants, both because they are crucial elements for prophetic medicine and due to their lengthy background in the Middle East. C.angustifolia is one of the medicinal plants used in the Saudi Arabia. The usage of plant extracts for synthesizing nanoparticles is conducive to other biological material, since it avoids the lengthy phase of cell culture maintenance. Silver nanoparticles attract further attention due to their strong conductivity, stability and antimicrobial activity across different metal nanoparticles. The present study was designed in the Saudi C. angustifolia leaves with the zinc synthesis of nanoparticles and its antibacterial ability. The plant extracts of C. angustifolia was used for synthesis of zinc nanoparticles, antimicrobial activities against bacterial strains have been tested along with transmission electron microscope (TEM), UV spectroscopy and antimicrobial activities have been conducted. This study showed that silver ions may be transferred from the plant extract to silver nanoparticles. AgNPs biogenic capacity to antibacterial with lovo cell with IC50 ranged from 33.5 ± 0.2 μg/mL demonstrated strong antibacterial capacity to antibody. The overall absorption value for the extract was between 420 and 440 nm and the color transition to green was the plasma absorption of the AgNPs. TEM results was showed in 200,000 magnification. The uniqueness of the current study is that Cassia angustifolia leaf extract from Saudi Arabia was used to prepare the metallic nanoparticles. Additionally, ZnCl2 may also be used as nanoparticles of mineral salt and zinc, which, since their application has been confirmed, are antimicrobial.  相似文献   

13.
The sediment marine samples were obtained from several places along the coastline of the Tuticorin shoreline, Tamil Nadu, India were separated for the presence of bioactive compound producing actinobacteria. The actinobacterial strain was subjected to 16Sr RNA sequence cluster analysis and identified as Nocardiopsis dassonvillei- DS013 NCBI accession number: KM098151. Bacterial mediated synthesis of nanoparticles gaining research attention owing its wide applications in nonmedical biotechnology. In the current study, a single step eco-friendly silver nanoparticles (AgNPs) were synthesized from novel actinobacteria Nocardiopsis dassonvillei- DS013 has been attempted. The actinobacterial mediated silver nanoparticles were characterized by TEM, UV–Visible, XRD, FT-IR spectroscopy. The initial detection of AgNPs was identified using UV–Vis spectrum and confirmed by the appearance of absorbance peak at 408 nm. A Fourier transform infrared spectroscopy (FT-IR) result reveals the presence of protein component in the culture supernatant may act as protecting agents. The XRD pattern indicated that the typical peaks reveal the presence of nanoparticles. The TEM morphology confirms the formation of circular and non uniform distributions of AgNPs with the size range from 30 to 80 nm. The antibacterial activity of both isolated actinobacterial (IA) and silver nanoparticles mediated actinobacterial (SNA) of Nocardiopsis dassonvillei- DS013 were done by well diffusion method against selected clinical isolates of bacteria, namely Escherichia coli, Enterococcus sp., Pseudomonas sp., Klebsiella sp., Proteus sp., Shigella sp., Bacillus subtilis, and Streptococcus sp. When compared to isolated actinobacteria, the SNA shows the better antibacterial activity against clinical isolates.  相似文献   

14.
The target of our current work was designed to prepare titanium oxide doped silver nanoparticles (Ag/TiO2NPs) and their impact on the functionalization of cotton fabrics. Additionally, the effect of Ag/TiO2NPs was compared with the individually prepared silver nanoparticles (AgNPs) and titanium oxide nanoparticles (TiO2NPs). In this work, AgNPs were prepared in the solid state using arabic gum as efficient stabilizing and reducing agent. Then, two concentrations of the as-synthesized nanoparticles were used to functionalize the cotton fabrics by pad-dry-cure treatment in the presence of fixing agent to increase the durability of treated cotton fabrics against vigorous washing cycles. The findings implied that the as-prepared nanoparticles were successfully synthesized in nano-size with spherical shape and homogeneity. The efficacy of the functionalized cotton fabrics with those nanoparticles were evaluated in terms of multifunctional properties including antimicrobial and ultraviolet protection factor (UPF) and the mechanical features before and after many washing cycles; 10, 15 and 20 times. The resultant also proved that Ag/TiO2NPs-treated cotton fabrics exhibited the greater values of both antimicrobial and UPF properties with enhancement in the tensile strength and elongation features. Thus, the combination between these two nanoparticles through doping reaction is suitable for imparting superior antimicrobial properties against the four tested microbial species (Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger) and good UPF properties. Depending on the promising obtained results of the multi-finishing fabrics, these nanoparticles of Ag/TiO2NPs can be applied for the production of an efficient medical clothes for doctors, nurses and bed sheets for patients in order to kill and prevent the spread of bacteria and then, reduce the transmission of infection to others.  相似文献   

15.
The drug-resistant bacterial strains' emergence increases day by day. This may be a result of biofilm presence, which protects bacteria from antimicrobial agents. Thus, new approaches must be used to control biofilm-related infections in healthcare settings. In such a study, biological silver nanoparticles were introduced in such a study as an anti-biofilm agent against multidrug-resistant E. coli U12 on urinary catheters. Seven different silver nanoparticles concentrations were tested for their antimicrobial activities. Also, anti-biofilm activities against E. coli U12 were tested. Using the dilution method, the silver nanoparticles concentration of 85 μg/ml was the MIC (Minimum Inhibitory Concentration) that had excellent biocompatibility and showed significant antibacterial activity against E. coli U12. Scanning electron microscopy (SEM) confirmed that the highest efficient dose of silver nanoparticles was 340 μg/ml at 144 h that reduced adhesion of E. coli U12 to the urinary catheter. E. coli U12 cells ruptured cell walls and cell membranes after being examined using transmission electron microscopy (TEM). Thus, biologically prepared silver nanoparticles could be used to coat medical devices since it is effective and promising to inhibit biofilm formation by impregnating urinary catheters with silver nanoparticles.  相似文献   

16.
The present study is to investigate the antitumor, antioxidant and antibacterial potential of silver nanoparticles (Ag NPs) synthesized from a phenolic derivative 4-N-methyl benzoic acid, isolated from a medicinal plant (Memecylon umbellatum Burm F). The Bio-inspired nanoparticles (NPs) were analyzed by using UV–vis spectroscopy, FTIR, HRTEM, Zeta potential and XRD techniques. The UV–vis spectroscopy study at the band of 430 nm confirmed the nanoparticles formation. HRTEM report showed that the AgNPs synthesized were in the size range 7–23 nm. The harvested nanoparticles were subjected to anti-bacterial assay and a dose dependent inhibitory action was observed against the tested human pathogens. Among the tested bacteria, Acinetobacter baumannii was found to be highly sensitive to AgNPs (diameter of zone of inhibition was 31 mm). Further, the silver nanoparticles exhibited a good anti-tumor activity against the breast cancer cell line (MCF 7) with an IC50 value of 42.19 µg/mL. As the present study confirmed a good antibacterial, antioxidant and antitumor activity in the nanoparticles synthesized using 4-N-methyl benzoic acid derived from a medicinal plant, the product can be further tested to formulate a good lead compound for biomedical applications.  相似文献   

17.
In the present study the characterization and properties of silver nanoparticles from Prosopis glandulosa leaf extract (AgNPs) were investigated using UV–Vis spectroscopic techniques, energy dispersive X-ray spectrometers (EDS), zeta potential and dynamic light scattering. The UV–Vis spectroscopic analysis showed the absorbance peaked at 487 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 421 nm with higher stability (?200 mV). The EDS analysis also exhibited presentation of silver element. Additionally, the different concentrations of AgNPs (25, 50, 75 and 100 mg/mL) showed antibacterial activity against Acinetobacter calcoaceticus and Bacillus cereus. Finally, AgNPs from leaf extracts of P. glandulosa may be used as an agent of biocontrol of microorganism of importance medical. However, further studies will be needed to fully understand the antimicrobial activity of silver nanoparticles obtain from P. glandulosa.  相似文献   

18.
In the present study, silver nanoparticles (AgNPs) with an average particle size of 5.5 ± 3.1 nm were biosynthesized using an endophytic fungus Cryptosporiopsis ericae PS4 isolated from the ethno-medicinal plant Potentilla fulgens L. The nanoparticles were characterized using UV-visible spectrophotometer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), selective area electron diffraction (SAED), and energy dispersive X-ray (EDX) spectroscopy analysis. Antimicrobial efficacy of the AgNPs was analyzed singly and in combination with the antibiotic/antifungal agent chloramphenicol/fluconazole, against five pathogenic microorganisms-Staphylococcus aureus MTCC96, Salmonella enteric MTCC735, Escherichia coli MTCC730, Enterococcus faecalis MTCC2729, and Candida albicans MTCC 183. The activity of AgNPs on the growth and morphology of the microorganisms was studied in solid and liquid growth media employing various susceptibility assays. These studies demonstrated that concentrations of AgNPs alone between 10 and 25 μM reduced the growth rates of the tested bacteria and fungus and revealed bactericidal/fungicidal activity of the AgNPs by delaying the exponential and stationary phases. Examination using SEM showed pits and ruptures in bacterial cells indicating fragmented cell membrane and severe cell damage in those cultures treated with AgNPs. These experimental findings suggest that the biosynthesized AgNPs may be a potential antimicrobial agent.  相似文献   

19.
Juniperus spp. are used as medicinal plants in many countries like Bosnia, Lebanon, and Turkey. In folk medicines, these plants have been used for treating skin and respiratory tract diseases, urinary problems, rheumatism and gall bladder stones. The objectives of this work were to synthesize silver nanoparticles (AgNPs) using a coniferous tree, Juniperus procera leaf extract and testing the synthesized AgNPs for its antimicrobial potentials, hemolytic activity, toxicity and the proliferative effects against normal and activated rat splenic cells. Leaf extract was prepared using acetone and ethanol as solvents. AgNPs were prepared using the acetone extract. AgNPs were validated using UV–Vis spectroscopy and scanning electron microscopy (SEM). Functional groups in the extract were identified using Fourier Transform Infrared (FT-IR) spectroscopy. SEM images of AgNPs showed spherical and cubic shapes with a uniform size distribution with an average size of 30–90 nm. FT-IR spectroscopy showed the presence of many functional groups in the plant extract. AgNPs showed promising antimicrobial activity against tested bacteria and fungus. AgNPs also expressed a stimulating activity towards the rat splenic cells in a dose dependent manner. Acetone as solvent was safer on cells than ethanol. Green synthesized AgNPs using J. procera might be used as a broad-spectrum therapeutic agent against microorganisms and as an immunostimulant agent.  相似文献   

20.
Central composite design was chosen to determine the combined effects of four process variables (AgNO3 concentration, incubation period, pH level and inoculum size) on the extracellular biosynthesis of silver nanoparticles (AgNPs) by Streptomyces viridochromogenes. Statistical analysis of the results showed that incubation period, initial pH level and inoculum size had significant effects (P<0.05) on the biosynthesis of silver nanoparticles at their individual level. The maximum biosynthesis of silver nanoparticles was achieved at a concentration of 0.5% (v/v) of 1 mM AgNO3, incubation period of 96 h, initial pH of 9 and inoculum size of 2% (v/v). After optimization, the biosynthesis of silver nanoparticles was improved by approximately 5-fold as compared to that of the unoptimized conditions. The synthetic process of silver nanoparticle generation using the reduction of aqueous Ag+ ion by the culture supernatants of S. viridochromogenes was quite fast, and silver nanoparticles were formed immediately by the addition of AgNO3 solution (1 mM) to the cell-free supernatant. Initial characterization of silver nanoparticles was performed by visual observation of color change from yellow to intense brown color. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 400 nm, which confirmed the presence of silver nanoparticles. Fourier Transform Infrared Spectroscopy analysis provided evidence for proteins as possible reducing and capping agents for stabilizing the nanoparticles. Transmission Electron Microscopy revealed the extracellular formation of spherical silver nanoparticles in the size range of 2.15–7.27 nm. Compared to the cell-free supernatant, the biosynthesized AgNPs revealed superior antimicrobial activity against Gram-negative, Gram-positive bacterial strains and Candida albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号