首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the extent and potential cause(s) of mitochondrial introgression within the polytypic North American Lycaeides species complex (Lepidoptera). By comparing population genetic structure based on mitochondrial DNA (COI and COII) and nuclear DNA (251 polymorphic amplified fragment length polymorphism markers), we detected substantial mito‐nuclear discordance, primarily involving a single mitochondrial haplotype (h01), which is likely due to mitochondrial introgression between differentiated Lycaeides populations and/or species. We detected reduced mitochondrial genetic diversity relative to nuclear genetic diversity in populations where mitochondrial haplotype h01 occurs, suggesting that the spread of this haplotype was facilitated by selection. We found no evidence that haplotype h01 is associated with increased fitness (in terms of survival to eclosion, fresh adult weight, and adult longevity) in a polymorphic Lycaeides melissa population. However, we did find a positive association between mitochondrial haplotype h01 and infection by the endoparasitic bacterium Wolbachia in one out of three lineages tested. Linkage disequilibrium between mitochondrial haplotype h01 and Wolbachia infection status may have resulted in indirect selection favouring the spread of haplotype h01 in at least one lineage of North American Lycaeides. These results illustrate the potential for introgressive hybridization to produce substantial mito‐nuclear discordance and demonstrate that an individual's mitochondrial and nuclear genome may have strikingly different evolutionary histories resulting from non‐neutral processes and intrinsic differences in the inheritance and biology of these genomes.  相似文献   

2.
Environmental changes such as global warming and biological invasion caused by human activities raise the possibility of secondary contact between the endangered butterfly species Zizina emelina and its sibling species Zizina otis in Japan. To assess the possible risks from their habitats overlapping, we investigated the potential for hybridization and the development of F1 individuals. We observed successful mating of the two sibling species under artificial conditions. The presence of a postzygotic hybridization barrier was supported by the delay of larval development only in females; a delay did not occur in males. Existence of the barrier was also supported by a decreased egg hatching rate in one brood; this was likely associated with infection with Wolbachia, a bacterium manipulating the reproductive capability of its host. The size and wing markings of F1 hybrid individuals were intermediate between those of the two species. These results suggest that, if Z. emelina and Z. otis are distributed sympatrically in the future, there is a possibility of introgression and reproductive interference between the two species, which would increase the risk of decline of each species.  相似文献   

3.
In the pill bug Armadillidium vulgare (Crustacea, Oniscidea), Wolbachia facilitates its spread through vertical transmission via the eggs by inducing feminization of genetic males. The spread of feminizing Wolbachia within and across populations is therefore expected to influence mitochondrial DNA (mtDNA) genetic structure by hitchhiking. To test this hypothesis, we analysed nuclear and mtDNA genetic structure, and Wolbachia prevalence in 13 populations of the pill bug host. Wolbachia prevalence (ranging from 0% to 100% of sampled females) was highly variable among populations. All three Wolbachia strains previously observed in A. vulgare were present (wVulC, wVulM and wVulP) with wVulC being the most prevalent (nine of 13 populations). The host showed a genetic structure on five microsatellite loci that is compatible with isolation by distance. The strong genetic structure observed on host mtDNA was correlated with Wolbachia prevalence: three mitotypes were in strong linkage disequilibrium with the three strains of Wolbachia. Neutrality tests showed that the mtDNA polymorphism is not neutral, and we thus suggest that this unusual pattern of mtDNA polymorphism found in A. vulgare was due to Wolbachia.  相似文献   

4.
Wolbachia are endosymbiotic bacteria known to manipulate the reproduction of their hosts. These manipulations are expected to have consequences on the population genetics of the host, such as heterozygosity levels, genetic diversity and gene flow. The parasitoid wasp Tetrastichus coeruleus has populations that are infected with parthenogenesis‐inducing Wolbachia and populations that are not infected. We studied the population genetics of T. coeruleus between and within Wolbachia‐infected and uninfected populations, using nuclear microsatellites and mitochondrial DNA. We expected reduced genetic diversity in both DNA types in infected populations. However, migration and gene flow could introduce new DNA variants into populations. We therefore paid special attention to individuals with unexpected (genetic) characteristics. Based on nuclear and mitochondrial DNA, two genetic clusters were evident: a thelytokous cluster containing all Wolbachia‐infected, parthenogenetic populations and an arrhenotokous cluster containing all uninfected, sexual populations. Nuclear and mitochondrial DNA did not exhibit concordant patterns of variation, although there was reduced genetic diversity in infected populations for both DNA types. Within the thelytokous cluster, there was nuclear DNA variation, but no mitochondrial DNA variation. This nuclear DNA variation may be explained by occasional sex between infected females and males, by horizontal transmission of Wolbachia, and/or by novel mutations. Several females from thelytokous populations were uninfected and/or heterozygous for microsatellite loci. These unexpected characteristics may be explained by migration, by inefficient transmission of Wolbachia, by horizontal transmission of Wolbachia, and/or by novel mutations. However, migration has not prevented the build‐up of considerable genetic differentiation between thelytokous and arrhenotokous populations.  相似文献   

5.
The widespread lycaenid butterfly Tongeia fischeri is distributed from eastern Europe to northeastern Asia and represented by three geographically isolated populations in Japan. In order to clarify the phylogeographic history of the species, we used sequences of three mitochondrial (COI, Cyt b and ND5) and two nuclear (Rpl5 and Ldh) genes of 207 individuals collected from 55 sites throughout Japan and five sites on the Asian continent. Phylogenetic trees and the median-joining network revealed six evolutionary mitochondrial haplotype clades, which corresponded to the geographic distribution of the species. Common ancestors of Japanese T. fischeri might have come to Japan during the mid-Pleistocene by multiple dispersals of continental populations, probably via a land bridge or narrow channel between western Japan and the Korean Peninsula. The geographical patterns of variation of mitochondrial and nuclear markers are discordant in northeastern Kyushu, possibly as a result of introgressive hybridization during the ancient contact between the Kyushu and Shikoku populations in the last glacial maximum. The phylogeographic pattern of T. fischeri in Japan are probably related to the geological history, Pleistocene climatic oscillations and distribution of the host plant.  相似文献   

6.
Lateral gene transfer is any process in which an organism incorporates genetic material from a phylogenetically distant and reproductively isolated organism. A previous survey demonstrated that two Japanese populations of Monochamus alternatus Hope carried many Wolbachia genes that had been acquired by lateral gene transfer in their own genomes, but were not infected with Wolbachia. To understand the prevalence of Wolbachia infection and laterally transferred Wolbachia genes in this beetle, we performed a broader survey of natural populations covering two subspecies of M. alternatus from Japan (M. alternatus endai) and Taiwan (M. alternatus alternatus). We detected laterally transferred Wolbachia genes in all Japanese and Taiwanese populations of M. alternatus, but no Wolbachia infection in any population. In addition, we confirmed the absence of Wolbachia infection and of transferred Wolbachia genes in two Japanese populations of Monochamus saltuarius Gebler, which is a congeneric relative of M. alternatus. Our findings suggest that the Wolbachia endosymbiont as gene donor has disappeared from M. alternatus, and that the transfer of part of its genome to M. alternatus occurred in the ancestor of M. alternatus before the subspeciation event.  相似文献   

7.
Although mitochondrial DNA mapping of Varroa destructor revealed the presence of several haplotypes, only two of them (Korean and Japanese haplotypes) were capable to infest Apis mellifera populations. Even though the Korean haplotype is the only one that has been reported in Argentina, these conclusions were based on mites sampled in apiaries from a specific geographical place (Buenos Aires province). To study mites from several sites of Argentina could reveal the presence of the Japanese genotype, especially considering sites near to Brazil, where Japanese haplotype was already detected. The aim of this work was to study the genetic structure of V. destructor populations from apiaries located in various provinces of Argentina, in order to determine the presence of different haplotypes. The study was carried out between January 2006 and December 2009. Phoretic adult Varroa mites were collected from honey bee workers sampled from colonies of A. mellifera located in Entre Ríos, Buenos Aires, Corrientes, Río Negro, Santa Cruz and Neuquén provinces. Twenty female mites from each sampling site were used to carry out the genetic analysis. For DNA extraction a nondestructive method was used. DNA sequences were compared to Korean haplotype (AF106899) and Japanese haplotype (AF106897). All DNA sequences obtained from mite populations sampled in Argentina, share 98% of similitude with Korean Haplotype (AF106899). Taking into account these results, we are able to conclude that Korean haplotype is cosmopolite in Argentina.  相似文献   

8.
Range-wide genetic variation of Korean pine (Pinus koraiensis) was assessed using maternally inherited mtDNA and paternally inherited cpDNA for 16 natural populations throughout northeast Asia in order to study its phylogeographical history during the Quaternary. The cpDNA variation indicated that there was no difference between populations on the Asian continent and those in the Japanese archipelago. In contrast, the mtDNA variation indicated that there was significant difference between the populations from the two regions, with each region having a different lineage. The continental populations exhibited no diversity in the mtDNA examined despite the species’ current extensive range and large populations. Conversely, while the Korean pine is rare in Japan, the Japanese populations exhibited greater levels of mtDNA diversity (H T?=?0.502). The higher mtDNA diversity and evidence from numerous Korean pine macrofossil remains dated to the Pleistocene and recovered various sites in Japan suggest that the Japanese archipelago once served as a refugium to a much larger Korean pine population with a more extensive range than is the case today. The presence of the single mtDNA haplotype across the Asian continent suggests that the present widespread populations could have expanded from a single refugium population after the last glacial periods.  相似文献   

9.
The dynamic changes in land configuration during the Quaternary that were accompanied by climatic oscillations have significantly influenced the current distribution and genetic structure of warm-temperate forests in East Asia. Although recent surveys have been conducted, the historical migration of forest species via land bridges and, especially, the origins of Korean populations remains conjectural. Here, we reveal the genetic structure of Lespedeza buergeri, a warm-temperate shrub that is disjunctively distributed around the East China Sea (ECS) at China, Korea, and Japan. Two non-coding regions (rpl32-trnL, psbA-trnH) of chloroplast DNA (cpDNA) and the internal transcribed spacer of nuclear ribosomal DNA (nrITS) were analyzed for 188 individuals from 16 populations, which covered almost all of its distribution. The nrITS data demonstrated a genetic structure that followed geographic boundaries. This examination utilized AMOVA, comparisons of genetic differentiation based on haplotype frequency/genetic mutations among haplotypes, and Mantel tests. However, the cpDNA data showed contrasting genetic pattern, implying that this difference was due to a slower mutation rate in cpDNA than in nrITS. These results indicated frequent migration by this species via an ECS land bridge during the early Pleistocene that then tapered gradually toward the late Pleistocene. A genetic isolation between western and eastern Japan coincided with broad consensus that was suggested by the presence of other warm-temperate plants in that country. For Korean populations, high genetic diversity indicated the existence of refugia during the Last Glacial Maximum on the Korean Peninsula. However, their closeness with western Japanese populations at the level of haplotype clade implied that gene flow from western Japanese refugia was possible until post-glacial processing occurred through the Korea/Tsushima Strait land bridge.  相似文献   

10.
Intracellular bacteria of the genus Wolbachia (alpha Proteobacteria) induce cytoplasmic incompatibility (CI) in many arthropod species, including spider mites, but not all Wolbachia cause CI. In spider mites CI becomes apparent by a reduced egg hatchability and a lower daughter:son ratio: CI in haplodiploid organisms in general was expected to produce all-male offspring or a male-biased sex ratio without any death of eggs. In a previous study of Japanese populations of Tetranychus urticae, two out of three green-form populations tested were infected with non-CI Wolbachia strains, whereas none of six red-form populations harbored Wolbachia. As the survey of Wolbachia infection in T. urticae is still fragmentary in Japan, we checked Wolbachia infection in thirty green-form populations and 29 red-form populations collected from a wide range of Japanese islands. For Wolbachia-infected populations, we tested the effects of Wolbachia on the reproductive traits and determined the phylogenetic relationships of the different strains of Wolbachia. All but one green-form populations were infected with Wolbachia and all strains belonged to the subgroup Ori when the wsp gene was used to determine the phylogenetic relationships of different strains of Wolbachia. Six out of 29 red-form populations harbored Wolbachia and the infected strains belonged to the subgroups Ori and Bugs. Twenty-four of 29 infected green-form populations and five of six infected red-form populations induced CI among the hosts. Thus, CI-Wolbachia strains are widespread in Japan, and no geographical trend was observed in the CI-Wolbachia. Although three red-form populations harbored other intracellular bacteria Cardinium, they did not affect host reproduction.  相似文献   

11.
Wolbachia are maternally inherited symbiotic bacteria, commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. The evolutionary history of endosymbionts like Wolbachia can be revealed by integrating information on infection status in natural populations with patterns of sequence variation in Wolbachia and host mitochondrial genomes. Here we use whole-genome resequencing data from 290 lines of Drosophila melanogaster from North America, Europe, and Africa to predict Wolbachia infection status, estimate relative cytoplasmic genome copy number, and reconstruct Wolbachia and mitochondrial genome sequences. Overall, 63% of Drosophila strains were predicted to be infected with Wolbachia by our in silico analysis pipeline, which shows 99% concordance with infection status determined by diagnostic PCR. Complete Wolbachia and mitochondrial genomes show congruent phylogenies, consistent with strict vertical transmission through the maternal cytoplasm and imperfect transmission of Wolbachia. Bayesian phylogenetic analysis reveals that the most recent common ancestor of all Wolbachia and mitochondrial genomes in D. melanogaster dates to around 8,000 years ago. We find evidence for a recent global replacement of ancestral Wolbachia and mtDNA lineages, but our data suggest that the derived wMel lineage arose several thousand years ago, not in the 20th century as previously proposed. Our data also provide evidence that this global replacement event is incomplete and is likely to be one of several similar incomplete replacement events that have occurred since the out-of-Africa migration that allowed D. melanogaster to colonize worldwide habitats. This study provides a complete genomic analysis of the evolutionary mode and temporal dynamics of the D. melanogasterWolbachia symbiosis, as well as important resources for further analyses of the impact of Wolbachia on host biology.  相似文献   

12.
Phenotypes relevant to oxidative phosphorylation (OXPHOS) in eukaryotes are jointly determined by nuclear and mitochondrial DNA (mtDNA). Thus, in humans, the variable clinical presentations of mitochondrial disease patients bearing the same primary mutation, whether in nuclear or mitochondrial DNA, have been attributed to putative genetic determinants carried in the “other” genome, though their identity and the molecular mechanism(s) by which they might act remain elusive. Here we demonstrate cytoplasmic suppression of the mitochondrial disease-like phenotype of the Drosophila melanogaster nuclear mutant tko25t, which includes developmental delay, seizure sensitivity, and defective male courtship. The tko25t strain carries a mutation in a mitoribosomal protein gene, causing OXPHOS deficiency due to defective intramitochondrial protein synthesis. Phenotypic suppression was associated with increased mtDNA copy number and increased mitochondrial biogenesis, as measured by the expression levels of porin voltage dependent anion channel and Spargel (PGC1α). Ubiquitous overexpression of Spargel in tko25t flies phenocopied the suppressor, identifying it as a key mechanistic target thereof. Suppressor-strain mtDNAs differed from related nonsuppressor strain mtDNAs by several coding-region polymorphisms and by length and sequence variation in the noncoding region (NCR), in which the origin of mtDNA replication is located. Cytoplasm from four of five originally Wolbachia-infected strains showed the same suppressor effect, whereas that from neither of two uninfected strains did so, suggesting that the stress of chronic Wolbachia infection may provide evolutionary selection for improved mitochondrial fitness under metabolic stress. Our findings provide a paradigm for understanding the role of mtDNA genotype in human disease.  相似文献   

13.
The maternally transmitted bacterium Wolbachia pipientis is well known for spreading and persisting in insect populations through manipulation of the fitness of its host. Here, we identify three new Wolbachia pipientis strains, wHho, wHho2 and wHho3, infecting Hyposoter horticola, a specialist wasp parasitoid of the Glanville fritillary butterfly. The wHho strain (ST435) infects about 50% of the individuals in the Åland islands in Finland, with a different infection rate in the two mitochondrial (COI) haplotypes of the wasp. The vertical transmission rate of Wolbachia is imperfect, and lower in the haplotype with lower infection rate, suggesting a fitness trade-off. We found no association of the wHho infection with fecundity, longevity or dispersal ability of the parasitoid host. However, preliminary results convey spatial associations between Wolbachia infection, host mitochondrial haplotype and parasitism of H. horticola by its hyperparasitoid, Mesochorus cf. stigmaticus. We discuss the possibility that Wolbachia infection protects H. horticola against hyperparasitism.  相似文献   

14.
Wolbachia are endosymbiotic bacteria that commonly infect arthropods and cause reproductive disorders in host. Within several Tetranychus species, Wolbachia have been detected and shown to affect their reproduction. However, little is known about their transmission and distribution patterns in natural populations of Tetranychus species. Here, we used multilocus sequence typing to confirm Wolbachia infection status and examined the relationship between Wolbachia infection status and host phylogeny, mitochondrial diversity, and geographical range in five Tetranychus species (Tetranychus truncatus, Tetranychus urticae, Tetranychus pueraricola, Tetranychus phaselus, and Tetranychus kanzawai) from 21 populations in China. The prevalence of Wolbachia within the five Tetranychus species ranged from 31.4 to 100 %, and the strains were remarkably diverse. Together, these observations indicate that Wolbachia was introduced to these populations on multiple separate occasions. As in other arthropods, the same Tetranychus species can accommodate very different strains, and identical Wolbachia occasionally infect different species. These observations suggest that Wolbachia are transmitted both vertically and horizontally. Horizontally, transmission is probably mediated by the host plants. The distribution patterns of Wolbachia were quite different among populations of the same species, suggesting that the dynamics of Wolbachia in nature may be affected by ecological and other factors.  相似文献   

15.
The coastal mosquito Aedes togoi occurs more or less continuously from subarctic to subtropic zones along the coasts of the Japanese islands and the East Asian mainland. It occurs also in tropical Southeast Asia and the North American Pacific coast, and the populations there are thought to have been introduced from Japan by ship. To test this hypothesis, the genetic divergence among geographic populations of A. togoi was studied using one mitochondrial and three nuclear gene sequences. We detected 71 mitochondrial haplotypes forming four lineages, with high nucleotide diversity around temperate Japan and declining towards peripheral ranges. The major lineage (L1) comprised 57 haplotypes from temperate and subarctic zones in Japan and Southeast Asia including southern China and Taiwan. Two other lineages were found from subtropical islands (L3) and a subarctic area (L4) of Japan. The Canadian population showed one unique haplotype (L2) diverged from the other lineages. In the combined nuclear gene tree, individuals with mitochondrial L4 haplotypes diverged from those with the other mitochondrial haplotypes L1—L3; although individuals with L1—L3 haplotypes showed shallow divergences in the nuclear gene sequences, individuals from Southeast Asia and Canada each formed a monophyletic group. Overall, the genetic composition of the Southeast Asian populations was closely related to that of temperate Japanese populations, suggesting recent gene flow between these regions. The Canadian population might have originated from anthropogenic introduction from somewhere in Asia, but the possibility that it could have spread across the Beringian land bridge cannot be ruled out.  相似文献   

16.
Wolbachia, cytoplasmically inherited endosymbionts of arthropods, are known to hijack their host reproduction in various ways to increase their own vertical transmission. This may lead to the selective sweep of associated mitochondria, which can have a large impact on the evolution of mitochondrial lineages. In Japan, two different Wolbacahia strains (wCI and wFem) are found in two sister species of pierid butterflies, Eurema mandarina and Eurema hecabe. In both species, females infected with wCI (C females) produce offspring with a nearly 1:1 sex ratio, while females infected with both wCI and wFem (CF females) produce all‐female offspring. Previous studies have suggested the historical occurrence of hybrid introgression in C individuals between the two species. Furthermore, hybrid introgression in CF individuals is suggested by the distinct mitochondrial lineages between C females and CF females of E. mandarina. In this study, we performed phylogenetic analyses based on nuclear DNA and mitochondrial DNA markers of E. hecabe with previously published data on E. mandarina. We found that the nuclear DNA of this species significantly diverged from that of E. mandarina. By contrast, mitochondrial DNA haplotypes comprised two clades, mostly reflecting Wolbachia infection status rather than the individual species. Collectively, our results support the previously suggested occurrence of two independent historical events wherein the cytoplasms of CF females and C females moved between E. hecabe and E. mandarina through hybrid introgression.  相似文献   

17.
Haminoea japonica is an opisthobranch mollusk with a large non-indigenous range. This species is a vector for a parasite that causes the human skin disease cercarial dermatitis, and may have negative effects on populations of native species. Molecular evidence from the mitochondrial cytochrome c oxidase I gene and the histone 3 nuclear gene indicates that previously published morphology-based hypotheses on the spread of H. japonica out of Japan are correct. The most likely explanation for the current range of the species, which includes Japan, Korea, France, Spain, Italy, Canada and the USA is a recent, human-mediated dispersal from Japanese populations. The highest levels of nucleotide and haplotype diversity are found in Japan. Non-indigenous populations have low levels of genetic diversity (indicating bottlenecking). Haplotypes that were detected in the non-indigenous range of H. japonica have only been found in two localities in the native range; these two localities are in north-eastern Japan. In addition, the haplotype network structure and Spatial Analysis of Molecular Variance results confirm the origins of non-indigenous populations most likely trace to north-eastern Japan, which is where most Pacific oyster exports to North America also originated. Because there are no major shipping ports in north-eastern Japan, ballast water is less likely to be the mechanism of dispersal. The results of this study provide important data for the development of policies and regulations aimed to prevent further spread of this species in non-indigenous ranges.  相似文献   

18.
Human diphyllobothriasis, caused by Dibothriocephalus nihonkaiensis, is prevalent globally, especially in regions where raw fish is consumed. Recent molecular diagnostic techniques have made species identification of tapeworm parasites and the determination of genetic variations among parasite populations possible. However, only a few studies done over a decade ago, have reported on the genetic variation among D. nihonkaiensis in Japan. The present study employed PCR-based mitochondrial DNA analysis to specifically detect D. nihonkaiensis from archived clinical samples, and to determine any genetic variation that may exist among the Japanese broad tapeworms from patients of Kanagawa Prefecture, Japan. Target genes were amplified from DNA extracted from the ethanol- or formaldehyde-fixed samples by PCR. Further sequencing and comparative phylogenetic analyses based on mitochondrial COI and ND1 sequences were also performed. In our results, all PCR-amplified and sequenced samples were identified as D. nihonkaiensis. Analysis of COI sequences revealed two haplotype lineages. However, clustering of almost all COI (and ND1) sample sequences into one of the two haplotype clades, together with reference sequences from different countries worldwide, revealed a common haplotype among D. nihonkaiensis samples in our study. Our results suggest a possible presence of a dominant D. nihonkaiensis haplotype, with a global distribution circulating in Japan. Results from this study have the potential to improve the management of clinical cases and establish robust control measures to reduce the burden of human diphyllobothriasis in Japan.  相似文献   

19.
20.
The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号