首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the spread of a clone of multidrug-resistant (MDR), ESBL-producing (bla CTX-M-1) Salmonella enterica subsp. enterica serovar Infantis, in the Italian broiler chicken industry and along the food-chain. This was first detected in Italy in 2011 and led to human infection in Italy in 2013–2014.A set (n = 49) of extended-spectrum cephalosporin (ESC)-resistant (R) isolates of S. Infantis (2011–2014) from humans, food-producing animals and meat thereof, were studied along with a selected set of earlier and more recent ESC-susceptible (ESC-S) isolates (n = 42, 2001–2014). They were characterized by macrorestriction-PFGE analysis and genetic environment of ESC-resistance. Isolates representative of PFGE-patterns and origin were submitted to Whole Genome Sequencing. The emerging ESC-R clone, detected mainly from broiler chickens, broiler meat and humans, showed a minimum pattern of clinical resistance to cefotaxime, tetracycline, sulfonamides, and trimethoprim, beside ciprofloxacin microbiological resistance (MIC 0.25 mg/L). All isolates of this clone harbored a conjugative megaplasmid (~ 280–320 Kb), similar to that described in ESC-susceptible S. Infantis in Israel (pESI-like) in 2014. This megaplasmid carried the ESBL gene bla CTX-M-1, and additional genes [tet(A), sul1, dfrA1 and dfrA14] mediating cefotaxime, tetracycline, sulfonamide, and trimethoprim resistance. It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness (qacE1, mer) in the intensive-farming environment. This emerging clone of S. Infantis has been causing infections in humans, most likely through the broiler industry. Since S. Infantis is among major serovars causing human infections in Europe and is an emerging non-typhoidal Salmonella globally, further spread of this lineage in primary productions deserves quick and thorough risk-management strategies.  相似文献   

2.

Objective

To investigate the molecular characteristics of extended-spectrum cephalosporin (ESC)-resistant Enterobacteriaceae collected during a cross-sectional study examining the prevalence and risk factors for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in humans living in areas with high or low broiler density.

Methods

ESC-resistant Enterobacteriaceae were identified by combination disc-diffusion test. ESBL/AmpC/carbapenemase genes were analysed using PCR and sequencing. For E. coli, phylogenetic groups and MLST were determined. Plasmids were characterized by transformation and PCR-based replicon typing. Subtyping of plasmids was done by plasmid multilocus sequence typing.

Results

175 ESC-resistant Enterobacteriaceae were cultured from 165/1,033 individuals. The isolates were Escherichia coli(n=65), Citrobacter freundii (n=52), Enterobacter cloacae (n=38), Morganella morganii (n=5), Enterobacter aerogenes (n=4), Klebsiella pneumoniae (n=3), Hafnia alvei (n=2), Shigella spp. (n=2), Citrobacter amalonaticus (n=1), Escherichia hermannii (n=1), Kluyvera cryocrescens (n=1), and Pantoea agglomerans (n=1). The following ESBL genes were recovered in 55 isolates originating from 49 of 1,033 (4.7 %) persons: bla CTX-M-1 (n=17), bla CTX-M-15 (n=16), bla CTX-M-14 (n=9), bla CTX-M-2 (n=3), bla CTX-M-3 (n=2), bla CTX-M-24 (n=2), bla CTX-M-27 (n=1), bla CTX-M-32 (n=1), bla SHV-12 (n=2), bla SHV-65 (n=1) and bla TEM-52 (n=1). Plasmidic AmpC (pAmpC) genes were discovered in 6 out of 1,033 (0.6 %) persons. One person carried two different E. coli isolates, one with bla CTX-M-1 and the other with bla CMY-2 and therefore the prevalence of persons carrying Enterobacteriaceae harboring ESBL and/or pAmpC genes was 5.2 %. In eight E. coli isolates the AmpC phenotype was caused by mutations in the AmpC promoter region. No carbapenemase genes were identified. A large variety of E. coli genotypes was found, ST131 and ST10 being most common.

Conclusions

ESBL/pAmpC genes resembled those from patients in Dutch hospitals, indicating that healthy humans form a reservoir for transmission of these determinants to vulnerable people. The role of poultry in the transmission to humans in the community remains to be elucidated.  相似文献   

3.

Objective

To investigate the local epidemiology of Klebsiella penumoniae carrying bla CTX-M-15 in southern China and to characterize the genetic environment of bla CTX-M-15.

Methods

PCR and DNA sequencing were used to detect and characterize the genetic contexts of bla CTX-M-15. The clonal relatedness of isolates carrying bla CTX-M-15 was determined by pulse-field gel electrophoresis. Conjugative plasmids carrying bla CTX-M-15 were obtained by mating and were further subject to restriction analysis and replicon typing.

Results

A total of 47CTX-M-15 ESBL-producing isolates of K. pneumoniae were collected from nine hospitals in China from October 2007 to October 2008. Isolates were clustered into various clonal groups. The local spread of bla CTX-M-15 was mainly mediated by one major conjugative plasmid as determined by S1-PFGE and restriction analysis. A 90-kb plasmid belonging to incompatible group FII was the major carrier of bla CTX-M-15 in K. pneumoniae. Except bla TEM-1, the resistance genes such as bla SHV, bla DHA-1, bla OXA-1, qnrB, qnrS, aac(3)-II, and aac(6′)-Ib were not found in the plasmid. In the comparing of conjugative gene sequence, it is 100% identical with the plasmid pKF3–94, which was found in K. pneumonia from Zhejiang province of china previously.

Conclusions

bla CTX-M-15 was prevalent in K. pneumonia of southern China. The dissemination of bla CTX-M-15 appeared to be due to the horizontal transfer of a 90-kb epidemic plasmid.  相似文献   

4.

Objectives

We characterized two new CTX-M-type extended-spectrum β-lactamase (ESBL) variants in Escherichia coli isolates from stool samples of two elderly patients admitted at the Tel Aviv Sourasky Medical Center, Israel. Both patients underwent treatment with cephalosporins prior to isolation of the E. coli strains.

Methods

ESBLs were detected by the double-disk synergy test and PCR-sequencing of β-lactamase genes. The bla CTX-M genes were cloned into the pCR-BluntII-TOPO vector in E. coli TOP10. The role of amino-acid substitutions V77A and D240G was analyzed by site-directed mutagenesis of the bla CTX-M-94 and bla CTX-M-100 genes and comparative characterization of the resulting E. coli recombinants. MICs of β-lactams were determined by Etest. Plasmid profiling, mating experiments, replicon typing and sequencing of bla CTX-M flanking regions were performed to identify the genetic background of the new CTX-M variants.

Results

The novel CTX-M β-lactamases, CTX-M-94 and -100, belonged to the CTX-M-25-group. Both variants differed from CTX-M-25 by the substitution V77A, and from CTX-M-39 by D240G. CTX-M-94 differed from all CTX-M-25-group enzymes by the substitution F119L. Glycine-240 was associated with reduced susceptibility to ceftazidime and leucine-119 with increased resistance to ceftriaxone. bla CTX-M-94 and bla CTX-M-100 were located within ISEcp1 transposition units inserted into ∼93 kb non-conjugative IncFI and ∼130 kb conjugative IncA/C plasmids, respectively. The plasmids carried also different class 1 integrons.

Conclusions

This is the first report on CTX-M-94 and -100 ESBLs, novel members of the CTX-M-25-group.  相似文献   

5.

Objective

To investigate CTX-M genotypes among extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolated from patients with community-onset and hospital-onset infections in China, their clonality and the distribution of CTX-M variants in different specimens of community-onset and hospital-onset infections.

Methods

ESBL-EC isolates were collected from general hospitals from 2011 to 2012 in China. Broth microdilution method antimicrobial susceptibility testing of 16 antibiotics was performed. Clinical data from community-onset and hospital-onset infections due to ESBL-EC were analyzed. ESBL-encoding genes were amplified by PCR and sequenced, and multilocus sequence typing (MLST) was performed for a random selection of predominant CTX-M type strains identified.

Results

A total of 1,168 ESBL-EC isolates were obtained from various clinical specimens, 41.7% of which were responsible for causing community-onset infections. The presence of urinary calculi was higher in community-onset infections, whereas malignancy, cardiovascular and cerebrovascular diseases, dementia, chronic renal disease, diabetes mellitus and surgical treatment were found to have higher proportions in hospital-onset infections. There was no significant difference in trauma between community-onset and hospital-onset infections. 96.2% of the isolates were detected to harbor bla CTX-M genes. bla CTX-M-1 group and bla CTX-M-9 group were detected at 40.7% and 48.7% respectively, and both positive group accounted for 10.6%. bla CTX-M-55 (24.8%) and bla CTX-M-15 (18.2%) were the major genotypes in bla CTX-M-1 group while bla CTX-M-14 (46.8%) was predominant in bla CTX-M-9 group. A comparison of bla CTX-M distribution in different specimens between ESBL-EC causing community-onset and hospital-onset infection showed no significant difference. A total of 229 isolates were tested for MLST. ST131 (14%) was the predominant type. ST648, ST405 and ST1193 were also detected.

Conclusions

Community-onset ESBL-EC has emerged as a common pathogen in China. CTX-M-14 is the most commonly encountered, CTX-M-55 and CTX-M-15 have spread rapidly. ST131 is the predominant clonal group, and the great diversity of CTX-M-producing isolates of E. coli has emerged in China.  相似文献   

6.
CTX-M-producing Escherichia coli is the predominant type of extended-spectrum β-lactamase (ESBL)-producing E. coli worldwide. In this study, molecular typing was conducted for 139 CTX-M-producing E. coli isolates, phenotypically positive for ESBLs, isolated from environmental water, swine, healthy humans, and hospitalized patients in Hangzhou, China. The antibiotic resistance profiles of the isolates for the cephalosporins and fluoroquinolones were determined. The isolates showed 100% resistance to cefotaxime and ceftriaxone while maintaining relatively high susceptibility to cefoxitin, cefepime, and ceftazidime. A total of 61.9% (86/139) of the isolates, regardless of origin, showed high resistance to fluoroquinolones. PCRs and DNA sequencing indicated that blaCTX-M-14 was the most prevalent CTX-M-9 group gene and that blaCTX-M-15 and blaCTX-M-55 were the dominant CTX-M-1 group genes. Isolates from all sources with CTX-M types belonging to the CTX-M-1 or CTX-M-9 group were most frequently associated with epidemics. Molecular homology analysis of the isolates, conducted by phylogenetic grouping, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST), demonstrated that the dominant clones belonged to B2-ST131, D-ST648, D-ST38, or A-CC10. These four sequence types (STs) were discovered in E. coli isolates both from humans and from environmental water, suggesting frequent and continuous intercompartment transmission between humans and the aquatic environment. Seven novel sequence types were identified in the current study. In conclusion, this study is the first to report the molecular homology analysis of CTX-M-producing E. coli isolates collected from water, swine, and healthy and hospitalized humans, suggesting that pathogens in the environment might originate both from humans and from animals.  相似文献   

7.
A total of 84 extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from cattle, farm workers, and the farm environment isolated from February to September 2008 in the Republic of Korea were investigated. All 84 ESBL-producing isolates carried blaCTX-M genes that belonged to the CTX-M-1 (n = 35) or CTX-M-9 (n = 49) family. The most predominant CTX-M type identified was CTX-M-14 (n = 49), followed by CTX-M-32 (n = 26). The blaCTX-M genes were identified most commonly in E. coli isolates from feces (n = 29), teats (n = 25), and milk (n = 14). A blaCTX-M-14 gene was also detected in an E. coli isolate from a farmer''s hand. Transfer of the blaCTX-M gene from 60 blaCTX-M-positive E. coli isolates to the recipient E. coli J53 strain by conjugation was demonstrated. Plasmid isolation from blaCTX-M-positive transconjugants revealed a large (95- to 140-kb) conjugative plasmid. Almost all (82/84) blaCTX-M genes possessed an insertion sequence, ISEcp1, upstream of the blaCTX-M gene. Only in the case of the CTX-M-14 genes was IS903 downstream of the gene. The blaCTX-M genes were associated with seven kinds of addiction systems. Among them, pndAC, hok-sok, and srnBC were the most frequently identified addiction systems in both wild strains and transconjugants. The spread of blaCTX-M genes was attributed to both clonal expansion and horizontal dissemination. Our data suggest that a combination of multiple addiction systems in plasmids carrying blaCTX-M genes could contribute to their maintenance in the host cells. To our knowledge, the blaCTX-M-32 gene has not previously been reported in animal isolates from the Republic of Korea.  相似文献   

8.
Current knowledge on extended-spectrum beta-lactamases (ESBLs) in animals is based largely on cross-sectional studies and qualitative data. The aim of this longitudinal study was to elucidate carriage proportions and fecal counts of ESBL-producing Escherichia coli in pigs during the production cycle. At each of three ESBL-positive single-sited farrow-to-finisher pig farms (farms A, B, and C) included in the study, individual fecal samples were taken from 17 to 20 sows 1 week before farrowing and from 2 piglets of each sow''s litter four times from birth to slaughter (as piglets, weaners, and finishers). Cefotaxime (CTX)-resistant coliforms in feces were counted on MacConkey agar containing 2 μg/ml CTX and characterized for the presence of ESBL-encoding genes by PCR and sequencing. CTX-M-positive pigs were detected in all age groups at farms A (blaCTX-M-9 group, compatible with blaCTX-M-14/17) and B (blaCTX-M-1 group, compatible with blaCTX-M-1/61), whereas only three weaners were positive at farm C (blaCTX-M-1 group, compatible with blaCTX-M-1/61). A significant decrease in carriage was detected during the production cycle, with on average 50% carriage immediately after birth, 58% just before weaning, 29% during weaning, and 12% during finishing. The observed reduction in numbers of CTX-M-positive pigs was accompanied by a significant reduction in mean fecal counts of CTX-resistant coliforms from ∼107 CFU/g in piglets to ∼103 CFU/g in finishers (P < 0.001). These findings provide novel information about the epidemiology of ESBLs at the farm level and have important implications for assessments of risks of meat contamination during slaughter.  相似文献   

9.
To examine to what extent fresh vegetables imported into Switzerland represent carriers of extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae, 169 samples of different types of fresh vegetables imported into Switzerland from the Dominican Republic, India, Thailand, and Vietnam were analyzed. Overall, 25.4% of the vegetable samples yielded one or more ESBL-producing Enterobacteriaceae, 78.3% of which were multidrug resistant. Sixty isolates were obtained: Escherichia coli, 26; Klebsiella pneumoniae, 26; Enterobacter cloacae, 6; Enterobacter aerogenes, 1; and Cronobacter sakazakii, 1. We found 29 isolates producing CTX-M-15, 8 producing CTX-M-14, 7 producing CTX-M-55, 3 producing CTX-M-65, 1 each producing CTX-M-1, CTX-M-3, CTX-M-27, and CTX-M-63, 5 producing SHV-2, 3 producing SHV-12, and 1 producing SHV-2a. Four of the E. coli isolates belonged to epidemiologically important clones: CTX-M-15-producing B2:ST131 (1 isolate), D:ST405 (1 isolate), and D:ST38 (2 isolates). One of the D:ST38 isolates belonged to the extraintestinal enteroaggregative E. coli (EAEC) D:ST38 lineage. Two of the K. pneumoniae isolates belonged to the epidemic clones sequence type 15 (ST15) and ST147. The occurrence of antibiotic-resistant pathogenic and commensal Enterobacteriaceae in imported agricultural foodstuffs constitutes a source of ESBL genes and a concern for food safety.  相似文献   

10.

Background

The already high and increasing occurrence of extended-spectrum beta-lactamases (ESBL) producing Escherichia coli in European broiler populations is of concern due to the fact that third and fourth generation cephalosporins are deemed critically important in human medicine. In Sweden 34% of the broilers carry ESBL/pAmpC producing E. coli in their gut, despite the absence of a known selection pressure such as antimicrobial usages. The aim of the current study was to characterise a selection of E. coli strains carrying the bla CTX-M-1, to determine if the spread was due to a specific clone.

Findings

Ten isolates carrying bla CTX-M-1 from Swedish broilers belonged to eight different multi-locus sequence types with three isolates belonging to ST155. The ST155 isolates were identical as assessed by PFGE. The bla CTX-M-1 was in all isolates carried on a plasmid of replicon type incI, which also transferred resistance to tetracycline and sulfamethoxazole.

Conclusion

The occurrence of ESBL-producing E. coli in the Swedish broilers is not due to the emergence of a single clone, but rather the spread of a specific incI plasmid carrying bla CTX-M-1.  相似文献   

11.
The actual state of intestinal long-term colonization by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in healthy Japanese people remains unclear. Therefore, a total of 4,314 fecal samples were collected from 2,563 food handlers from January 2010 to December 2011. Approximately 0.1 g of each fecal sample was inoculated onto a MacConkey agar plate containing cefotaxime (1 μg/ml). The bacterial colonies that grew on each plate were checked for ESBL production by the double-disk synergy test, as recommended by the Clinical and Laboratory Standards Institute. The bacterial serotype, antimicrobial susceptibility, pulsotype, sequence type (ST), and ESBL genotype were checked, and the replicon types of plasmids harboring the ESBL gene were also determined after conjugation experiments. ESBL producers were recovered from 70 (3.1%) of 2,230 participants who were checked only once. On the other hand, ESBL producers were isolated at least once from 52 (15.6%) of 333 participants who were checked more than twice, and 13 of the 52 participants carried ESBL producers for from more than 3 months to up to 2 years. Fluoroquinolone (FQ)-resistant E. coli strains harboring blaCTX-M were repeatedly recovered from 11 of the 13 carriers of blaCTX-M-harboring E. coli. A genetically related FQ-resistant E. coli O25b:H4-ST131 isolate harboring blaCTX-M-27 was recovered from 4 of the 13 carriers for more than 6 months. Three FQ-resistant E. coli O1:H6-ST648 isolates that harbored blaCTX-M-15 or blaCTX-M-14 were recovered from 3 carriers. Moreover, multiple CTX-M-14- or CTX-M-15-producing E. coli isolates with different serotypes were recovered from 2 respective carriers. These findings predict a provable further spread of ESBL producers in both community and clinical settings.  相似文献   

12.
Extended-spectrum-beta-lactamase (ESBL)-producing, AmpC beta-lactamase-producing, and plasmid-mediated quinolone resistance (PMQR) gene-positive strains of Escherichia coli were investigated in wintering rooks (Corvus frugilegus) from eight European countries. Fecal samples (n = 1,073) from rooks wintering in the Czech Republic, France, Germany, Italy, Poland, Serbia, Spain, and Switzerland were examined. Resistant isolates obtained from selective cultivation were screened for ESBL, AmpC, and PMQR genes by PCR and sequencing. Pulsed-field gel electrophoresis and multilocus sequence typing were performed to reveal their clonal relatedness. In total, from the 1,073 samples, 152 (14%) cefotaxime-resistant E. coli isolates and 355 (33%) E. coli isolates with reduced susceptibility to ciprofloxacin were found. Eighty-two (54%) of these cefotaxime-resistant E. coli isolates carried the following ESBL genes: blaCTX-M-1 (n = 39 isolates), blaCTX-M-15 (n = 25), blaCTX-M-24 (n = 4), blaTEM-52 (n = 4), blaCTX-M-14 (n = 2), blaCTX-M-55 (n = 2), blaSHV-12 (n = 2), blaCTX-M-8 (n = 1), blaCTX-M-25 (n = 1), blaCTX-M-28 (n = 1), and an unspecified gene (n = 1). Forty-seven (31%) cefotaxime-resistant E. coli isolates carried the blaCMY-2 AmpC beta-lactamase gene. Sixty-two (17%) of the E. coli isolates with reduced susceptibility to ciprofloxacin were positive for the PMQR genes qnrS1 (n = 54), qnrB19 (n = 4), qnrS1 and qnrB19 (n = 2), qnrS2 (n = 1), and aac(6′)-Ib-cr (n = 1). Eleven isolates from the Czech Republic (n = 8) and Serbia (n = 3) were identified to be CTX-M-15-producing E. coli clone B2-O25b-ST131 isolates. Ninety-one different sequence types (STs) among 191 ESBL-producing, AmpC-producing, and PMQR gene-positive E. coli isolates were determined, with ST58 (n = 15), ST10 (n = 14), and ST131 (n = 12) predominating. The widespread occurrence of highly diverse ESBL- and AmpC-producing and PMQR gene-positive E. coli isolates, including the clinically important multiresistant ST69, ST95, ST117, ST131, and ST405 clones, was demonstrated in rooks wintering in various European countries.  相似文献   

13.

Background

Surgical-site infection is the most frequent health care-associated infection in the developing world, with a strikingly higher prevalence than in developed countries We studied the prevalence of resistance to antibiotics in Enterobacteriaceae isolates from surgical-site infections collected in three major tertiary care centres in Bangui, Central African Republic. We also studied the genetic basis for antibiotic resistance and the genetic background of third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae.

Results

Between April 2011 and April 2012, 195 patients with nosocomial surgical-site infections were consecutively recruited into the study at five surgical departments in three major tertiary care centres. Of the 165 bacterial isolates collected, most were Enterobacteriaceae (102/165, 61.8%). Of these, 65/102 (63.7%) were 3GC-R, which were characterized for resistance gene determinants and genetic background. The blaCTX-M-15 and aac(6′)-Ib-cr genes were detected in all strains, usually associated with qnr genes (98.5%). Escherichia coli, the most commonly recovered species (33/65, 50.8%), occurred in six different sequence types, including the pandemic B2-O25b-ST131 group (12/33, 36.4%). Resistance transfer was studied in one representative strain of the resistance gene content in each repetitive extragenic palindromic and enterobacterial repetitive intergenic consensus sequence-PCR banding pattern. Plasmids were characterized by PCR-based replicon typing and sub-typing schemes. In most isolates (18/27, 66.7%), blaCTX-M-15 genes were found in incompatibility groups F/F31:A4:B1 and F/F36:A4:B1 conjugative plasmids. Horizontal transfer of both plasmids is probably an important mechanism for the spread of blaCTX-M-15 among Enterobacteriaceae species and hospitals. The presence of sets of antibiotic resistance genes in these two plasmids indicates their capacity for gene rearrangement and their evolution into new variants.

Conclusions

Diverse modes are involved in transmission of resistance, plasmid dissemination probably playing a major role.  相似文献   

14.
Genes encoding extended-spectrum β-lactamase CTX-M-1 were detected in 12 Escherichia coli isolates recovered over a 7-month period from the ceca of healthy poultry in seven districts in France in 2005. Eleven of those strains were not clonally related and had a blaCTX-M-1 gene located on transferable plasmids of different sizes and structures.  相似文献   

15.
Extended-spectrum β-lactamase (ESBL)-producing Salmonella are one of the most important public health problems in developed countries. ESBL-producing Salmonella strains have been isolated from humans in Asian countries neighboring Japan, along with strains harboring the plasmid-mediated extended-spectrum cephalosporin (ESC)-resistance gene, ampC (pAmpC). However, only a few studies have investigated the prevalence of ESC-resistant Salmonella in chicken products in Japan, which are the main vehicle of Salmonella transmission. The aim of this study was to investigate the prevalence of ESBL-producing, pAmpC-harboring, or carbapenem-resistant Salmonella in chicken products in Japan. In total, 355 out of 779 (45.6%) chicken product samples collected from 1996–2010 contained Salmonella, resulting in 378 distinct isolates. Of these isolates, 373 were tested for resistance to ESCs, cephamycins, or carbapenems. Isolates that showed resistance to one or more of these antimicrobials were then examined by PCR and DNA sequence analysis for the presence of the blaCMY, blaCTX-M, blaTEM, and blaSHV resistance genes. Thirty-five resistant isolates were detected, including 26 isolates that contained pAmpC (blaCMY-2), and nine ESBL-producing isolates harboring blaCTX-M (n = 4, consisting of two blaCTX-M-2 and two blaCTX-M-15 genes), blaTEM (n = 4, consisting of one blaTEM-20 and three blaTEM-52 genes), and blaSHV (n = 1, blaSHV-12). All pAmpC-harboring and ESBL-producing Salmonella isolates were obtained from samples collected after 2005, and the percentage of resistant isolates increased significantly from 0% in 2004 to 27.9% in 2010 (P for trend = 0.006). This increase was caused in part by an increase in the number of Salmonella enterica subsp. enterica serovar Infantis strains harboring an approximately 280-kb plasmid containing blaCMY-2 in proximity to ISEcp1. The dissemination of ESC-resistant Salmonella containing plasmid-mediated blaCMY-2 in chicken products indicates the need for the development of continuous monitoring strategies in the interests of public health.  相似文献   

16.
The antibiotic resistance crisis continues to threaten human health. Better predictions of the evolution of antibiotic resistance genes could contribute to the design of more sustainable treatment strategies. However, comprehensive prediction of antibiotic resistance gene evolution via laboratory approaches remains challenging. By combining site-specific integration and high-throughput sequencing, we quantified relative growth under the respective selection of cefotaxime or ceftazidime selection in ∼23,000 Escherichia coli MG1655 strains that each carried a unique, single-copy variant of the extended-spectrum β-lactamase gene blaCTX-M-14 at the chromosomal att HK022 site. Significant synergistic pleiotropy was observed within four subgenic regions, suggesting key regions for the evolution of resistance to both antibiotics. Moreover, we propose PEARP and PEARR, two deep-learning models with strong clinical correlations, for the prospective and retrospective prediction of blaCTX-M-14 evolution, respectively. Single to quintuple mutations of blaCTX-M-14 predicted to confer resistance by PEARP were significantly enriched among the clinical isolates harboring blaCTX-M-14 variants, and the PEARR scores matched the minimal inhibitory concentrations obtained for the 31 intermediates in all hypothetical trajectories. Altogether, we conclude that the measurement of local fitness landscape enables prediction of the evolutionary trajectories of antibiotic resistance genes, which could be useful for a broad range of clinical applications, from resistance prediction to designing novel treatment strategies.  相似文献   

17.
The use of extended-spectrum cephalosporins in food animals has been suggested to increase the risk of spread of Enterobacteriaceae carrying extended-spectrum β-lactamases to humans. However, evidence that selection of extended-spectrum cephalosporin–resistant bacteria owing to the actual veterinary use of these drugs according to criteria established in cattle has not been demonstrated. In this study, we investigated the natural occurrence of cephalosporin-resistant Escherichia coli in dairy cattle following clinical application of ceftiofur. E. coli isolates were obtained from rectal samples of treated and untreated cattle (n = 20/group) cultured on deoxycholate-hydrogen sulfide-lactose agar in the presence or absence of ceftiofur. Eleven cefazoline-resistant isolates were obtained from two of the ceftiofur-treated cattle; no cefazoline-resistant isolates were found in untreated cattle. The cefazoline-resistant isolates had mutations in the chromosomal ampC promoter region and remained susceptible to ceftiofur. Eighteen extended-spectrum cephalosporin–resistant isolates from two ceftiofur-treated cows were obtained on ceftiofur-supplemented agar; no extended-spectrum cephalosporin–resistant isolates were obtained from untreated cattle. These extended-spectrum cephalosporin–resistant isolates possessed plasmid-mediated β-lactamase genes, including bla CTX-M-2 (9 isolates), bla CTX-M-14 (8 isolates), or bla CMY-2 (1 isolate); isolates possessing bla CTX-M-2 and bla CTX-M-14 were clonally related. These genes were located on self-transmissible plasmids. Our results suggest that appropriate veterinary use of ceftiofur did not trigger growth extended-spectrum cephalosporin–resistant E. coli in the bovine rectal flora; however, ceftiofur selection in vitro suggested that additional ceftiofur exposure enhanced selection for specific extended-spectrum cephalosporin–resistant β-lactamase-expressing E. coli clones  相似文献   

18.
The aim of this study was to evaluate the population dynamics of CTX-M-producing Enterobacteriaceae in individual pigs on a farm positive for CTX-M-14-producing Escherichia coli. Fecal samples were collected once around the farrowing time from five sows and four times along the production cycle from two of their respective offspring. Multiple colonies per sample were isolated on cefotaxime-supplemented MacConkey agar with or without prior enrichment, resulting in 98 isolates identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry and tested for blaCTX-M. CTX-M-positive isolates (n = 86) were typed by pulsed-field gel electrophoresis (PFGE). Plasmids harboring blaCTX-M were characterized in 22 representative isolates by replicon typing and restriction fragment length polymorphism. Based on the PFGE results, all individuals shed unrelated CTX-M-14-producing E. coli strains during the course of life. Concomitant shedding of CTX-M-2/97-producing Proteus mirabilis or Providencia rettgeri was observed in two sows and two offspring. At least two genetically unrelated CTX-M-producing E. coli strains were isolated from approximately one-fourth of the samples, with remarkable differences between isolates obtained by enrichment and direct plating. A clear decrease in strain diversity was observed after weaning. Dissemination of blaCTX-M-14 within the farm was attributed to horizontal transfer of an IncK plasmid that did not carry additional resistance genes and persisted in the absence of antimicrobial selective pressure. Assessment of strain diversity was shown to be influenced by the production stage from which samples were collected, as well as by the isolation method, providing useful information for the design and interpretation of future epidemiological studies of CTX-M-producing Enterobacteriaceae in pig farms.  相似文献   

19.

Background

The prevalence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) has increased recently. The aim of this study was to further characterise and to assess the occurrence of ESBL-EC in Riyadh, to use pulsed field gel electrophoresis (PFGE) typing to investigate the epidemiology of ESBL-EC and to determine the prevalence of ST131 in ESBL-EC.

Methods

A total of 152 E. coli isolates were collected at a tertiary hospital in Riyadh from September 2010 to June 2011. Genotypic and phenotypic methods were used to characterise ESBLs. PFGE was used to determine genetic relatedness. Detection of ST131 and CTX-M-like ESBLs was performed using real-time PCR.

Results

Of 152 strains, 31 were positive for ESBLs by phenotypic methods. The bla CTX-M-15 gene was highly prevalent (30/31 strains, 96.77%) among the 31 ESBL-positive E. coli strains. The bla CTX-M-27 gene was detected in one strain. Twenty (64.5%) out of 31 of ESBL-EC were ST131. PFGE revealed 29 different pulsotypes.

Conclusions

Our study documented the high prevalence of ESBLs in E. coli isolates, with CTX-M-15 as the predominant ESBL gene. ST131 clone producing CTX-M-15 has a major presence in our hospital. The high prevalence of CTX-M producers was not due to the spread of a single clone. To the best of our knowledge, this study represents the first report of CTX-M-15 and CTX-M-27 β-lactamases and the detection of the ST131 clone in Saudi E. coli isolates.  相似文献   

20.

Background

The study investigated the presence of CTX-M-15 type extended spectrum beta-lactamases (ESBL), compared their genetic arrangements and plasmid types in gram negative isolates of hospital and food origin in north-east India. From September 2013 to April 2014, a total of 252 consecutive, non-duplicate clinical isolates and 88 gram negative food isolates were selected. Phenotypic and molecular characterization of ESBL genes was performed. Presence of integrons and gene cassettes were analyzed by integrase and 59 base-element PCR respectively. The molecular environments surrounding bla CTX-M and plasmid types were investigated by PCR and PCR-based replicon typing respectively. Transformation was carried out to assess plasmid transfer. Southern blotting was conducted to localize the bla CTX-M-15 genes. DNA fingerprinting was performed by ERIC-PCR.

Results

Prevalence of ESBL was found to be 40.8% (103/252) in clinical and 31.8% (28/88) in food-borne isolates. Molecular characterization revealed the presence of 56.3% (58/103) and 53.5% (15/28) bla CTX-M-15 in clinical and food isolates respectively. Strains of clinical and food origin were non-clonal. Replicon typing revealed that IncI1 and IncFII plasmid were carrying bla CTX-M-15 in clinical and food isolates and were horizontally transferable. The ISEcp1 element was associated with bla CTX-M-15 in both clinical and food isolates.

Conclusions

The simultaneous presence of resistance determinants in non-clonal isolates of two different groups thus suggests that the microbiota of common food products consumed may serve as a reservoir for some of the drug resistance genes prevalent in human pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号