首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several strains of the family Rhizobiaceae were tested for their ability to degrade the phosphonate herbicide glyphosate (isopropylamine salt of N-phosphonomethylglycine). All organisms tested (seven Rhizobium meliloti strains, Rhizobium leguminosarum, Rhizobium galega, Rhizobium trifolii, Agrobacterium rhizogenes, and Agrobacterium tumefaciens) were able to grow on glyphosate as the sole source of phosphorus in the presence of the aromatic amino acids, although growth on glyphosate was not as fast as on Pi. These results suggest that glyphosate degradation ability is widespread in the family Rhizobiaceae. Uptake and metabolism of glyphosate were studied by using R. meliloti 1021. Sarcosine was found to be the immediate breakdown product, indicating that the initial cleavage of glyphosate was at the C—P bond. Therefore, glyphosate breakdown in R. meliloti 1021 is achieved by a C—P lyase activity.  相似文献   

2.

SUMMARY

After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses.  相似文献   

3.
Bacterial strains capable of utilizing methylphosphonic acid (MP) or glyphosate (GP) as the sole sources of phosphorus were isolated from soils contaminated with these organophosphonates. The strains isolated from MP-contaminated soils grew on MP and failed to grow on GP. One group of the isolates from GP-contaminated soils grew only on MP, while the other one grew on MP and GP. Strains Achromobacter sp. MPS 12 (VKM B-2694), MP degraders group, and Ochrobactrum anthropi GPK 3 (VKM B-2554D), GP degraders group, demonstrated the best degradative capabilities towards MP and GP, respectively, and were studied for the distribution of their organophosphonate catabolism systems. In Achromobacter sp. MPS 12, degradation of MP was catalyzed by C–P lyase incapable of degrading GP (C–P lyase I). Adaptation to growth on GP yielded the strain Achromobacter sp. MPS 12A, which retained its ability to degrade MP via C–P lyase I and was capable of degrading GP with formation of sarcosine, thus suggesting the involvement of a GP-specific C–P lyase II. O. anthropi GPK 3 also degraded MP via C–P lyase I, but degradation of GP in it was initiated by glyphosate oxidoreductase, which was followed by product transformation via the phosphonatase pathway.  相似文献   

4.
Thirty-four strains of Pseudomonas pseudomallei isolated from soil were selected for their ability to degrade the phosphonate herbicide glyphosate. All strains tested were able to grow on glyphosate as the only phosphorus source without the addition of aromatic amino acids. One of these strains, P. pseudomallei 22, showed 50% glyphosate degradation in 40 h in glyphosate medium. From a genomic library of this strain constructed in pUC19, we have isolated a plasmid carrying a 3.0-kb DNA fragment which confers to E. coli the ability to use glyphosate as a phosphorus source. This 3.0-kb DNA fragment from P. pseudomallei contained two open reading frames (glpA and glpB) which are involved in glyphosate tolerance and in the modification of glyphosate to a substrate of the Escherichia coli carbon-phosphorus lyase. glpA exhibited significant homology with the E. coli hygromycin phosphotransferase gene. It was also found that the hygromycin phosphotransferase genes from both P. pseudomallei and E. coli confer tolerance to glyphosate.  相似文献   

5.
On the basis of mutational analysis, the genes for phosphonate uptake and degradation in Escherichia coli were shown to be organized in a 10.9-kb operon of 14 genes (named phnC to phnP) and induced by phosphate (Pi) starvation [Metcalf and Wanner (1993) J Bacteriol 175: 3430–3442]. The repression of phosphonate utilization by Pi has hindered both the biochemical characterization of the carbon-phosphorus (C-P) lyase activity and the development of improved methods for phosphonate biodegradation in biotechnology. We have cloned the genes phnG to phnP (associated with C-P lyase activity) with the lac promoter to provide expression of C-P lyase in the presence of Pi. A number of strains lacking portions of the phn operon have been constructed. In vivo complementation of the strains, in which phnC to phnP (including both Pn transport and catalysis genes) or phnH to phnP (including only catalysis genes) was deleted, with plasmids carrying various fragments of the phn operon revealed that the expression of phnC-phnP gene products is essential to restore growth on minimal medium with phosphonate as the sole phosphorus source, while phnG-phnM gene products are required for C-P lyase activity as assessed by in vivo methane production from methylphosphonic acid. The minimum size of the DNA required for the whole-cell C-P lyase activity has been determined to be a 5.8-kb fragment, encompassing the phnG to phnM genes. Therefore, there is no requirement for the phnCDE-encoded phosphonate transport system, suggesting that cleavage of the C-P bond may occur on the outer surface of the inner membrane of E. coli cells, releasing the carbon moiety into the periplasm. These data are in agreement with the observation that phosphonates cannot serve as the carbon source for E.␣coli growth. Received: 23 September 1997 / Received revision: 5 January 1998 / Accepted: 24 January 1998  相似文献   

6.
Clinical isolates of Coccidioides spp. and Blastomyces dermatitidis can be identified by chemiluminescent DNA probes and PCR assays targeting multicopy genes. In fixed tissue samples, cells of the two fungi are specified by in situ hybridization and PCR assays targeting 18S rDNA but sequencing of the products is mandatory. Nested PCR assays targeting genes encoding species- or genus-specific proteins like proline rich antigen of Coccidioides spp. and B. dermatitidis adhesin facilitate amplification of specific DNA from fixed tissue samples. The value of DNA amplification from native specimens of suspected cases of coccidioidomycosis or blastomycosis still needs to be determined.  相似文献   

7.
The aim of this study was to evaluate how the in situ exposure of a Danish subsurface aquifer to phenoxy acid herbicides at low concentrations (<40 μg l−1) changes the microbial community composition. Sediment and groundwater samples were collected inside and outside the herbicide-exposed area and were analyzed for the presence of general microbial populations, Pseudomonas bacteria, and specific phenoxy acid degraders. Both culture-dependent and culture-independent methods were applied. The abundance of microbial phenoxy acid degraders (100 to 104 g−1 sediment) was determined by most probable number assays, and their presence was only detected in herbicide-exposed sediments. Similarly, PCR analysis showed that the 2,4-dichlorophenoxyacetic acid degradation pathway genes tfdA and tfdB (102 to 103 gene copies g−1 sediment) were only detected in sediments from contaminated areas of the aquifer. PCR-restriction fragment length polymorphism measurements demonstrated the presence of different populations of tfd genes, suggesting that the in situ herbicide degradation was caused by the activity of a heterogeneous population of phenoxy acid degraders. The number of Pseudomonas bacteria measured by either PCR or plating on selective agar media was higher in sediments subjected to high levels of phenoxy acid. Furthermore, high numbers of CFU compared to direct counting of 4′,6-diamidino-2-phenylindole-stained cells in the microscope suggested an increased culturability of the indigenous microbial communities from acclimated sediments. The findings of this study demonstrate that continuous exposure to low herbicide concentrations can markedly change the bacterial community composition of a subsurface aquifer.  相似文献   

8.
《Microbiological research》2014,169(1):99-105
Plant-growth-promoting rhizobacteria exert beneficial effects on plants through their capacity for nitrogen fixation, phytohormone production, phosphate solubilization, and improvement of the water and mineral status of plants. We suggested that these bacteria may also have the potential to express degradative activity toward glyphosate, a commonly used organophosphorus herbicide. In this study, 10 strains resistant to a 10 mM concentration of glyphosate were isolated from the rhizoplane of various plants. Five of these strains – Alcaligenes sp. K1, Comamonas sp. K4, Azomonas sp. K5, Pseudomonas sp. K3, and Enterobacter cloacae K7 – possessed a number of associative traits, including fixation of atmospheric nitrogen, solubilization of phosphates, and synthesis of the phytohormone indole-3-acetic acid. One strain, E. cloacae K7, could utilize glyphosate as a source of P. Gas–liquid chromatography showed that E. cloacae growth correlated with a decline in herbicide content in the culture medium (40% of the initial 5 mM content), with no glyphosate accumulating inside the cells. Thin-layer chromatography analysis of the intermediate metabolites of glyphosate degradation found that E. cloacae K7 had a C–P lyase activity and degraded glyphosate to give sarcosine, which was then oxidized to glycine. In addition, strain K7 colonized the roots of common sunflower (Helianthus annuus L.) and sugar sorghum (Sorghum saccharatum Pers.), promoting the growth and development of sunflower seedlings. Our findings extend current knowledge of glyphosate-degrading rhizosphere bacteria and may be useful for developing a biotechnology for the cleanup and restoration of glyphosate-polluted soils.  相似文献   

9.
The aim of this study was to estimate virulence potential of Salmonella enterica strains colonizing the gut of free-living sand lizards (Lacerta agilis L.). The strains belonged to three Salmonella serovars: Abony, Schleissheim, and Telhashomer. Adhesion and invasion abilities of the strains were determined in quantitative assays using the gentamicin protection method. Induction of apoptosis was assessed using HeLa cell monolayers. PCR assays were used for detection of 26 virulence genes localised within mobile elements: pathogenicity islands, virulence plasmids, and prophage sequences. In vitro studies revealed that all strains had adhesion and invasion abilities to human epithelial cells. The isolates were cytotoxic and induced apoptosis of the cells. The serovars differed in the number of virulence-associated genes: up to 18 genes were present in Salmonella Schleissheim, 17 in Salmonella Abony, whereas as few as six genes were found in Salmonella Telhashomer. Generally, Salmonella Abony and Salmonella Schleissheim did not differ much in gene content connected with the presence SPI-1 to -5. All of the strains lacked genes localised within bacteriophages and plasmids. The presence of virulence-associated genes and in vitro pathogenicity assays suggest that Salmonella sp. strains originating from autochthonous, free-living lizards can potentially infect and cause disease in humans.  相似文献   

10.
Glyphosate or Roundup® is the most extensively used herbicide for broad-spectrum control of weeds. Glyphosate inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants. Applying the staggered extension process, we randomly mutated and recombined the aroA genes of Salmonella typhimurium and Escherichia coli to obtain four variants that exhibit significantly enhanced tolerance to glyphosate. All four mutants are chimeras of the two parental genes and, in addition, three of them carry one or more de novo point mutations. None of the amino acid substitutions in the mutants was in a position previously known to be important for catalysis or substrate binding. Kinetic analysis of EPSPS activity from these mutants indicated that the tolerance was attributed to a 2–10-fold increased specific activity, 0.4–8-fold reduced affinity to glyphosate, and 2.5–19-fold decreased Km for phosphoenolpyruvate. Such mutants will be instrumental for the structural and function study of the enzyme and for the generation of transgenic crops resistant to the herbicide.  相似文献   

11.
The degradation of the phosphonate herbicide glyphosate (N-phosphonomethylglycine) by four taxonomically distinct microorganisms was studied in vivo in whole cell system using phosphorus nuclear magnetic spectroscopy (31P NMR). The time-course of glyphosate metabolization in dense cell cultures was followed by means of 31P NMR up to 21 days after the addition. The results obtained by this non-invasive way confirmed that the cells of Spirulina platensis and Streptomyces lusitanus biodegrade herbicide. Moreover, phosphorus starvation influenced the rate of glyphosate degradation by S. platensis. On the other hand, the results of similar measurements in the cultures of green algae Chlorella vulgaris showed that this aquatic plant, however growing in the medium containing 1 mM of N-phosphonomethylglycine, did not seem to posses the ability of its biodegradation. Additionally, the use of this method allowed us to find the new fungal strain Fusarium dimerum, which is able to biodegrade and utilize the glyphosate as the sole source of phosphorus. The results of our studies on usefulness of in vivo 31P NMR for tracing glyphosate degradation in whole cell systems revealed that this non-invasive, one-step method, might be considered as a valuable tool in environmental biotechnology of organophosphonate xenobiotics.  相似文献   

12.
A total of 14 Azotobacter strains were isolated from different paddy cultivating soils with pH ranging from 6.5 to 9.5 by using serial dilution agar plate method. The strains were Gram negative, rod shaped, cyst forming and developed brown to black colored colonies, which were glistening, smooth, slimy on Ashby’s agar plates. Biochemically they were positive for biochemical tests namely, indole production, citrate, catalase, carbohydrate fermentation and Voges–Proskauer test. Further, sequence analysis of PCR amplicons obtained from these cultures revealed the presence of five different Azotobacter species viz., Azotobacter vinelandii, Azotobacter salinestris, Azotobacter sp., Azotobacter nigricans subsp. nigricans and Azotobacter tropicalis. Phylogenetically these strains were grouped into two distinct clusters. These strains were tested for their ability to grow on a media containing four different pesticides such as pendimethalin, glyphosate, chloropyrifos and phorate, which are commonly used for the paddy. Out of 14 strains tested, 13 strains were able to grow on a media containing herbicides such as pendimethalin, glyphosate and insecticides like chloropyrifos and phorate. However, five Azotobacter strains were able to grow at higher concentration of 5 % pesticides, without affecting their growth rate. Further, the effect of pesticides on the indole acetic acid (IAA) production by Azotobacter strains was also estimated. Azotobacter-16 strain was found to produce 34.4 μg ml?l of IAA in a media supplemented with 1,000 mg of tryptophan and 5 % of pendimethalin. Present study reveals that species of Azotobacter are able to grow and survive in the presence of pesticides and no significant effects were observed on the metabolic activities of Azotobacter species.  相似文献   

13.
The present study is an attempt to investigate the presence of Naegleria fowleri in Indian population. A total of 307 patients were enrolled and water samples were collected from both residential and surrounding areas of patients found positive for N. fowleri. The different species of Naegleria from both clinical and water samples were identified taxonomically. Recommended microbiological conventional techniques were used to identify different Naegleria stages and other free-living amoebae from the samples. PCR assays, using both genus and species specific primers were also optimized. None of the samples were positive by conventional microbiological examinations. However, PCR assays detected only three samples positive for N. fowleri. A total of 10 water bodies (ponds), that were used by Naegleria positive patients were examined. The pH and temperature of the water samples collected from water bodies ranged between 5.6–7.2 and 25–32 °C respectively. Among all the 10 water samples tested, four samples were positive for genus Naegleria by PCR assay, of which only two samples, showed positive amplification for N. fowleri. The sequence analysis of N. fowleri strain belonged to genotype II.  相似文献   

14.
In this study, a total of 104 strains of lactic acid bacteria (LAB) were tested for the presence of genes encoding enzymes related to peptide and amino acid utilization in winemaking. Primers for PCR amplifications were designed from conserved regions of genes isolated from various LAB species belonging to Lactobacillus, Leuconostoc, Pediococcus and Oenococcus. As expected, PCR assays generated single DNA fragments of the correct sizes. The PCR detection results revealed that the genes tested for were distributed across the different species of lactobacilli and pediococci investigated. However, some strains of Pediococcus did not possess certain enzyme-encoding genes, such as pepO, pepT, metK and gshR. In addition, pepX and metB/metC were not detected in any of the Pediococcus strains tested. The Lactobacillus plantarum IWBT B349 strain was selected for gene sequence verification. The results of the comparative sequence analysis demonstrated that nucleotide gene sequences of this strain are highly identical to those of other L. plantarum strains (WCFS1, JDM1 and ATCC 14917) published in GenBank database. Neighbour-joining trees based on the pepC and pepM gene sequences were also constructed, and these indicated that there was a similar trend of clustering of bacterial species between the two genes. Altogether, the results presented here indicate that lactobacilli and pediococci strains of wine origin have the genetic potential to degrade peptides and sulphur-containing amino acids during vinification.  相似文献   

15.
16.
The Escherichia coli O45 O-antigen gene cluster of strain O45:H2 96-3285 was sequenced, and conventional (singleplex), multiplex, and real-time PCR assays were designed to amplify regions in the wzx (O-antigen flippase) and wzy (O-antigen polymerase) genes. In addition, PCR assays targeting the E. coli O55 wzx and wzy genes were designed based on previously published sequences. PCR assays targeting E. coli O45 showed 100% specificity for this serogroup, whereas by PCR assays specific for E. coli O55, 97/102 strains serotyped as E. coli O55 were positive for wzx and 98/102 for wzy. Multiplex PCR assays targeting the E. coli O45 and the E. coli O55 wzx and wzy genes were used to detect the organisms in fecal samples spiked at levels of 106 and 108 CFU/0.2 g feces. Thus, the PCR assays can be used to detect and identify E. coli serogroups O45 and O55.  相似文献   

17.

Background

The prosperity of Hallstatt (Salzkammergut region, Austria) is based on the richness of salt in the surrounding mountains and salt mining, which is documented as far back as 1500 years B.C. Substantial archaeological evidence of Bronze and Iron Age salt mining has been discovered, with a wooden staircase (1108 B.C.) being one of the most impressive and well preserved finds. However, after its discovery, fungal mycelia have been observed on the surface of the staircase, most probably due to airborne contamination after its find.

Objective

As a basis for the further preservation of this valuable object, the active micro-flora was examined to investigate the presence of potentially biodegradative microorganisms.

Results

Most of the strains isolated from the staircase showed to be halotolerant and halophilic microorganisms, due to the saline environment of the mine. Results derived from culture-dependent assays revealed a high fungal diversity, including both halotolerant and halophilic fungi, the most dominant strains being members of the genus Phialosimplex (synonym: Aspergillus). Additionally, some typical cellulose degraders, namely Stachybotrys sp. and Cladosporium sp. were detected. Numerous bacterial strains were isolated and identified as members of 12 different genera, most of them being moderately halophilic species. The most dominant isolates affiliated with species of the genera Halovibrio and Marinococcus. Halophilic archaea were also isolated and identified as species of the genera Halococcus and Halorubrum. Molecular analyses complemented the cultivation assays, enabling the identification of some uncultivable archaea of the genera Halolamina, Haloplanus and Halobacterium. Results derived from fungi and bacteria supported those obtained by cultivation methods, exhibiting the same dominant members in the communities.

Conclusion

The results clearly showed the presence of some cellulose degraders that may become active if the requirements for growth and the environmental conditions turn suitable; therefore, these microorganisms must be regarded as a threat to the wood.  相似文献   

18.
The chemical synthesis of labelled 1-desoxy-D,L-sphinganine 1-phosphonate has been elaborated. This compound is an analog of sphinganine 1-phosphate, a naturally occurring intermediate in the biological degradation of long chain bases.The phosphonate is highly toxic when administered intravenously due to its hemolytic effect. The microsomal sphingosine 1-phosphate lyase(aldolase) cleaves [3-3H] 1-desoxysphinganine 1-phosphonate to [1-3H] hexadecanal and aminoethyl phosphonate like sphinganine 1-phosphate however at a reduced rate. The phosphonate is a competitive inhibitor of the lyase (aldolase). Ki has been determined. The molecular dimensions of the phosphonate have been discussed with reference to the aldolase mechanism and known properties of the enzyme.  相似文献   

19.
Phylogenetic interrelation between 40 strains of the Bacillus cereus group has been established using BcREP fingerprinting. The PCR method has shown that the frequency of occurrence of the genes of cytotoxin K (cytK) and hemolysin II (hlyII) is 61% and 56%, respectively, and the gene of the hemolysin II regulator (hlyIIR) occurs together with hlyII. Comparison of the results of fingerprinting, PCR, and RFLP of the toxin genes showed that bacteria with the hlyII + and cytK + genotypes did not form separate clusters. However, microorganisms with the similar fingerprints were shown to have toxin genes of the same type. The proposed variant of RFLP analysis made it possible to clearly distinguish between the cytK1 and cytK2 genes. Twenty-three strains having the cytK genes carried no cytK1 dangerous for mammals. Additionally, the entire collection of microorganisms was tested for the ability to grow at 4°C. This property was revealed for five strains, which should most likely be classified as B. weihenstephanensis. Two of the five psychrotolerant microorganisms carried the hemolysin II gene variant of the same type according to RFLP. None of the five strains had the cytK gene. These strains did not form close groups upon clustering by the applied method of Bc-REP fingerprints.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号