首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The onion thrips Thrips tabaci is one of the most important pests of greenhouse and open-field broccoli, onion and other crops. However, the current strategy of using synthetic pesticides for its control is inadequate and unsustainable, leading to a growing interest in novel and effective biological control alternatives such as entomopathogenic fungi. Among 20 isolates of Beauveria bassiana tested for virulence against T. tabaci in laboratory bioassays, we found strain SZ-26 as the most potent, causing 83–100% mortality in adults at 1×107 mL?1conidia after 4–7 days. Further experiments in greenhouses showed the strain SZ-26 significantly lowered the numbers of adult and larval stages.  相似文献   

2.
The genetic diversity of symbiotic Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes was examined by a restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes (rDNAs). A total of 117 strains were studied, most of which were isolated from the Caribbean basin after an exhaustive soil sampling. The collection consisted of 77 isolates recovered from entomopathogenic nematodes in 14 Caribbean islands and of 40 reference strains belonging to Xenorhabdus and Photorhabdus spp. collected at various localities worldwide. Thirty distinctive 16S rDNA genotypes were identified, and cluster analysis was used to distinguish the genus Xenorhabdus from the genus Photorhabdus. The genus Xenorhabdus appears more diverse than the genus Photorhabdus, and for both genera the bacterial genotype diversity is in congruence with the host-nematode taxonomy. The occurrence of symbiotic bacterial genotypes was related to the ecological distribution of host nematodes.  相似文献   

3.
Prior research indicated the ability of concentrated metabolites from Xenorhabdus spp. and Photorhabdus spp. to suppress a variety of peach and pecan diseases in vitro, and on detached pecan leaves or terminals. In the current study, our objectives were to (1) determine if bacterial broths (in addition to concentrated metabolites tested previously) have suppressive ability and (2) determine if metabolites or bacterial broths are active in a soil medium. In laboratory studies, two pathogens of pecan (Fusicladium effusum and Phytophthora cactorum) and one peach pathogen (Armillaria tabescens) were tested for susceptibility to Xenorhabdus bovienii (SN) and Photorhabdus luminescens (VS) bacterial broths or concentrated metabolites on three different substrates. Treatments were applied to lesions of F. effusum on terminals to ascertain any suppressive effect on sporulation, to A. tabescens in soil to determine effect on survival of mycelia, and to lesions caused by P. cactorum on pecan leaf surfaces to assess any reduction in lesion development. Acetone (the metabolite solvent), un-inoculated media (tryptic soy broth) and water were included as controls. The X. bovienii metabolite treatment was as efficacious as a commercial fungicide (fenbuconazole) in reducing sporulation of F. effusum on pecan terminals. The P. luminescens metabolite treatment also caused reduced sporulation relative to water and acetone controls but bacterial broths had no effect. In contrast, all bacterial broth and metabolite treatments suppressed lesion growth caused by P. cactorum (measured on detached leaves maintained on agar). However, in soil, only the P. luminescens metabolite treatment was suppressive to A. tabescens (this is the first report of Photorhabdus or Xenorhabdus toxicity to Armillaria spp.). This study provides a basis for further research on the use of Xenorhabdus and Photorhabdus metabolites or bacterial broth for suppression of pecan and peach diseases.  相似文献   

4.
Xenorhabdus and Photorhabdus species are entomopathogenic bacteria with a wide insect host range, that belong to the family Enterobacteriaceae. Xenorhabdus and Photorhabdus species symbiotically associate with nematodes of the families Steinernematidae and Heterorhabditidae respectively. The factor(s) determining the symbiotic interaction between nematodes and bacteria are yet to be identified. Xenorhabdus and Photorhabdus species exist in two main phenotypic forms, a phenomenon known as phase variation. The phase I (or primary form) varies from phase II (or secondary form) in certain physiological and morphological characteristics. There is no variation in the DNA integrity of phase I and phase II and this supports epigenetic regulatory mechanism in phase variation. Certain pathogenic determinants such as pili, lipopolysaccharides and toxins contribute to the pathogenicity of Xenorhabdus and Photorhabdus species, and both appear to be equally pathogenic to insects. The observed similarity in their virulence to insect hosts may reflect possible in vivo conversion of phase II to phase I, however the host cellular invasion and virulence is yet to be properly understood. The virulence of Xenorhabdus variants varies among insects apparently due to factors which include the feeding habits of the insects. The molecular mechanism and biological significance of phase variation are presently unknown.  相似文献   

5.
《Journal of Asia》2020,23(2):449-457
Xenorhabdus and Photorhabdus are entomopathogenic bacteria that can induce immunosuppression against target insects by suppressing eicosanoid biosynthesis, leading to fatal septicemia. These bacteria can synthesize and release secondary metabolites such as benzylideneacetone (BZA) and other phenylethylamide compounds that can inhibit phospholipase A2 (PLA2) and shut down eicosanoid biosynthesis. However, insecticidal activities of these bacterial metabolites remain unclear. Thus, the objective of this study was to assess cytotoxicities of BZA and seven other bacterial metabolites to insect cells. These eight bacterial metabolites exhibited significant cytotoxicities against an insect cell line Sf9 at micromolar range. Especially, BZA and cPY were highly potent at low micromolar range. When these eight bacterial metabolites were injected to hemocoels of Spodoptera exigua larvae, they significantly decreased total count of hemocytes. In Sf9 cell line and hemocytes, these bacterial metabolites induced cell membrane blebbings, apoptotic vesicles, and genomic DNA fragmentation. Terminal deoxyribonucleotidyl transferase nick end translation assay showed that these bacterial metabolites caused significant DNA breakages in cells in a dose-dependent manner. However, a pan caspase inhibitor treatment significantly rescued the cell death induced by these bacterial metabolites. Cytotoxicities of these bacterial metabolites were highly correlated with their insecticidal activities. These results indicate that the insecticidal activities of the bacterial metabolites may be induced by their apoptotic activities against hemocytes and other insect cells. Taken together, these results suggest that phenylethylamide compounds might have potential as novel insecticides.  相似文献   

6.
Xenorhabdus and Photorhabdus spp. are bacterial symbionts of entomopathogenic nematodes (EPNs). In this study, we isolated and characterized Xenorhabdus and Photorhabdus spp. from across Thailand together with their associated nematode symbionts, and characterized their phylogenetic diversity. EPNs were isolated from soil samples using a Galleria-baiting technique. Bacteria from EPNs were cultured and genotyped based on recA sequence. The nematodes were identified based on sequences of 28S rDNA and internal transcribed spacer regions. A total of 795 soil samples were collected from 159 sites in 13 provinces across Thailand. A total of 126 EPNs isolated from samples taken from 10 provinces were positive for Xenorhabdus (n = 69) or Photorhabdus spp. (n = 57). Phylogenetic analysis separated the 69 Xenorhabdus isolates into 4 groups. Groups 1, 2 and 3 consisting of 52, 13 and 1 isolates related to X. stockiae, and group 4 consisting of 3 isolates related to X. miraniensis. The EPN host for isolates related to X. stockiae was S. websteri, and for X. miraniensis was S. khoisanae. The Photorhabdus species were identified as P. luminescens (n = 56) and P. asymbiotica (n = 1). Phylogenenic analysis divided P. luminescens into five groups. Groups 1 and 2 consisted of 45 and 8 isolates defined as subspecies hainanensis and akhurstii, respectively. One isolate was related to hainanensis and akhurstii, two isolates were related to laumondii, and one isolate was the pathogenic species P. asymbiotica subsp. australis. H. indica was the major EPN host for Photorhabdus. This study reveals the genetic diversity of Xenorhabdus and Photorhabdus spp. and describes new associations between EPNs and their bacterial symbionts in Thailand.  相似文献   

7.
Abstract

Our objective was to determine the suppressive abilities of bacterial metabolites derived from Xenorhabdus and Photorhabdus spp. on Glomerella cingulata, Phomopsis sp., Phytophthora cactorum, and Fusicladosporium effusum, which are fungal or oomycete pathogens of pecan, and Monilinia fructicola, a fungal pathogen of peach. In the first set of in vitro assays, when metabolites were compared based on initial bacterial cell count, X. bovienii (SN) metabolites generally exhibited the greatest suppression of phytopathogens and Xenorhabdus sp. (355) the least with Photorhabdus luminescens (Hb) and Xenorhabdus nematophila (All) being intermediate. In a second set of in vitro assays, in which metabolites were compared at 50 mg per ml acetone, P. luminescens (VS) exhibited greater suppression than P. luminescens (Hb), Photorhabdus sp. (MX4), X. bovienii (SN), and Xenorhabdus sp. (3 – 8b). In in vivo tests, 6 or 12% dilutions of X. bovienii (SN) or P. luminescens (Hb) metabolites caused 90 – 100% suppression of P. cactorum lesions on pecan leaves with only slight phytotoxicity. No phytotoxic effects were observed in detached peach leaves at dilutions up to 25%. Metabolite treatments, derived from X. bovienii (SN) and P. luminescens (Hb), were also tested for suppression of F. effusum sporulation in detached pecan shoots. Reductions in sporulation caused by bacterial metabolites were similar to those following treatment with two chemical fungicides, dodine and fenbuconazole; a third chemical triphenyltin hydroxide had no effect. Further research is warranted to determine if fungal or oomycete incited diseases in pecan and peach can be controlled with metabolites of Xenorhabdus spp. and Photorhabdus spp.  相似文献   

8.
Keeping in view the staid health and ecological apprehensions coupled with the use of pesticides, entomopathogenic nematodes have the potential to supersede pesticides for the management of various pests. Brinjal plants are the most seriously affected by Meloidogyne incognita. The main objective of this study was to evaluate the persistence effectiveness of bacterial cell suspensions (Xenorhabdus and Photorhabdus spp.) and their culture filtrates in soil up to 7, 14 and 21?days and their response against M. incognita as a source of biological control for nematode management. In a life cycle study, Xenorhabdus and Photorhabdus spp., isolated from Steinernema asiaticum and Heterorhabditis bacteriophora, were proved more effective in influencing the life cycle of RKNs. It was found that all the treatments of bacterial cell suspensions and their culture filtrates at all persistent times proved effective in reducing the number of females and egg masses as compared to control. It delayed penetration of nematode juveniles (J2) into host roots. It was concluded that persistence effectiveness of bacteria and their metabolites decreased in soil with time.  相似文献   

9.
Xenorhabdus spp. and Photorhabdus spp., entomopathogenic bacteria symbiotically associated with nematodes of the families Steinernematidae and Heterorhabditidae, respectively, were shown to produce different lipases when they were grown on suitable nutrient agar. Substrate specificity studies showed that Photorhabdus spp. exhibited a broad lipase activity, while most of the Xenorhabdus spp. secreted a specific lecithinase. Xenorhabdus spp. occur spontaneously in two variants, phase I and phase II. Only the phase I variants of Xenorhabdus nematophilus and Xenorhabdus bovienii strains produced lecithinase activity when the bacteria were grown on a solid lecithin medium (0.01% lecithin nutrient agar; 24 h of growth). Five enzymatic isomers responsible for this activity were separated from the supernatant of a X. nematophilus F1 culture in two chromatographic steps, cation-exchange chromatography and C18 reverse-phase chromatography. The substrate specificity of the X. nematophilus F1 lecithinase suggested that a phospholipase C preferentially active on phosphatidylcholine could be isolated. The entomotoxic properties of each isomer were tested by injection into the hemocoels of insect larvae. None of the isomers exhibited toxicity with the insects tested, Locusta migratoria, Galleria mellonella, Spodoptera littoralis, and Manduca sexta. The possible role of lecithinase as either a virulence factor or a symbiotic factor is discussed.  相似文献   

10.
Stemphylium leaf blight caused by Stemphylium vesicarium and onion thrips (Thrips tabaci) are two common causes of leaf damage in onion production. Onion thrips is known to interact synergistically with pathogens to exacerbate plant disease. However, the potential relationship between onion thrips and Stemphylium leaf blight is unknown. In a series of controlled laboratory and field trials, the relationship between thrips feeding and movement on the development and severity of Stemphylium leaf blight were examined. In laboratory assays, onions (“Avalon” and “Ailsa Craig”) with varying levels of thrips feeding damage were inoculated with S. vesicarium. Pathogen colonisation and leaf dieback were measured after 2 weeks. In pathogen transfer assays, thrips were exposed to S. vesicarium conidia, transferred to onion and leaf disease development was monitored. In field trials, insecticide use was examined as a potential indirect means to reduce Stemphylium leaf blight disease and pathogen colonisation by reducing thrips damage. Results from laboratory trials revealed that a reduction in thrips feeding decreased S. vesicarium colonisation of onion leaves by 2.3–2.9 times, and decreased leaf dieback by 40–50%. Additionally, onion thrips were capable of transferring S. vesicarium conidia to onion plants (albeit at a low frequency of 2–14% of plants inoculated). In field trials, the symptoms and colonisation of Stemphylium leaf blight were reduced by 27 and 17%, respectively with the use of insecticide to control thrips. These results suggest that onion thrips may play a significant role in the development of Stemphylium leaf blight, and thrips control may reduce disease in commercial onion fields.  相似文献   

11.
Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant–herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.  相似文献   

12.
Onion thrips, Thrips tabaci Lindeman, is the primary pest of onion, which is grown in either large-scale, monoculture systems surrounded by other onion fields, or in small-scale systems surrounded by multiple vegetable crops. In 2011 and 2012, populations of insect predators and their prey, T. tabaci, were assessed weekly in onion fields in both cropping systems. Insect predator taxa (eight species representing five families) were similar in onions grown in both systems and the most commonly occurring predators were from the family Aeolothripidae. Seasonal population dynamics of predators and T. tabaci followed similar trends within both cropping systems and tended to peak in late July and early August. Predator abundance was low in both systems, but predator abundance was nearly 2.5 to 13 times greater in onion fields in the small-scale system. T. tabaci abundance often positively predicted predator abundance in both cropping systems.  相似文献   

13.

Background

Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity.

Results

We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99 % sequence identity in rDNA sequence and orthology across 85.6 % of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8 %) were present in Serratia while 33 (84.6 %) and 35 (89 %) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively.

Conclusion

The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result – killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1697-8) contains supplementary material, which is available to authorized users.  相似文献   

14.
As a comparison to a similar study on Photorhabdus strains, 15 Xenorhabdus bacterial strains and secondary phenotypic variants of two strains were screened for proteolytic activity by five detection methods. Although the number and intensity of proteolytic activities were different, every strain was positive for proteolytic activity by several tests. Zymography following native PAGE detected two groups of activities with different substrate affinities and a higher and lower electrophoretic mobility that were distinguished as activity 1 and 2, respectively. Zymography following SDS-PAGE resolved three activities, which were provisionally named proteases A, B, and C. Only protease B, an ∼55-kDa enzyme, was produced by every strain. This enzyme exhibited higher affinity to the gelatin substrate than to the casein substrate. Of the chromogenic substrates used, three were hydrolyzed: furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY), Fua-LGPA (LGPA is Leu-Gly-Pro-Ala) (a substrate for collagen peptidases), and succinyl-Ala-Ala-Pro-Phe-thiobenzyl (Succ-AAPF-SBzl). All but the Fua-LGPA-ase activity seemed to be from secreted enzymes. According to their substrate preference profiles and inhibitor sensitivities, at least six such proteolytic enzymes could be distinguished in the culture medium of Xenorhabdus strains. The proteolytic enzyme that was secreted the earliest, protease B and the Succ-AAPF-SBzl-hydrolyzing enzyme, appeared from the early logarithmic phase of growth. Protease B could also be detected in the hemolymph of Xenorhabdus-infected Galleria mellonella larvae from 15 h postinfection. The purified protease B hydrolyzed in vitro seven proteins in the hemolymph of Manduca sexta that were also cleaved by PrtA peptidase from Photorhabdus. The N-terminal sequence of protease B showed similarity to a 55-kDa serralysin type metalloprotease in Xenorhabdus nematophila, which had been identified as an orthologue of Photorhabdus PrtA peptidase.Xenorhabdus and Photorhabdus bacteria are highly virulent, fatal pathogens for insects. Phylogenetically, they are sister genera in the family Enterobacteriaceae (3, 4). There are some differences between Xenorhabdus and Photorhabdus in their biology (e.g., light production), and they also differ in their interaction with their symbiotic nematode partners, which are in the Steinernematidae and Heterorhabditidae genera, respectively (8, 9). At the same time, they also have several properties in common. For example, due to their similar strategy of infection, their entrance into the hemocoel is absolutely dependent on the invasion of insects by their symbiotic nematode partners. An interesting feature of both genera is that they have two phenotypic (form) variants, primary and secondary (9). The primary form is natural, while the secondary form can be observed (generated) mostly in the laboratory. They differ in, for example, antibiotic production, outer membrane proteins, and cell surface structures (fimbriae and flagellae [23], symbiotic capabilities with nematode partners, and exoenzyme production [9]). The secondary form variants were found, with nonbiochemical detection methods, to produce less or no proteolytic activity compared to the primary phenotypic variants (see references 9 and 23 and references therein). The high pathogenicity makes Xenorhabdus and Photorhabdus good model organisms of infection, which can be exploited—by studying the function of their virulence factors—for the investigation of the immune system of insects and the mechanisms the pathogens use to cope with the immune defense of hosts. The comparative analysis of these bacterial partners provides an opportunity to study the question of how similar the infection mechanisms can be at the molecular level of two evolutionarily different insect pathogen bacterium-nematode complexes that, at the same time, have similar infection strategies.Of the virulence factors, we have been interested in secreted proteases that may be used by the pathogens during the first stage of infection in the penetration of the tissues of host or in the suppression of its immune response. The secretion and biochemistry of these enzymes are better studied in Photorhabdus, where four secreted proteases could be detected in a screen of 20 strains by a combination of five methods (15). The earliest secreted Photorhabdus protease is PrtA peptidase, a metzincin in the M10B family of serralysins. The others are PhpC (Photorhabdus protease C), which belongs to the M4 metallopeptidase family of thermolysin-like proteases, OpdA, a collagen peptidase in the family of thimet oligopeptidases and PhpD, a furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY)-cleaving enzyme, the identity of which is still unknown. In contrast, although a number of Xenorhabdus strains were tested for proteolytic activity with simple bacteriological plate assays (2, 25), only one (Xenorhabdus nematophila) was investigated by a biochemical detection method of protease activities, zymography. Two activities have been found by this method, and one of these activities has been partially characterized (5).As an approach to establish the similarity between Xenorhabdus and Photorhabdus in the mechanism of infection regarding the type and role of proteolytic enzymes, we investigated 15 Xenorhabdus strains for the secretion of proteases employing the same five detection methods that we had previously used for Photorhabdus strains. Two of the strains (Xenorhabdus nematophila AN6 and Xenorhabdus cabanillassii RIO-HU) were represented with their phenotypic variant pairs.  相似文献   

15.
The ability of thrips and other minute insects to escape from conventional assay cups led to development of a successful assay chamber. In the present study, we evaluated three bioassay systems for thrips; Tashiro cage, microtube assay and leaf sandwich assay and introduced an improved thrips entomopathogenic bioassay system (TEBS). Our objective was to investigate the effect of Metarhizium anisopliae on Thrips tabaci using an easy-to-use and inexpensive holding chamber that would produce bioassay results with acceptable levels of accuracy and precision. In our assays, we found that escape of second-instar larvae from TEBS was significantly less than those of other methods which we tested. Our results indicated that our assay system was more suitable than the other conventional assays for the bioassay of entomopathogenic fungi on T. tabaci.  相似文献   

16.
Xenorhabdus spp. and Photorhabdus spp. are major insect bacterial pathogens symbiotically associated with nematodes. These bacteria are transported by their nematode hosts into the hemocoel of the insect prey, where they proliferate within hemolymph. In this work we report that wild strains belonging to different species of both genera are able to produce hemolysin activity on blood agar plates. Using a hemocyte monolayer bioassay, cytolytic activity against immunocompetent cells from the hemolymph of Spodoptera littoralis (Lepidoptera: Noctuidae) was found only in supernatants of Xenorhabdus; none was detected in supernatants of various strains of Photorhabdus. During in vitro bacterial growth of Xenorhabdus nematophila F1, two successive bursts of cytolytic activity were detected. The first extracellular cytolytic activity occurred when bacterial cells reached the stationary phase. It also displayed a hemolytic activity on sheep red blood cells, and it was heat labile. Among insect hemocyte types, granulocytes were the preferred target. Lysis of hemocytes by necrosis was preceded by a dramatic vacuolization of the cells. In contrast the second burst of cytolytic activity occurred late during stationary phase and caused hemolysis of rabbit red blood cells, and insect plasmatocytes were the preferred target. This second activity is heat resistant and produced shrinkage and necrosis of hemocytes. Insertional inactivation of flhD gene in X. nematophila leads to the loss of hemolysis activity on sheep red blood cells and an attenuated virulence phenotype in S. littoralis (A. Givaudan and A. Lanois, J. Bacteriol. 182:107–115, 2000). This mutant was unable to produce the early cytolytic activity, but it always displayed the late cytolytic effect, preferably active on plasmatocytes. Thus, X. nematophila produced two independent cytolytic activities against different insect cell targets known for their major role in cellular immunity.  相似文献   

17.
Mosquito immunity studies have focused mainly on characterizing immune effector mechanisms elicited against parasites, bacteria and more recently, viruses. However, those elicited against entomopathogenic fungi remain poorly understood, despite the ubiquitous nature of these microorganisms and their unique invasion route that bypasses the midgut epithelium, an important immune tissue and physical barrier. Here, we used the malaria vector Anopheles gambiae as a model to investigate the role of melanization, a potent immune effector mechanism of arthropods, in mosquito defense against the entomopathogenic fungus Beauveria bassiana, using in vivo functional genetic analysis and confocal microscopy. The temporal monitoring of fungal growth in mosquitoes injected with B. bassiana conidia showed that melanin eventually formed on all stages, including conidia, germ tubes and hyphae, except the single cell hyphal bodies. Nevertheless, melanin rarely aborted the growth of any of these stages and the mycelium continued growing despite being melanized. Silencing TEP1 and CLIPA8, key positive regulators of Plasmodium and bacterial melanization in A. gambiae, abolished completely melanin formation on hyphae but not on germinating conidia or germ tubes. The detection of a layer of hemocytes surrounding germinating conidia but not hyphae suggested that melanization of early fungal stages is cell-mediated while that of late stages is a humoral response dependent on TEP1 and CLIPA8. Microscopic analysis revealed specific association of TEP1 with surfaces of hyphae and the requirement of both, TEP1 and CLIPA8, for recruiting phenoloxidase to these surfaces. Finally, fungal proliferation was more rapid in TEP1 and CLIPA8 knockdown mosquitoes which exhibited increased sensitivity to natural B. bassiana infections than controls. In sum, the mosquito melanization response retards significantly B. bassiana growth and dissemination, a finding that may be exploited to design transgenic fungi with more potent bio-control activities against mosquitoes.  相似文献   

18.
Precise and fluent genetic manipulation is still limited to only a few prokaryotes. Ideally the highly advanced technologies available in Escherichia coli could be broadly applied. Our efforts to apply lambda Red technology, widely termed ‘recombineering’, in Photorhabdus and Xenorhabdus yielded only limited success. Consequently we explored the properties of an endogenous Photorhabdus luminescens lambda Red-like operon, Plu2934/Plu2935/Plu2936. Bioinformatic and functional tests indicate that Plu2936 is a 5’-3’ exonuclease equivalent to Redα and Plu2935 is a single strand annealing protein equivalent to Redβ. Plu2934 dramatically enhanced recombineering efficiency. Results from bioinformatic analysis and recombineering assays suggest that Plu2934 may be functionally equivalent to Redγ, which inhibits the major endogenous E. coli nuclease, RecBCD. The recombineering utility of Plu2934/Plu2935/Plu2936 was demonstrated by engineering Photorhabdus and Xenorhabdus genomes, including the activation of the 49-kb non-ribosomal peptide synthase (NRPS) gene cluster plu2670 by insertion of a tetracycline inducible promoter. After tetracycline induction, novel secondary metabolites were identified. Our work unlocks the potential for bioprospecting and functional genomics in the Photorhabdus, Xenorhabdus and related genomes.  相似文献   

19.
Xenorhabdus spp., are gram-negative bacterial symbionts of entomopathogenic nematodes in the genus Steinernema. A specialized and intimate relationship exists between nematode and bacteria, affecting many of their life history traits, such as nutrition, dispersal, host-finding, foraging and defense from biotic and abiotic factors. Xenorhabdus currently comprises more than 20 species isolated from Steinernema spp. with diverse host range, host foraging behavior, reproductive modes and environmental tolerance. Xenorhabdus phylogenies have historically been based on 16s rDNA sequence analyses, and only recently has data from housekeeping genes been employed. The prevalence of lateral gene transfer among bacteria calls for a wider perspective when considering their phylogeny. With the increasing number of Xenorhabdus species and strains, various perspectives need to be considered for investigating the evolutionary history of these nematode bacterial symbionts, In this study, we reconstruct the evolutionary histories of 30 species of Xenorhabdus considering the traditional 16s rDNA gene region as well as the housekeeping genes recA and serC. Datasets were analyzed individually and then combined, using a variety of phylogenetic criteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号