首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Embioptera (webspinners) are unique among insects in that juvenile and adults of both sexes spin silk. They possess spinning apparatuses in the basitarsomeres of their prothoracic legs, which they use to build galleries as habitat and protection. Embioptera are primitively social and cooperate in building the galleries. They also show sexual dimorphism that comprises modifications of the mandibles in males, the winglessness of the females and differences in the morphology of the forelegs. In the present investigation we address the correlation of spinning behaviour and sexual dimorphism in the spinning apparatus of Aposthonia ceylonica (Enderlein, 1912). To analyse spinning behaviour we conducted video observations of Ap. ceylonica in artificial habitats. We observed females and males alone as well as female-male pairs to cover possible effects of interactions between sexes. The morphology of the spinning apparatus was analysed and reconstructed using high resolution X-ray computed tomography (SRμCT). The observations show that during trials of 24 h adult males and females produce similar amounts of silk per body weight, despite the fact that adult males do not feed, perhaps due to modifications of their mandibles related to courtship that interfere with feeding. Spinning glands in males are distinctly smaller than in females in absolute values, which reflect the general size difference in females and males. Despite their smaller body size, the volumes of reservoirs of spinning glands are larger in males in relative as well as in absolute values. Together with spinning behaviour and the amount of silk production, this indicates that males produce and store gland secretions in the large reservoirs prior to their final moult for later use.  相似文献   

2.
To understand rapid evolution in plant resistance to herbivory, it is critical to determine how the genetic correlation among resistances varies genetically and/or environmentally. We conducted a reciprocal transplant experiment of tall goldenrod, Solidago altissima with multiple replicates within the native range (USA) and the introduced range (Japan) to explore the differences in phenotypic traits of resistance to multiple herbivorous insects and their relationships between and within the countries. The Japanese plants were more resistant to the lace bug, Corythucha marmorata, which had recently invaded Japan, but were more susceptible to other herbivorous insects compared to the USA plants. An antagonistic relationship was found between plant resistances to lace bugs and other herbivorous insects in both USA and Japanese plants. In addition, this relationship was more obvious in gardens with a high level of foliage damage than in gardens with a low level of foliage damage by other herbivorous insects. An antagonistic relationship between resistances to aphids and lace bugs was also observed in USA gardens, but not in Japanese garden. These results suggest that the strength of constraints on the evolution of plant resistance due to genetic trade-offs may differ among biotic environments, including community structure of herbivorous insects. Therefore, differences in herbivorous insect communities between the native and introduced ranges can result in the rapid evolution of greater resistance in plants in the introduced range than in the native range.  相似文献   

3.
《Journal of Asia》2019,22(3):638-644
Flowering plants in gardens and along roadsides on the Big Island of Hawaii were sampled for thrips and anthocorid predators of thrips. A total of 171 plant samples, comprising 859 plant sample units (e.g. flowers or flower clusters) were collected from 56 species of plants in 25 families. Adult thrips were found on 43 plant species, and 32 of these also had larval thrips of the same species, indicating the plant species was a breeding host for thrips. Five different species of anthocorids – Orius persequens, Orius tristicolor, Paratriphleps laeviusculus, Montandoniola confusa, and Blaptostethus pallescens – were collected on 22 different plant species in 10 plant families. The plants with the highest numbers of anthocorid adults and nymphs present were Macaranga tanarius (Blush Macaraga), Verbesina encelioides (Golden Crownbeard), Tithonia diversifolia (Tree Marigold), Acalypha hispida (Chenille bush), and Coreopsis lanceolata (Lance-leaf Coreopsis). Macaranga tanarius was found to be the best host plant for anthocorids, with an average of 25.5 adult and 21.1 larval anthocorids per plant sample. Orius persequens was the most abundant anthocorid on M. tanarius with average adult and larval densities of 24.1 and 17.3 per plant sample, respectively. None of the insects found in association with M. tanarius are known pests. Macaranga tanarius has great potential as a banker plant to help suppress thrips populations in greenhouse crops with anthocorid predators.  相似文献   

4.
In fungus-growing mutualism, it is indispensable for host animals to establish gardens of the symbiotic fungus as rapidly as possible. How to establish fungal gardens has been well-documented in social fungus-farming insects, whereas poorly documented in non-social fungus-farming insects. Here we report that the non-social, fungus-growing lizard beetle Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae) transmits the symbiotic yeast Wickerhamomyces anomalus from the ovipositor-associated mycangium into bamboo internode cavities and disperses the yeast in the cavities to make gardens. Microbial isolation and cryo-scanning electron microscopy observation revealed that W. anomalus was constantly located on the posterior ends of eggs, where larvae came out, and on the inner openings of oviposition holes. Direct observation of oviposition behavior inside internodes revealed that the distal parts of ovipositors showed a peristaltic movement when they were in contact with the posterior ends of eggs. Rearing experiments showed that W. anomalus was spread much more rapidly and widely on culture media and internodes in the presence of the larvae than in the absence. These results suggest that the ovipositors play a critical role in vertical transmission of W. anomalus and that the larvae contribute actively to the garden establishment, providing a novel case of fungal garden founding in non-social insect-fungus mutualism.  相似文献   

5.
The exoskeleton of the female postabdomen, including the external genitalia and ectodermal gonoducts, was studied in five phylogenetically distant species of Embioptera from the genera Metoligotoma (Australembiidae), Clothoda (Clothodidae), Aposthonia (Oligotomidae), Biguembia (Archembiidae), and Enveja (without family assignment). The morphological interpretation of the embiopteran postabdominal sclerites and gonoduct components is discussed in a wider context of Insecta. This includes some issues of general importance, such as effects of the translocation of the gonopore from venter 7 to venter 8, the definition of gonopore location, and the definition of the vagina. We then compare the five study species regarding their postabdominal morphology, and define characters that can be used for future phylogenetic and taxonomic work on Embioptera; the corresponding character states are presented in a matrix. Important results on Embioptera are as follows. (1) The gonopore appears to lie in the posterior part of venter 8, but this apparent location probably only results from the median parts of venter 8 having been formed from an extension of venter 7. (2) The ectodermal gonoducts consist of a common oviduct and an extended oviduct, while there is either no vagina or only a very short and wide one. (3) In contrast to earlier reports, accessory glands are absent from venter 9 (although there may be vestiges in Enveja). (4) No support was found in female genital characters for the conventional view that the Clothodidae are the sister group of the remaining Embioptera; instead, we report several character states suggesting Metoligotoma as sister to the remaining Embioptera.  相似文献   

6.
7.
The increasing level CO2 may altered host plant physiology and hence affect the foraging behavior of herbivore insects and predator. Hence, the aim of this study was provides evidence that host plants grown at different levels of CO2 can alter the choice behavior of aphid, Sipha flava and their natural enemies, Cycloneda sanguinea and Diomus seminulus. The plant used was Pennisetum purpureum, cultivar Cameron Piracicaba growing in greenhouse (mean value of CO2?=?440 ppm), climatic chamber with constant value of CO2?=?500 ppm and climatic chamber with fluctuating CO2 (mean value?=?368 ppm). A glass Y-shape olfactometer was used to verify the insects responses towards elephant grass plants cultivated under different conditions. The aphids were statistically more attracted by plants grown with constant CO2 level (500 ppm) than by plants grown with fluctuating CO2 level or plants grown in greenhouse. There was no difference in S. flava preference to non-infested versus infested plants by conspecifics. The predator C. sanguinea did not show difference between plants grown with constant CO2 level and infested or not with S. flava. However, the predator D. seminulus showed higher preference to plants grown with constant CO2 level and infested with S. flava. This study showed that the response of S. flava and its predators were affected by plants grown under different levels of CO2.  相似文献   

8.
Many extant insects have developed pad structures, euplantulae or arolia on their tarsi to increase friction or enhance adhesion for better mobility. Many polyneopteran insects with euplantulae, for example, Grylloblattodea, Mantophasmatodea and Orthoptera, have been described from the Mesozoic. However, the origin and evolution of stick insects' euplantulae are poorly understood due to rare fossil records. Here, we report the earliest fossil records of Timematodea hitherto, Tumefactipes prolongates gen. et sp. nov. and Granosicorpes Urates gen. et sp. nov., based on three specimens from mid-Cretaceous Burmese amber. Specimens of Tumefactipes prolongates gen. et sp. nov. have extremely specialized and expanded euplantulae on their tarsomere II. These new findings are the first known and the earliest fossil records about euplantula structure within Phasmatodea, demonstrating the diversity of euplantulae in Polyneoptera during the Mesozoic. Such tarsal pads might have increased friction and helped these mid-Cretaceous stick insects to climb more firmly on various surfaces, such as broad leaves, wetted tree branches or ground. These specimens provide more morphological data for us to understand the relationships of Timematodea, Euphasmatodea, Orthoptera and Embioptera, suggesting that Timematodea might be monophyletic with Euphasmatodea rather than Embioptera and Phasmatodea should have a closer relationship with Orthoptera rather than Embioptera.  相似文献   

9.
Social insects are at risk from a diverse range of parasites. The antibiotic-producing metapleural gland is an ancestral trait in ants which is thought to be one of their primary mechanisms of resistance. However, the metapleural gland has been lost secondarily in three ant genera, which include weaver ants that are characterised by the remarkable construction of their nests using larval silk. Silken nests may have allowed reduced investment in costly disease resistance mechanisms like the metapleural gland if the silk has antimicrobial properties, as in other insects, or is a hygienic substrate. Here we examine this hypothesis in the weaver ant Polyrhachis dives. We found no evidence of a beneficial effect of silk. The presence of silk did not improve the already high resistance of ants to the entomopathogenic fungus Metarhizium, the ants only rarely interacted with the silk regardless of whether they were exposed to Metarhizium or not, and silk also did not inhibit the in vitro germination or growth of Metarhizium. Furthermore, silk was found in vitro to be heavily contaminated with the facultative entomopathogenic fungus Aspergillus flavus, and many more ants sporulated with this fungus when kept with silk in vivo than when they were kept without silk. Further work is needed to examine the effects of silk on other parasites and of silk from other weaver ants. However, the results in combination suggest that silk in P. dives is unlikely to provide protection against parasites and that it is also not a hygienic substrate. Alternative explanations may therefore be needed for the loss of the metapleural gland in weaver ants.  相似文献   

10.
11.
In phytophagous insects, adult attraction and oviposition preference for a host plant are often positively correlated with their immature fitness; however, little is known how this preference–performance relationship changes within insect populations utilizing different host plants. Here, we investigated differences in the preference and performance of two populations of a native North American frugivorous insect pest, the plum curculio (Conotrachelus nenuphar)—one that utilizes peaches and another that utilizes blueberries as hosts—in the Mid‐Atlantic United States. We collected Cnenuphar adult populations from peach and blueberry farms and found that they exhibited a clear preference for the odors of, as well as an ovipositional preference for, the hosts they were collected from, laying 67%–83% of their eggs in their respective collected hosts. To measure Cnenuphar larval performance, a fitness index was calculated using data on larval weights, development, and survival rate from egg to 4th instars when reared on the parent''s collected and novel hosts. Larvae of Cnenuphar adults collected from peach had high fitness on peach but low fitness when reared on blueberry. In contrast, larvae from Cnenuphar adults collected in blueberry had high fitness regardless of the host on which they were reared. In this study, we show that utilizing a novel host such as blueberry incurs a fitness cost for Cnenuphar from peaches, but this cost was not observed for Cnenuphar from blueberries, indicating that the preference–performance relationship is present in the case of insects reared on peach, but insects reared on blueberry were more flexible and able to utilize either host, despite preferring blueberry.  相似文献   

12.
分析了金沙江畔7个不同海拔区域花椒园中昆虫群落特征的动态变化及其与温、湿度变化的关系。结果表明:花椒园中昆虫群落的多样性、均匀度、丰富度、Ss/Si、Sn/Sp指标随海拔升高先增加后减少,而个体数、优势集中性指数则随海拔升高先减少后增加;低海拔(450—750 m)区域花椒园中由于总体温度高、湿度低,较高海拔(1300—1550 m)区域总体温度低、湿度高,均不利昆虫群落多样性、均匀度、丰富度、Ss/Si、Sn/Sp指标的提高和群落的稳定,而中等海拔(750—1300 m)区域的温度、湿度较为适中,昆虫群落的物种数及个体数量均相对较高,昆虫群落多样性、均匀度、丰富度、Ss/Si、Sn/Sp指标也较高,群落较稳定;相反,低海拔、较高海拔区域花椒园中昆虫群落优势集中性指数较高,而中等海拔区域却相对较低。综合分析表明,海拔高度及温湿度对花椒园昆虫群落特征影响较大,而海拔高度及温湿度的测量和分析较为方便。  相似文献   

13.

Background and Aims

Although urban gardens provide opportunities for pollinators in an otherwise inhospitable environment, most garden plants are not native to the recipient biogeographical region and their value to local pollinators is disputed. This study tested the hypothesis that bumblebees foraging in English urban gardens preferentially visited sympatric Palaearctic-range plants over species originating outside their native range.

Methods

Twenty-seven surveys of flower availability and bumblebee visitation (Bombus spp.) were conducted over a 3-month summer period. Plants were categorized according to whether they were native British, Palaearctic or non-Palaearctic in origin. A phylogeny of the 119 plant species recorded was constructed and the relationship between floral abundance and the frequency of pollinator visits investigated by means of phylogenetically independent contrasts. Differentiation in utilization of plant species by the five bumblebee species encountered was investigated using niche overlap analyses.

Key Results

There was conflicting evidence for preferential use of native-range Palaearctic plant species by bumblebees depending on which plants were included in the analysis. Evidence was also found for niche partitioning between species based on respective preferences for native and non-native biogeographical range plants. Two bumblebees (Bombus terrestris and B. pratorum) concentrated their foraging activity on non-Palaearctic plants, while two others (B. hortorum and B. pascourum) preferred Palaearctic species.

Conclusions

The long-running debate about the value of native and non-native garden plants to pollinators probably stems from a failure to properly consider biogeographical overlap between plant and pollinator ranges. Gardeners can encourage pollinators without consideration of plant origin or bias towards ‘local’ biogeographical species. However, dietary specialist bumblebees seem to prefer plants sympatric with their own biogeographical range and, in addition to the cultivation of these species in gardens, provision of native non-horticultural (‘weed’) species may also be important for pollinator conservation.  相似文献   

14.

Background and Aims

The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming.

Methods

Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments.

Key Results

Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted.

Conclusions

Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics.  相似文献   

15.
Genetic technologies based on transposon-mediated transgenesis along with several recently developed genome-editing technologies have become the preferred methods of choice for genetically manipulating many organisms. The silkworm, Bombyx mori, is a Lepidopteran insect of great economic importance because of its use in silk production and because it is a valuable model insect that has greatly enhanced our understanding of the biology of insects, including many agricultural pests. In the past 10 years, great advances have been achieved in the development of genetic technologies in B. mori, including transposon-based technologies that rely on piggyBac-mediated transgenesis and genome-editing technologies that rely on protein- or RNA-guided modification of chromosomes. The successful development and application of these technologies has not only facilitated a better understanding of B. mori and its use as a silk production system, but also provided valuable experiences that have contributed to the development of similar technologies in non-model insects. This review summarizes the technologies currently available for use in B. mori, their application to the study of gene function and their use in genetically modifying B. mori for biotechnology applications. The challenges, solutions and future prospects associated with the development and application of genetic technologies in B. mori are also discussed.  相似文献   

16.
The crystal proteins, or §-endotoxins, of Bacillus thuringiensis are specifically lethal to Lepidopteran insects. We utilized a truncated and modified portion of a cloned crystal protein gene to construct a chimeric gene capable of expression in plant cells. Using an Agrobacterium tumefaciens binary vector system, we then transferred the chimeric toxin gene into tobacco (Nicotiana tabacum cv Havana 425) cells and regenerated recombinant plants. One to several copies per cell of the toxin gene are routinely present in the recombinant plants. Hybridization experiments demonstrated that these plants had a new RNA species of the size expected for the truncated toxin mRNA, and a polypeptide having the mobility expected for the truncated toxin was detected by immunoblotting. Significant variation was found in the levels of toxin-specific RNA expression between different recombinants, but the levels of hybridizing RNA in transformants correlated with the level of toxicity demonstrated against Manduca sexta (tobacco hornworm), and other Lepidopteran insects. The recombinant genes were transmitted to progeny and resistance to insects was maintained, thus demonstrating that the introduction of toxin genes into plants may be a practical method of providing protection against certain insect pests.  相似文献   

17.

Background

Insect pollinator abundance, in particular that of bees, has been shown to be high where there is a super-abundance of floral resources; for example in association with mass-flowering crops and also in gardens where flowering plants are often densely planted. Since land management affects pollinator numbers, it is also likely to affect the resultant pollination of plants growing in these habitats. We hypothesised that the seed or fruit set of two plant species, typically pollinated by bumblebees and/or honeybees might respond in one of two ways: 1) pollination success could be reduced when growing in a floriferous environment, via competition for pollinators, or 2) pollination success could be enhanced because of increased pollinator abundance in the vicinity.

Methodology/Principal Findings

We compared the pollination success of experimental plants of Glechoma hederacea L. and Lotus corniculatus L. growing in gardens and arable farmland. On the farms, the plants were placed either next to a mass-flowering crop (oilseed rape, Brassica napus L. or field beans, Vicia faba L.) or next to a cereal crop (wheat, Triticum spp.). Seed set of G. hederacea and fruit set of L. corniculatus were significantly higher in gardens compared to arable farmland. There was no significant difference in pollination success of G. hederacea when grown next to different crops, but for L. corniculatus, fruit set was higher in the plants growing next to oilseed rape when the crop was in flower.

Conclusions/Significance

The results show that pollination services can limit fruit set of wild plants in arable farmland, but there is some evidence that the presence of a flowering crop can facilitate their pollination (depending on species and season). We have also demonstrated that gardens are not only beneficial to pollinators, but also to the process of pollination.  相似文献   

18.

Background and Aims

Ibicella lutea and Proboscidea parviflora are two American semi-desert species of glandular sticky plants that are suspected of carnivory as they can catch small insects. The same characteristics might also hold for two semi-desert plants with glandular sticky leaves from Israel, namely Cleome droserifolia and Hyoscyamus desertorum. The presence of proteases on foliar hairs, either secreted by the plant or commensals, detected using a simple test, has long been considered proof of carnivory. However, this test does not prove whether nutrients are really absorbed from insects by the plant. To determine the extent to which these four species are potentially carnivorous, hair secretion of phosphatases and uptake of N, P, K and Mg from fruit flies as model prey were studied in these species and in Roridula gorgonias and Drosophyllum lusitanicum for comparison. All species examined possess morphological and anatomical adaptations (hairs or emergences secreting sticky substances) to catch and kill small insects.

Methods

The presence of phosphatases on foliar hairs was tested using the enzyme-labelled fluorescence method. Dead fruit flies were applied to glandular sticky leaves of experimental plants and, after 10–15 d, mineral nutrient content in their spent carcasses was compared with initial values in intact flies after mineralization.

Key Results

Phosphatase activity was totally absent on Hyoscyamus foliar hairs, a certain level of activity was usually found in Ibicella, Proboscidea and Cleome, and a strong response was found in Drosophyllum. Roridula exhibited only epidermal activity. However, only Roridula and Drosophyllum took up nutrients (N, P, K and Mg) from applied fruit flies.

Conclusions

Digestion of prey and absorption of their nutrients are the major features of carnivory in plants. Accordingly, Roridula and Drosophyllum appeared to be fully carnivorous; by contrast, all other species examined are non-carnivorous as they did not meet the above criteria.Key words: Roridula gorgonias, Drosophyllum lusitanicum, Proboscidea parviflora, Ibicella lutea, Cleome droserifolia, Hyoscyamus desertorum, phosphatase, phosphomonoesters, fruit flies, N, P, K, Mg uptake from prey  相似文献   

19.
Development of transgenics in pigeon pea remains dogged by poor plant regeneration in vitro from transformed tissues and low frequency transformation protocols. This article presents a non-tissue culture-based method of generating transgenic pigeon pea (Cajanus cajan (L.) Millisp.) plants using Agrobacterium-Ti plasmid-mediated transformation system. The protocol involves raising of whole plant transformants (T0 plants) directly from Agrobacterium-infected young seedlings. The plumular and intercotyledonary meristems of the seedling axes are targeted for transformation. The transformation conditions optimized were, pricking of the apical and intercotyledonary region of the seedling axes of two-day old germinating seedlings with a sewing needle, infection with Agrobacterium (LBA4404/pKIWI105 carrying uid A and npt II genes) in Winans’ AB medium that was added with wounded tobacco leaf extract, co-cultivation in the same medium for 1h and transfer of seedlings to soilrite for further growth and hardening and subsequent transfer of seedlings to soil in pots in the greenhouse. Out of the 22–25 primary transformants that survived infection-hardening treatments from each of the three experiments, 15 plants on the average established on the soil under greenhouse conditions, showed slow growth initially, nevertheless grew as normal plants, and flowered and set seed eventually. Of the several seeds harvested from all the T0 plants, six hundred were sown to obtain progeny (T1) plants and 350 of these were randomly analysed to determine their transgenic nature. PCR was performed for both gus (uid A) and npt II genes. Forty eight of the 350 T1 plants amplified both transgenes. Southern blot analysis substantiated the integration and transmission of these genes. The protocol ensured generation of pigeon pea transgenic plants with considerable ease in a short time and is applicable across different genotypes/cultivars of the crop and offers immense potential as a supplemental or an alternative protocol for generating transgenic plants of difficult-to-regenerate pigeon pea. Further, the protocol offers the option of doing away with a selection step in the procedure and so facilitates transformation, which is free of marker genes.Key words: Cajanus cajan, Transformation, Tissue culture-independent plant regeneration  相似文献   

20.
Phytoseiids are known to attack whiteflies, but it is an open question whether they can be used for biological control of these pest insects. Preselection experiments in the laboratory showed that two out of five phytoseiid species tested, Euseius scutalis and Typhlodromips swirskii, stood out in terms of their ability to develop and reproduce on a diet of Bemisia tabaci immatures. In this paper, we show that both predators are able to suppress whitefly populations on isolated cucumber plants in a greenhouse. Predatory mites were released 2 weeks in advance of the release of B. tabaci. To enable their survival and promote their population growth, they were provided weekly with alternative food, that is, Typha sp. pollen. A few weeks after whitefly introduction, the numbers of adult whiteflies on plants with predators were consistently lower than on plants without predators, where B. tabaci populations grew exponentially. After 9 weeks, this amounted to a 16- to 21-fold difference in adult whitefly population size. This shows that the two phytoseiid species are promising biocontrol agents of B. tabaci on greenhouse cucumber. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号