首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
【目的】本研究旨在筛选小菜蛾Plutella xylostella应对玫烟色棒束孢Isaria fumosorosea侵染的免疫应答及其网络调控基因,以进一步探讨小菜蛾对玫烟色棒束孢的防御机制。【方法】采用第二代高通量测序技术RNA-seq,对处理后12 h的感染玫烟色棒束孢和健康(平行对照)的小菜蛾4龄幼虫转录组进行了测序,通过生物信息学分析对得到的差异基因进行了功能注释和分类,对差异基因参与的信号通路进行了分析。【结果】在感菌和健康小菜蛾幼虫转录组两个表达谱里,分别获得了12 346 987和12 315 210个clean reads,有60.93%和61.26%的reads分别能比对到参考基因库里,其中完美匹配(perfect match)的比例分别为32.15%和32.73%。共得到351个显著差异表达基因(differentially expressed unigenes,DEUs),上调表达基因有275个,下调表达基因有76个,与免疫防御反应潜在相关的基因有156个。GO(Gene Ontology)富集分析有102个DEUs分布到46个GO term里,KEGG(Kyoto Encyclopedia of Genes and Genomes)pathway富集分析结果显示,有132个DEUs显著富集在13个代谢通路(pathway)里。【结论】这些差异表达基因中,大部分编码潜在的与免疫识别及调控相关的基因,集中在能量代谢、疾病反应和防御反应等相关通路。研究结果为挖掘与玫烟色棒束孢侵染相关的小菜蛾免疫应答候选基因提供了重要数据库,也为阐明小菜蛾对玫烟色棒束孢的免疫机制奠定理论基础。  相似文献   

4.
【目的】筛选家蚕Bombyx mori应对白僵菌Beauveria bassiana侵染的应答基因, 以进一步研究家蚕抵御真菌侵染的分子机制。【方法】采用新一代Solexa高通量测序技术对感染白僵菌及未感染白僵菌的对照组家蚕进行了测序分析, 筛选差异表达基因; 结合生物信息学工具分析差异表达基因的功能注释、 分类及涉及的信号通路等; 应用荧光定量PCR技术验证10个基因的差异表达。【结果】通过测序和生物信息学分析共获得377个差异表达基因, 其中表达上调基因236个, 下调基因141个; KEGG通路分析表明, 各通路中既有表达上调的基因, 也有下调基因; 12个上调基因、 26个下调基因参与3个显著性富集的KEGG通路, 即核糖体、 氨酰tRNA生物合成和剪接体通路。定量PCR与测序结果显示, 溶菌酶、 热激蛋白、 谷胱甘肽S-转移酶、 肽聚糖识别蛋白等与免疫应激相关的蛋白基因均呈现表达上调。【结论】本研究筛选获得的差异表达基因, 特别是上调表达的基因可能与家蚕应对白僵菌侵染的应答机制有关, 其中与免疫应激相关的蛋白基因如溶菌酶、 热激蛋白、 谷胱甘肽S 转移酶、 肽聚糖识别蛋白基因等可能直接参与了家蚕对白僵菌的免疫识别和防御, 研究结果为从分子水平阐明家蚕抵御真菌侵染的防御机制和白僵菌对家蚕的致病机理提供新的依据。  相似文献   

5.

Background

The fungal pathogen, Beauveria bassiana, is an efficient biocontrol agent against a variety of agricultural pests. A thorough understanding of the basic principles of insect-fungus interactions may enable the genetic modification of Beauveria bassiana to enhance its virulence. However, the molecular mechanism of insect response to Beauveria bassiana infection is poorly understood, let alone the identification of fungal virulent factors involved in pathogenesis.

Methodology/Principal Findings

Here, next generation sequencing technology was applied to examine the expression of whitefly (Bemisia tabaci) genes in response to the infection of Beauveria bassiana. Results showed that, compared to control, 654 and 1,681genes were differentially expressed at 48 hours and 72 hours post-infected whiteflies, respectively. Functional and enrichment analyses indicated that the DNA damage stimulus response and drug metabolism were important anti-fungi strategies of the whitefly. Mitogen-activated protein kinase (MAPK) pathway was also likely involved in the whitefly defense responses. Furthermore, the notable suppression of general metabolism and ion transport genes observed in 72 hours post-infected B. tabaci might be manipulated by fungal secreted effectors. By mapping the sequencing tags to B. bassiana genome, we also identified a number of differentially expressed fungal genes between the early and late infection stages. These genes are generally associated with fungal cell wall synthesis and energy metabolism. The expression of fungal cell wall protein genes might play an important role in fungal pathogenesis and the dramatically up-regulated enzymes of carbon metabolism indicate the increasing usage of energy during the fungal infection.

Conclusions/Significance

To our knowledge, this is the first report on the molecular mechanism of fungus-whitefly interactions. Our results provide a road map for future investigations on insect-pathogen interactions and genetically modifying the fungus to enhance its efficiency in whitefly control.  相似文献   

6.
Destruxin A (DA) is a cyclo-peptidic mycotoxin from the entomopathogenic fungus Metarhizium anisopliae. To uncover potential genes associated with its molecular mechanisms, a digital gene expression (DGE) profiling analysis was used to compare differentially expressed genes in the hemocytes of silkworm larvae treated with DA. Ten DGE libraries were constructed, sequenced, and assembled, and the unigenes with least 2.0-fold difference were further analyzed. The numbers of up-regulated genes were 10, 20, 18, 74 and 8, as well as the numbers of down-regulated genes were 0, 1, 8, 13 and 3 at 1, 4, 8, 12 and 24 h post treatment, respectively. Totally, the expression of 132 genes were significantly changed, among them, 1, 3 and 12 genes were continually up-regulated at 4, 3 and 2 different time points, respectively, while 1 gene was either up or down-regulated continually at 2 different time points. Furthermore, 68 genes were assigned to one or multiple gene ontology (GO) terms and 89 genes were assigned to specific Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology. In-depth analysis identified that these genes putatively involved in insecticide resistance, cell apoptosis, and innate immune defense. Finally, twenty differentially expressed genes were randomly chosen and validated by quantitative real-time PCR (qRT-PCR). Our studies provide insights into the toxic effect of this microbial insecticide on silkworm''s hemocytes, and are helpful to better understanding of the molecular mechanisms of DA as a biological insecticide.  相似文献   

7.
Amending a peat-based growing medium with 10% v/v spent mushroom compost, a source of fungal chitin and other nutrients, prolonged the persistence of entomopathogenic fungi (Metarhizium brunneum Petsch and Beauveria bassiana (Balsamo) Vuillemin; Hypocreales: Clavicipitaceae). This resulted in improved efficacy of M. brunneum against black vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae) larvae compared with using inoculum without spent mushroom compost. B. bassiana only controlled larvae when used in combination with spent mushroom compost (75?±?7% reduction in live larvae). Mixing entomopathogenic fungal inoculum with spent mushroom compost and growing medium was as effective in controlling black vine weevil larvae as using spent mushroom compost colonised with M. brunneum or B. bassiana in the growing medium (80?±?12% reduction in live larvae). The former method is preferable since it does not require production and storage of colonised spent mushroom compost, or registration of new substrate formulations of M. brunneum or B. bassiana.  相似文献   

8.
9.
An entomopathogenic fungus, Beauveria bassiana, had significant insecticidal activity against the beet armyworm, Spodoptera exigua. However, it took almost one week to cause significant mortality. This study used a mixture treatment with an immunosuppressant to enhance the fungal pathogenicity. A bacterial metabolite, benzylideneacetone (BZA), had a significant synergistic effect on the fungal pathogenicity against S. exigua, although it had little insecticidal activity by itself. The mixture treatment shortened median lethal time of B. bassiana by approximately 2 days. The synergistic activity of BZA on the pathogenicity of B. bassiana was induced by its immunosuppressive effects on both cellular and humoral antifungal responses of S. exigua. In response to B. bassiana, S. exigua larvae can form hemocytic nodules. Nodules were significantly suppressed by BZA treatment. Moreover, BZA inhibited expression of some antimicrobial peptide genes of S. exigua in response to fungal challenge. The immunosuppressive condition induced by BZA allowed B. bassiana to easily colonize and multiply in the hemocoel of treated larvae, which resulted in significant enhancement of the pathogenicity of B. bassiana.  相似文献   

10.
The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana.  相似文献   

11.
12.
An entomopathogenic fungal strain, Beauveria bassiana PfBb, was identified from Phauda flammans (Lepidoptera: Phaudidae) larvae. The compatibility and synergy of B. bassiana PfBb employed in combination with three concentrations (i.e., recommended concentration, 20% and 10% of the recommended concentration) of five commercial insecticides were determined. Beta cypermethrin at 10% of recommended concentration had the lowest inhibitory effect on the mycelial growth of B. bassiana PfBb compared with other insecticides. Insecticides utilized at recommended concentration had no significant effect on the sporulation of B. bassiana PfBb, while the extent of their effect at 20% and 10% of recommended concentration differed among insecticides. Insecticides at 10% of recommended concentration had the lowest inhibition of sporulation and conidial germination compared with other concentrations. The conidial germination of B. bassiana PfBb was the highest after treatment with beta cypermethrin at 10% of recommended concentration. The cumulative mortality for 1 × 107 spores/mL B. bassiana PfBb combined with each insecticide at 10% of recommended concentration was higher than that observed with the application of insecticides alone. The percent cadavers of Phauda flammans larvae observed after treatment with B. bassiana PfBb combined with beta cypermethrin at 10% of recommended concentration were not significantly different from those observed after infection with B. bassiana PfBb alone. Our findings demonstrate that B. bassiana PfBb combined with beta cypermethrin at 10% of recommended concentration could increase the efficiency of this insecticide.  相似文献   

13.
14.
15.
16.
The interactions between the entomopathogenic bacterium Bacillus thuringiensis ssp. kurstaki and two entomopathogenic fungi Beauveria bassiana Balsamo (Vuillemin) (Hypocreales: Cordycipitaceae) and Metarhizium robertsii (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae) were examined on larvae of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae) in 8, 13 and 16 days post-treatment intervals. An overall positive interaction between the pathogens was observed and the larval mortality at 16 days was 56–100 % exposed to M. robertsii combined with B. thuringiensis subsp. kurstaki, whereas B. bassiana combined with B. thuringiensis ssp. kurstaki killed 54–100 % of exposed larvae. After 8 days, in 6 of the combinations, we found an additive relationship between the pathogens, whereas, a negative interaction was observed in 10 of them. In contrast, after 13 days, in 2 of the combinations the positive interaction could be considered as synergistic between pathogens, in 10 as additive, and in only 4 as negative. Finally, after 16 days, in 11 of the combinations we found an additive connection between the pathogens, wheras a negative interaction was seen in 5. Applying both pathogens simultaneously offers a method of Sesamia nonagrioides control that could be more effective than using each pathogen separately.  相似文献   

17.
18.
19.
Red palm weevil (Rhynchophorus ferrugineus) is a voracious pest of date palm worldwide. Pakistan ranks sixth in date palm production globally. Losses to date palm plantations in Pakistan sometimes surpass 10%-20%. Most of the traditional management strategies used by farmers have been found insignificant to combat this voracious pest. The entomopathogenic fungi, Beauveria bassiana [QA-3(L) and QA-3(H)] and insecticides, Nitenpyram (Active 10% SL) [NIT (L) and NIT (H)] were applied to larval (2nd, 4th, and 6th), pupal and adult stages of R. ferrugienus. Integration or alone application of fungi with insecticides at different concentration under laboratory conditions. Combined application was depicted additive and synergistic interactions. Contrarily, highest cumulative mortality (100%) was recorded in 2nd instar larvae as compared to later instar larvae at combined application. The maximum pupal and adult mortality remained 89% and 66% respectively after treatment with [QA-3 (H) + NIT (L)]. The combination of B. bassiana at higher concentration whereas Nitenpyram at lower dose was found more lethal to larvae, pupae and adults of R. ferrugineus. This signifies the need of combining B. bassiana and bio-rational insecticides that can reduce the cost of management with least harm to environment and natural enemies.  相似文献   

20.
Loquat (Eriobotrya japonica Lindl.) is an important subtropical, commercial fruit in China. It blossoms during autumn and winter in most areas of China and its fruitlets usually suffer from freezing stress. However, studies about the mechanisms underlying freezing stress in loquat are very limited. The gene expression profiles of loquat fruitlets subjected to freezing (G2 library) versus non-treated ones (G1 library) were investigated using Illumina sequencing technology to elucidate the molecular mechanisms and identify the genes that play vital roles in the freezing stress response. The results showed that approximately 157.63 million reads in total were obtained from freeze-treated and non-treated loquat fruitlets. These reads were assembled into 87,379 unigenes with an average length of 710 bp and an N50 of 1,200 bp. After comparing the profiles obtained from the G1 and G2 libraries, 2,892 differentially expressed genes were identified, of which 1,883 were up-regulated and 1,009 were down-regulated in the treated samples compared to non-treated ones. These unigenes showed significant differences in expression for carbohydrate transport and metabolism, amino acid metabolism, energy metabolism, and lipid metabolism, which are involved in defense against freezing stress. Glycolysis/gluconeogenesis was one of the most significantly regulated pathways. Freezing also significantly damaged the membrane system of loquat fruitlets, and several defense mechanisms were induced. Some selected genes related to low temperature resistance were validated by quantitative real-time PCR (qRT-PCR). The results revealed many genes and pathways that are part of freezing resistance processes and expand our understanding of the complex molecular events involved in freezing stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号