首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin. The expression of KGF receptor (KGFR) mRNA was lower in cutaneous SCCs (n = 6) than in normal skin samples (n = 6). Expression of KGFR mRNA was detected in 6 out of 8 cutaneous SCC cell lines and the levels were downregulated by 24-h treatment with KGF. KGF did not stimulate SCC cell proliferation, but it reduced invasion of SCC cells through collagen. Gene expression profiling of three cutaneous SCC cell lines treated with KGF for 24 h revealed a specific gene expression signature characterized by upregulation of a set of genes specifically downregulated in SCC cells compared to normal epidermal keratinocytes, including genes with tumor suppressing properties (SPRY4, DUSP4, DUSP6, LRIG1, PHLDA1). KGF also induced downregulation of a set of genes specifically upregulated in SCC cells compared to normal keratinocytes, including genes associated with tumor progression (MMP13, MATN2, CXCL10, and IGFBP3). Downregulation of MMP-13 and KGFR expression in SCC cells and HaCaT cells was mediated via ERK1/2. Activation of ERK1/2 in HaCaT cells and tumorigenic Ha-ras-transformed HaCaT cells resulted in downregulation of MMP-13 and KGFR expression. These results provide evidence, that KGF does not promote progression of cutaneous SCC, but rather suppresses the malignant phenotype of cutaneous SCC cells by regulating the expression of several genes differentially expressed in SCC cells, as compared to normal keratinocytes.  相似文献   

2.
Background: Lenvatinib is in a first-line therapy for advanced hepatocellular carcinoma (HCC). However, drug resistance is one of the principal obstacles for treatment failure. The molecular mechanism of Lenvatinib resistance has not been well investigated.Materials and methods: A genome-wide CRISPR/Cas9 knockout screening system was established and bioinformatic analysis was used to identify critical genes associated with Lenvatinib resistance. Cell proliferation assays, colony formation assays and cell migration assays were performed to investigate the effect of drug resistance associated genes, particularly DUSP4, on cancer cell malignant behavior during Lenvatinib treatment. In vivo experiments were conducted by using a xenograft mouse model.Results: We identified six genes that were associated with Lenvatinib resistance in HCC, including DUSP4, CCBL1, DHDH, CNTN2, NOS3 and TNF. DUSP4 was found to be significantly decreased at the mRNA and protein levels in Lenvatinib resistant HCC cells. DUSP4 knockout enhanced HCC cell survival, cell proliferation and migration during Lenvatinib treatment in vitro and in vivo, accompanied by regulation of p-ERK and p-MEK levels. This finding implied that DUSP4 deficiency induced Lenvatinib resistance. Interestingly, DUSP4 deficiency induced Lenvatinib resistance was abrogated by the MEK inhibitor Selumetinib, implying that MEK phosphorylation and DUSP4-inhibition dependent ERK activation were required for drug resistance. Finally, we found that DUSP4 deficiency was associated with HCC prognosis and response to Lenvatinib based on clinical data.Conclusions: DUSP4 deficiency mediates Lenvatinib resistance by activating MAPK/ERK signaling and combination therapy using Lenvatinib and MEK inhibitors may be a promising therapeutic strategy for overcoming Lenvatinib resistance.  相似文献   

3.
RNAi及DNA芯片分析肝癌细胞系中受DNMT3B调控的下游基因   总被引:4,自引:0,他引:4  
许军  樊红  赵主江  张建琼  谢维 《遗传学报》2005,32(11):1115-1127
为揭示DNA甲基转移酶3B(DNMT3B)在肝癌中是否参与了肿瘤的发生,应用Western blotting及细胞免疫化学方法分析DNMT3B蛋白在人的正常肝细胞株、肝癌癌旁细胞株及肝癌癌细胞株中的表达。构建了DNMT3B的RNAi稳定表达的重组载体,并转染人肝癌细胞株SMMC-7721中。以半定量RT-PCR及Western blotting分别鉴定DNM73B RNAi表达载体对内源性DNMT3B的抑制效率。用高通量的cDNA基因芯片分析了SMMC-7721中DNMT3B抑制后有影响的下游基因谱。结果显示,DNMT3B在肝癌细胞株中的表达水平明显高于肝癌癌旁和正常肝细胞株。DNMT3B的RNAi稳定表达重组载体转染SMMC-7721细胞株2个月后,观察到DNMT3B明显受到抑制。cDNA基因芯片分析发现,DNMT3B抑制后诱导26条基因表达下调,115条基因表达上调,包括一些发育相关基因以及肿瘤相关基因,如SNCG、NOTCH1、MBD3、WNT11、MAOA、FACL4等。提示DNMT3B的高表达可能与肝癌的发生有关,并以调控其他相关基因的表达而起作用,包括与发育相关的重要基因。  相似文献   

4.
Small cell carcinoma of the prostate (SCCP) is a rare and the most aggressive variant of prostate cancer. There is no effective cure or treatment for SCCP. Therefore, there is an urgent need for new therapy to improve the prognosis of patients with SCCP. DUSP1 is a dual specific phosphatase with an increasingly recognized in tumor biology. Altered expression of DUSP1 induced changes in the expression of genes involved in various biological pathways, including cell-cell signaling and angiogenesis. To understand more about the role of DUSP1 in SCCP, we evaluated the biological function and associated regulatory mechanism of DUSP1. In this study, DUSP1 was significantly down-regulated in human SCCP compared with the non-carcinoma tissues (P < 0.05). Overexpression of DUSP1 was found to suppress MAPK signaling and cell proliferation in PC-3 cells. Additionally, silencing of DUSP1 enhanced MAPK signaling and PC-3 cell proliferation. Moreover, it was observed that DUSP1 blocked the phosphorylation of p38 MAPK induced by anisomycin. Taken together, this investigation suggests that DUSP1 is involved in the progression of SCCP and may provide a new therapeutic target for SCCP treatment.  相似文献   

5.
6.
7.
Hepatocellular carcinoma is one of the most common cancers worldwide. During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Zebularine (1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one) acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. In this study, we explore the effect and possible mechanism of action of zebularine on hepatocellular carcinoma cell line HepG2. We demonstrate that zebularine exhibits antitumor activity on HepG2 cells by inhibiting cell proliferation and inducing apoptosis, however, it has little effect on DNA methylation in HepG2 cells. On the other hand, zebularine treatment downregulated CDK2 and the phosphorylation of retinoblastoma protein (Rb), and upregulated p21WAF/CIP1 and p53. We also found that zebularine treatment upregulated the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK). These results suggest that the p44/42 MAPK pathway plays a role in zebularine-induced cell-cycle arrest by regulating the activity of p21WAF/CIP1 and Rb. Furthermore, although the proapoptotic protein Bax levels were not affected, the antiapoptotic protein Bcl-2 level was downregulated with zebularine treatment. In addition, the data in the present study indicate that inhibition of the double-stranded RNA-dependent protein kinase (PKR) is involved in inducing apoptosis with zebularine. These results suggest a novel mechanism of zebularine-induced cell growth arrest and apoptosis via a DNA methylation-independent pathway in hepatocellular carcinoma.  相似文献   

8.
9.
The MAPK family members p38, JNK, and ERK are all activated downstream of innate immunity's TLR to induce the production of cytokines and inflammatory mediators. However, the relative intensity and duration of the activation of different MAPK appears to determine the type of immune response. The mammalian genome encodes a large number of dual specificity phosphatases (DUSP), many of which act as MAPK phosphatases. In this study, we review the emergence of several DUSP as genes that are differentially expressed and regulated in immune cells. Recently, a series of investigations in mice deficient in DUSP1, DUSP2, or DUSP10 revealed specificity in the regulation of the different MAPK proteins, and defined essential roles in models of local and systemic inflammation. The DUSP family is proposed as a set of molecular control devices specifying and modulating MAPK signaling, which may be targeted to unleash or attenuate innate and adaptive immune effector functions.  相似文献   

10.
Precise cell cycle regulation is critical to prevent aberrant cell proliferation and cancer progression. Cks1 was reported to be an essential accessory factor for SCFSkp2, the ubiquitin ligase that targets p27Kip1 for proteasomal degradation; these actions drive mammalian cell transition from G1 to S phase. In this study, we investigated the role played by Cks1 in the growth and progression of human hepatocellular carcinoma (HCC) cells. Silencing Cks1 expression abrogated osteopontin (OPN) expression in a p27Kip1-dependent manner in Huh7 HCC cells. OPN increased the proliferation, migration and invasion of Huh7 cells. Pharmacological inhibitor studies demonstrated that ERK1/2 signaling is responsible mainly for Cks1-mediated OPN expression. Cks1 appears to regulate ERK1/2 signaling through the expression of dual-specificity phosphatase 16 (DUSP16) because both Cks1 knockdown, which leads to DUSP16 upregulation, and DUSP16 overexpression decreased ERK1/2 phosphorylation and the resulting OPN expression. The same is true for the Cks1-mediated increases in p27Kip1, suggesting that Cks1 regulates OPN expression through activating ERK1/2 signaling either by suppressing DUSP16 expression or by a p27Kip1-dependent mechanism. Cks1 and OPN expression levels were significantly higher, but DUSP16 expression levels were significantly lower in HCC tissues than in normal liver tissues. Both Cks1 and OPN expression were negatively correlated with DUSP16 expression, whereas Cks1 expression was positively correlated with OPN expression. Moreover, combined panels for the expression levels of Cks1, DUSP16 and OPN showed significant prognostic power for the risk assessment of HCC patient overall survival. In conclusion, our data propose a novel function for Cks1 as a tumor promoter through the expression of the strongly oncogenic protein OPN in HCC.  相似文献   

11.
The purpose of this study was to observe the effects of salvianolic acid A (SAA) pretreatment on the myocardium during ischemia/reperfusion (I/R) and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP) 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI). Wistar rats were divided into the following six groups: control group (CON), I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R), PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R). The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximum rate of ventricular pressure rise and fall (±dp/dtmax), myocardial infarction areas (MIA), lactate dehydrogenase (LDH), and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4+I/R group. SAA exerts an anti-apoptotic role against myocardial IRI by inhibiting DUSP2-mediated JNK dephosphorylation and activating DUSP4/16-mediated ERK1/2 phosphorylation.  相似文献   

12.
13.
14.
ASC/PYCARD is a common adaptor for a diverse set of inflammasomes that activate caspase-1, most prominently the NLR-based inflammasome. Mounting evidence indicates that ASC and these NLRs also elicit non-overlapping functions, but the molecular basis for this difference is unclear. To address this, we performed microarray and network analysis of ASC shRNA knockdown cells. In pathogen-infected cells, an ASC-dependent interactome is centered on the mitogen-activated protein kinase (MAPK) ERK and on multiple chemokines. ASC did not affect the expression of MAPK but affected its phosphorylation by pathogens and Toll-like receptor agonists via suppression of the dual-specificity phosphatase, DUSP10/MKP5. Chemokine induction, DUSP function, and MAPK phosphorylation were independent of caspase-1 and IL-1β. MAPK activation by pathogen was abrogated in Asc(-/-) but not Nlrp3(-/-), Nlrc4(-/-), or Casp1(-/-) macrophages. These results demonstrate a function for ASC that is distinct from the inflammasome in modulating MAPK activity and chemokine expression and further identify DUSP10 as a novel ASC target.  相似文献   

15.
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is associated with a broad range of biological properties including antitumor activity. However, the effect of DHA on gastric cancer has not been clearly clarified. The aim of this study was to investigate the role and mechanism of DHA in human gastric cancer cell line BGC-823. Cell viability was assessed by MTT assay. Cell apoptosis was analyzed with flow cytometry. The expressions of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and their phosphorylated forms as well as apoptosis related proteins were examined by western blot analysis. The results demonstrated that DHA inhibited cell viability of BGC-823 cells in a dose- and time-dependent manner. DHA treatment upregulated the expression of Bax, cleaved caspase-3 and -9, and degraded form of PARP, and downregulated the Bcl-2 expression and Bcl-2/Bax ratio. Meanwhile, DHA increased the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. Synthetic inhibitors of JNK1/2 or p38 MAPK kinase activity, but not inhibitor of ERK1/2, significantly abolished the DHA-induced activation of caspase-3 and -9. In vivo tumor-suppression assay further indicated that DHA displayed significant inhibitory effect on BGC-823 xenografts in tumor growth. These results indicate that DHA induces apoptosis of BGC-823 cells through JNK1/2 and p38 MAPK signaling pathways and DHA could serve as a potential additional chemotherapeutic agent for treatment of gastric cancer.  相似文献   

16.
We investigated the effects of tumor necrosis factor-α (TNF-α) exposure on mitogen-activated protein kinase signaling in human microvascular endothelial cells. TNF-α caused a significant suppression of a dual specificity phosphatase, DUSP4, that regulates ERK1/2 activation. Thus, we hypothesized that suppression of DUSP4 enhances cell survival by increasing ERK1/2 signaling in response to growth factor stimulation. In support of this concept, TNF-α pre-exposure increased growth factor-mediated ERK1/2 activation, whereas overexpression of DUSP4 with an adenovirus decreased ERK1/2 compared to an empty adenovirus control. Overexpression of DUSP4 also significantly decreased cell viability, lessened recovery in an in vitro wound healing assay, and decreased DNA synthesis. Pharmacological inhibition of NFκB activation or a dominant negative construct of the inhibitor of κB significantly lessened TNF-α-mediated suppression of DUSP4 expression by 70–84 % and attenuated ERK activation, implicating NFκB-dependent pathways in the TNF-α-mediated suppression of DUSP4 that contributes to ERK1/2 signaling. Taken together, our findings show that DUSP4 attenuates ERK signaling and reduces cell viability, suggesting that the novel crosstalk between NFκB and MAPK pathways contributes to cell survival.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号