共查询到20条相似文献,搜索用时 0 毫秒
1.
Sulian Lv Aifang Yang Kewei Zhang Lei Wang Juren Zhang 《Molecular breeding : new strategies in plant improvement》2007,20(3):233-248
The tolerance to drought stress of the homozygous transgenic cotton (Gossypium hirsutum L.) plants with enhanced glycinebetaine (GB) accumulation was investigated at three development stages. Among the five transgenic
lines investigated, lines 1, 3, 4, and 5 accumulated significantly higher levels of GB than the wild-type (WT) plants either
before or after drought stress, and the transgenic plants were more tolerant to drought stress than the wild-type counterparts
from young seedlings to flowering plants. Under drought stress conditions, transgenic lines 1, 3, 4, and 5 had higher relative
water content, increased photosynthesis, better osmotic adjustment (OA), a lower percentage of ion leakage, and less lipid
membrane peroxidation than WT plants. The GB levels in transgenic plants were positively correlated with drought tolerance
under water stress. The results suggested that GB may not only protect the integrity of the cell membrane from drought stress
damage, but also be involved in OA in transgenic cotton plants. Most importantly, the seedcotton yield of transgenic line
4 was significantly greater than that of WT plants after drought stress, which is of great value in cotton production. 相似文献
2.
A. M. Abdelmoghny K. P. Raghavendra J. Annie Sheeba H. B. Santosh Jayant H. Meshram Suman Bala Singh K. R. Kranthi V. N. Waghmare 《Physiology and Molecular Biology of Plants》2020,26(12):2339
Drought stress is one of the major abiotic stresses affecting lint yield and fibre quality in cotton. With increase in population, degrading natural resources and frequent drought occurrences, development of high yielding, drought tolerant cotton cultivars is critical for sustainable cotton production across countries. Six Gossypium hirsutum genotypes identified for drought tolerance, wider adaptability and better fibre quality traits were characterized for various morpho-physiological and biochemical characters and their molecular basis was investigated under drought stress. Under drought conditions, genotypes revealed statistically significant differences for all the morpho-physiological and biochemical traits. The interaction (genotype × treatment) effects were highly significant for root length, excised leaf water loss and cell membrane thermostability indicating differential interaction of genotypes under control and stress conditions. Correlation studies revealed that under drought stress, relative water content had significant positive correlation with root length and root-to-shoot ratio while it had significant negative correlation with excised leaf water loss, epicuticular wax, proline, potassium and total soluble sugar content. Analysis of expression of fourteen drought stress related genes under water stress indicated that both ABA dependent and ABA independent mechanisms of drought tolerance might be operating differentially in the studied genotypes. IC325280 and LRA5166 exhibited ABA mediated expression of stress responsive genes and traits. Molecular basis of drought tolerance in IC357406, Suraj, IC259637 and CNH 28I genotypes could be attributed to ABA independent pathway. Based on physiological phenotyping, the genotypes IC325280 and IC357406 were identified to possess better root traits and LRA5166 was found to have enhanced cellular level tolerance. Variety Suraj exhibited good osmotic adjustment and better root traits to withstand water stress. The identified drought component trait(s) in specific genotypes would pave way for their pyramiding through marker assisted cotton breeding.Electronic supplementary materialThe online version of this article (10.1007/s12298-020-00890-3) contains supplementary material, which is available to authorized users. 相似文献
3.
Expression of apoplastically secreted tobacco osmotin in cotton confers drought tolerance 总被引:1,自引:0,他引:1
Vilas Parkhi Vinod Kumar Ganesan Sunilkumar LeAnne M. Campbell Narendra K. Singh Keerti S. Rathore 《Molecular breeding : new strategies in plant improvement》2009,23(4):625-639
Osmotin or osmotin-like proteins have been shown to be induced in several plant species in response to various types of biotic
and abiotic challenges. The protein is generally believed to be involved in protecting the plant against these stresses. Although
some understanding of the possible mechanism underlying the defense function of osmotin against biotic stresses is beginning
to emerge, its role in abiotic stress response is far from clear. We have transformed cotton plants with a tobacco-osmotin
gene, lacking the sequence encoding its 20 amino acid-long, C-terminal vacuolar-sorting motif, under the control of CaMV 35S
promoter. Apoplastic secretion of the recombinant protein was confirmed and the plants were evaluated for their ability to
tolerate drought conditions. Under polyethylene glycol-mediated water stress, the osmotin-expressing seedlings showed better
growth performance. The transformants showed a slower rate of wilting during drought and faster recovery following the termination
of dry conditions in a greenhouse setting. During drought, the leaves from transgenic plants had higher relative water content
and proline levels, while showing reduced H2O2 levels, lipid peroxidation and electrolyte leakage. Importantly, following a series of dry periods, the osmotin transformants
performed better in terms of most growth and developmental parameters tested. Most relevant, the fiber yield of transgenic
plants did not suffer as much as that of their non-transgenic counterparts under drought conditions. The results provide direct
support for a protective role of osmotin in cotton plants experiencing water stress and suggest a possible way to achieve
tolerance to drought conditions by means of genetic engineering.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
4.
5.
Ravi Prakash Shukla Gopal Ji Tiwari Babita Joshi Kah Song-Beng Sushma Tamta N. Manikanda Boopathi Satya Narayan Jena 《Physiology and Molecular Biology of Plants》2021,27(8):1731
A recombinant inbred line mapping population of intra-species upland cotton was generated from a cross between the drought-tolerant female parent (AS2) and the susceptible male parent (MCU13). A linkage map was constructed deploying 1,116 GBS-based SNPs and public domain-based 782 SSRs spanning a total genetic distance of 28,083.03 cM with an average chromosomal span length of 1,080.12 cM with inter-marker distance of 10.19 cM.A total of 19 quantitative trait loci (QTLs) were identified in nine chromosomes for field drought tolerance traits. Chromosomes 3 and 8 harbored important drought tolerant QTLs for chlorophyll stability index trait while for relative water content trait, three QTLs on chromosome 8 and one QTL each on chromosome 4, 12 were identified. One QTL on each chromosome 8, 5, and 7, and two QTLs on chromosome 15 linking to proline content were identified. For the nitrate reductase activity trait, two QTLs were identified on chromosome 3 and one on each chromosome 8, 13, and 26. To complement our QTL study, a meta-analysis was conducted along with the public domain database and resulted in a consensus map for chromosome 8. Under field drought stress, chromosome 8 harbored a drought tolerance QTL hotspot with two in-house QTLs for chlorophyll stability index (qCSI01, qCSI02) and three public domain QTLs (qLP.FDT_1, qLP.FDT_2, qCC.ST_3). Identified QTL hotspot on chromosome 8 could play a crucial role in exploring abiotic stress-associated genes/alleles for drought trait improvement.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01041-y. 相似文献
6.
Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions 总被引:1,自引:0,他引:1
Ruíz-Sánchez M Armada E Muñoz Y García de Salamone IE Aroca R Ruíz-Lozano JM Azcón R 《Journal of plant physiology》2011,168(10):1031-1037
The response of rice plants to inoculation with an arbuscular mycorrhizal (AM) fungus, Azospirillum brasilense, or combination of both microorganisms, was assayed under well-watered or drought stress conditions. Water deficit treatment was imposed by reducing the amount of water added, but AM plants, with a significantly higher biomass, received the same amount of water as non-AM plants, with a poor biomass. Thus, the water stress treatment was more severe for AM plants than for non-AM plants. The results showed that AM colonization significantly enhanced rice growth under both water conditions, although the greatest rice development was reached in plants dually inoculated under well-watered conditions. Water level did not affect the efficiency of photosystem II, but both AM and A. brasilense inoculations increased this value. AM colonization increased stomatal conductance, particularly when associated with A. brasilense, which enhanced this parameter by 80% under drought conditions and by 35% under well-watered conditions as compared to single AM plants. Exposure of AM rice to drought stress decreased the high levels of glutathione that AM plants exhibited under well-watered conditions, while drought had no effect on the ascorbate content. The decrease of glutathione content in AM plants under drought stress conditions led to enhance lipid peroxidation. On the other hand, inoculation with the AM fungus itself increased ascorbate and proline as protective compounds to cope with the harmful effects of water limitation. Inoculation with A. brasilense also enhanced ascorbate accumulation, reaching a similar level as in AM plants. These results showed that, in spite of the fact that drought stress imposed by AM treatments was considerably more severe than non-AM treatments, rice plants benefited not only from the AM symbiosis but also from A. brasilense root colonization, regardless of the watering level. However, the beneficial effects of A. brasilense on most of the physiological and biochemical traits of rice plants were only clearly visible when the plants were mycorrhized. This microbial consortium was effective for rice plants as an acceptable and ecofriendly technology to improve plant performance and development. 相似文献
7.
Camilo Elber Vital Andrea Giordano Eduardo de Almeida Soares Thomas Christopher Rhys Williams Rosilene Oliveira Mesquita Pedro Marcus Pereira Vidigal Amanda de Santana Lopes Túlio Gomes Pacheco Marcelo Rogalski Humberto Josué de Oliveira Ramos Marcelo Ehlers Loureiro 《Plant molecular biology》2017,94(6):577-594
8.
Sajeesh Kappachery Jae Woong Yu Gangadhar Baniekal-Hiremath Se Won Park 《Comptes rendus biologies》2013,336(11-12):530-545
Identification of major stress tolerance genes of a crop plant is important for the rapid development of its stress-tolerant cultivar. Here, we used a yeast functional screen method to identify potential drought-tolerance genes from a potato plant. A cDNA expression library was constructed from hyperosmotic stressed potato plants. The yeast transformants expressing different cDNAs were selected for their ability to survive in hyperosmotic stress conditions. The relative tolerances of the selected yeast transformants to multiple abiotic stresses were also studied. Specific potato cDNAs expressed in the tolerant yeast transformants were identified. Sixty-nine genes were found capable of enhancing hyperosmotic stress tolerance of yeast. Based on the relative tolerance data generated, 12 genes were selected, which could be most effective in imparting higher drought tolerance to potato with better survival in salt and high-temperature stresses. Orthologues of few genes identified here are previously known to increase osmotic stress tolerance of yeast and plants; however, specific studies are needed to confirm their role in the osmotic stress tolerance of potato. 相似文献
9.
10.
Although water-limited environments are detrimental to cotton growth and productivity worldwide, identification of cotton (Gossypium hirsutum L.) genotypes that are less sensitive to drought may improve productivity in drought prone areas. The objective of the study was to assess genotypic variation for drought tolerance in cotton varieties using physiological attributes as selection criteria, and to determine the relationship of physiological attributes with productivity traits. The association of target physiological traits for drought tolerance (photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (E)) with productivity traits under well-watered (W1) and water-limited (W2) regimes was analyzed using 32 public cotton cultivars/bred lines in two field experiments conducted during the normal cotton growing seasons 2003 and 2004. Seed cotton yield (SCY) and biological yield (BY) were markedly affected under W2 regime in all cultivars except the outstanding performance of CIM-1100 and RH-510 proving their superiority to other cultivars in drought tolerance. Conversely, FH-901, FH-634, and FH-2000 were high yielding under W1 regime; however, exhibited a sharp decline in yield under W2 regime. A positive correlation between SCY and BY under water stress (r=0.44 in 2003; r=0.69 in 2004) indicates that BY is also a primary determinant of SCY under water stress and genetic improvement of BY under water-limited environment may also improve SCY. Pn, gs, and E were significantly reduced by water stress. Substantial genotypic variation for gas exchange attributes existed among the cotton cultivars. A positive association (P<0.01) was observed between gs and E under both regimes in both years indicating the prevalence of stomatal control of transpiration. The positive association (P<0.01) between Pn and gs in both years in W2 regime indicates also a major role of stomatal effects in regulating leaf photosynthesis under water-limited conditions. Pn was significantly correlated with SCY (P<0.01) and BY (P<0.05 in 2003; P<0.01 in 2004) in W2 regime; however, the level of these associations was not significant in W1 regime. These findings demonstrate that association of Pn with productivity is effective under water-limited environment and may be useful as a selection criterion in breeding programs with the objective of improving drought tolerance and SCY under water-limited environments. Moreover, association between SCY and BY under water stress suggests that genetic improvement of BY under water stress may also improve SCY. 相似文献
11.
An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery 下载免费PDF全文
Pengchao Hao Jiantang Zhu Aiqin Gu Dongwen Lv Pei Ge Guanxing Chen Xiaohui Li Yueming Yan 《Proteomics》2015,15(9):1544-1563
Roots, leaves, and intermediate sections between roots and leaves (ISRL) of wheat seedlings show different physiological functions at the protein level. We performed the first integrative proteomic analysis of different tissues of the drought‐tolerant wheat cultivar Hanxuan 10 (HX‐10) and drought‐sensitive cultivar Chinese Spring (CS) during a simulated drought and recovery. Differentially expressed proteins (DEPs) in the roots (122), ISRLs (146), and leaves (163) showed significant changes in expression in response to drought stress and recovery. Numerous DEPs associated with cell defense and detoxifications were significantly regulated in roots and ISRLs, while in leaves, DEPs related to photosynthesis showed significant changes in expression. A significantly larger number of DEPs related to stress defense were upregulated in HX‐10 than in CS. Expression of six HSPs potentially related to drought tolerance was significantly upregulated under drought conditions, and these proteins were involved in a complex protein–protein interaction network. Further phosphorylation analysis showed that the phosphorylation levels of HSP60, HSP90, and HOP were upregulated in HX‐10 under drought stress. We present an overview of metabolic pathways in wheat seedlings based on abscisic acid signaling and important protein expression patterns. 相似文献
12.
《Saudi Journal of Biological Sciences》2020,27(5):1228-1236
Abiotic stress is recurrent occurring problem for sugarcane crop in terms of hindrance in achieving good and high production. In India, drought coverage is 2.97 lakh ha while 2.5 lakh ha under coverage of waterlogging which is one of the reasons behind low cane production and productivity due to alteration in metabolism, growth and development of the plant either in direct or indirect way. Therefore, we investigated the comparison of morphological losses in drought and waterlogging sugarcanes. Morphological parameters assessed were leaf length, leaf width, leaf area, stalk diameter, cane height, cane weight, internodes number and average internodal length. Also, total root weight, dry matter production of stalk, leaves and roots were observed. Results showed that leaf length was marginally increased in drought canes but it was not so in case of waterlogged canes. Besides, there was decrease in total root weight of sugarcane affected by drought by 16.99% while there was increase by 10.06% in waterlogging affected canes in comparison to normal grown canes. In cane height and stalk diameter, decrease by 18.28%, 7.52%, respectively, in drought and 11.41%, marginal decrease, respectively, in waterlogged affected canes as compared to normally grown canes. Average internodal length was also found to increase in both drought as well as waterlogged canes by 39.02% and 36.60%, respectively, in comparison to normal grown canes. Number of internodes was decreased more in drought affected canes than in waterlogged canes. This study concluded that there are higher morphological losses in sugarcane in drought condition than in waterlogging conditions with respect to normal grown canes. 相似文献
13.
《Animal : an international journal of animal bioscience》2022,16(11):100662
The search for criteria that allow the quantification of the level of thermotolerance of an animal is a major challenge in animal production. Different criteria have been proposed to date, mainly the use of routine milk recording and weather information or the collection of physiological measures related with heat stress. This study aimed at quantifying the association between indicators of heat tolerance derived from productive and physiological traits. For this purpose, two physiological traits, rectal temperature (RT) and respiratory rate (RR), and nine productive traits (milk yield, fat, protein and lactose yields and contents, casein and urea contents) were measured from June to September of 2018 in three flocks of Manchega sheep. A total of 462 lactating ewes participated in the study. Air temperature (Ta), relative humidity (RH) and associated temperature and humidity index (THI) were recorded inside the barn and also obtained from the closest weather station from the national meteorological network, and used to produce several measurements of heat load on animals. Based on the results of fits for quadratic and cubic regressions on the alternative heat load measures, the cubic regression on Ta and THI obtained inside the barn at time of recording yielded the best fit for physiological and productive parameters. The use of weather information taken from the official weather station closest to the farm also produced similar estimates and could be considered as a good alternative when on-farm meteorological data are not available. Two-trait random regression models that involved individual intercept and slope of response to heat load were used to obtain correlations between basal levels and heat tolerance within and across traits. Estimated correlations showed that animals with smaller vs larger basal levels of RT and RR tend to be more vs less heat tolerant (correlations up to 0.46) and that slopes of increase for RR and RT under heat stress were highly correlated (0.82). Estimated correlations between tolerance criteria from production vs physiology were up to ?0.5 (between milk yield and RT), indicating that animals that show less increase in body temperature also tend to show a smaller decrease in production under heat stress. However, because of the non-unity correlation between the two types of indicators of heat tolerance, both sources of information, productive and physiological ought to be taken into account to ensure the long-term sustainability of selection programmes aiming at improving productive levels when heat stress is a concerning issue. 相似文献
14.
Stanisław Grzesiak Morio Iijima Yasuhiro Kono Akira Yamauchi 《Acta Physiologiae Plantarum》1997,19(3):339-348
Different responses among legume species were observed, but the morphological and physiological differences that confer drought
resistance or susceptibility are not well explained. The objective of this study was the determination of variation of morphological
characteristics within 7 field bean and 4 field pea cultivars as related to drought tolerance. Also differences in the effect
of drought on seed germination and seedling growth in 2 field bean and 2 field pea cultivars of different drought tolerances
were investigated.
The examined cultivars were characterized by variation of certain morphological characteristics regarded as xeromorphic features
associated with the ability of plant to survive under drought. The drought resistant cultivars (field bean Gobo and field
pea Solara) in comparison with the sensitive ones (field bean Victor and field pea Bareness) were characterized by more favourable
relations between the size of the above—ground parts and the size of root, as well as the frequency and size of stomata. Moreover,
in the resistant cultivars there was observed, a smaller influence of simulated drought (ψ=−0.6 MPa) on the increase of dry
matter of the above-ground parts and of the roots. Also there was smaller influence on the height of seedlings and on the
length of lateral roots. The correlation coefficients between the measured characteristics and the values of the drought susceptibility
index (DSI) were in most cases statistically not significant, although, on the whole, they were very high. This may be an
indication of a relatively high participation of the measured characteristics in the total variation of the drought tolerance
in the cultivars. In cultivars regarded as belonging to the group of sensitive ones, a more disadvantageous effect of simulated
drought (ψ=−0.6 MPa) on seed germination was observed, especially in the determination of the promptness index (PI). 相似文献
15.
《Saudi Journal of Biological Sciences》2023,30(9):103747
The adverse effects of climate change on sheep farming have become more noticeable in recent decades. Extensive efforts have been made to untangle the complex relationship between heat tolerance, animal health, and productivity, also to identify a resilient and economically suitable breed for selection that can be resilient to future climate change conditions. Using quantitative real-time polymerase chain reaction (qRT-PCR), we observed the seasonal variations in the expression of several important genes related to heat stress and immunity (HSP70, IL10, TLR2, TLR4, and TLR8) in three of the most widely kept sheep breeds in Hungary: The indigenous Tsigai, Hungarian Merino, and White Dorper. We found that the seasonal stressor affected the relative gene expression of all genes in this study. Notably, The Hungarian indigenous Tsigai was the most robust breed adapted to the Hungarian continental (hot summer, cold winter) environment, with excellent thermotolerance and immunity. Furthermore, despite suffering from heat stress in the summer, Hungarian Merino maintained their robust immune system well throughout the year. 相似文献
16.
Some physiological and morphological characteristics of citrus plants for drought resistance 总被引:3,自引:0,他引:3
Robert Sav Carme Biel Rafael Domingo M. Carmen Ruiz-S nchez Arturo Torrecillas 《Plant science》1995,110(2):167-172
Tolerance and avoidance mechanisms to drought stress were studied in 6-month-old plants of Newhall orange (Citrus sinensis (L.) Osbeck) and Ellendale tangor (orange × mandarin hybrid) (Citrus sinensis (L) Osbeck × Citrus reticulata Blanco) during a drought/rewatering cycle under controlled conditions. Drought stress did not promote osmotic adjustment, while elastic adjustment (tissue elasticity increase) was noted in stressed orange and tangor plants. Both citrus plants showed a parallel decrease in leaf conductance (g1) and leaf water potential (Ψ1) under water stress. Tangor plants had a more efficient water conservative strategy than orange, based on the characteristics of canopy architecture (lower canopy area and a more closed canopy with leaves nearly vertically oriented) together with a significant decrease in cuticular transpiration rates (TRc) under stress. 相似文献
17.
该研究以青藏高原地区采集的柠条锦鸡儿(Caragana korshinskii)等20种灌木树种为研究对象, 将其二年生幼苗移栽至苗圃培育, 通过田间试验测定三年生苗木生物量根冠比(RSR)、叶片蒸腾速率(Tr)、瞬时水分利用效率(WUEi)、稳定碳同位素组成(δ13C)、叶片解剖结构特征和根系特征(长度、表面积、体积和根尖数)指标, 综合分析其抗旱性能差异, 为青藏高原干旱地区灌木树种抗逆性(耐旱)评价指标的建立、优良抗逆性树种的筛选及各种灌木树种的合理立地配置提供必要的理论依据。研究结果表明: 所选20种灌木为适应长期的干旱逆境, 不同植物种具有不同的抗旱策略。研究中将灌木抗旱机制划分为6个类型: 根系特征抗旱型、叶片旱生结构型、叶片旱生形态型、生物量分配型、节水型、高水分利用效率型。不同属和同属不同种灌木抗旱性有所差异, 沙棘属(Hippophae)植物总体抗旱性不佳, 而金露梅(Potentilla fruticosa)、豪猪刺(Berberis julianae)、树锦鸡儿(Caragana arborescens)、绣线菊(Spiraea salicifolia)和蒙古沙棘(Hippophae rhamnoides ssp. mongolica)综合抗旱性能较好, 总体上属于根系和叶片抗旱特征明显、低耗水、高生产效率的抗旱性强树种, 可以在青藏高原地区植被恢复树种筛选时优先考虑。根系特征值之间存在极显著正相关关系, 叶片结构特征指标之间也存在不同程度的相关关系, 但RSR、Tr、WUEi和δ13C与根系特征值和叶片解剖结构特征指标之间总体上相关性不显著。主成分分析结果显示灌木全根和细根的长度、表面积、体积、根尖数和叶片栅栏组织厚度、海绵组织厚度、瞬时水分利用效率因子载荷较高, 能较好地反映青藏高原灌木树种抗旱性差异相关信息。此外, 灌木树种原产地与抗旱性也存在一定的联系, 青海西宁地区采集的灌木树种总体抗旱性优于甘肃天水和西藏拉萨地区。 相似文献
18.
《Saudi Journal of Biological Sciences》2015,22(5):656-663
Heat stress (HS) is the major constraint to crop productivity worldwide. The objective of the present experiment was to select the tolerant and sensitive genotype(s) on the basis of morpho-physiological and biochemical characteristics of ten Vicia faba genotypes. These genotypes were as follows: Zafar 1, Zafar 2, Shebam 1, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853. The experimental work was undertaken to study the effects of different levels of temperature (control, mild, and modest) on plant height (PH) plant−1, fresh weight (FW) and dry weight (DW) plant−1, area leaf−1, content of leaf relative water (RWC), proline content (Pro) and total chlorophyll (Total Chl), electrolyte leakage (EL), malondialdehyde level (MDA), hydrogen peroxide (H2O2), and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) enzymes. HS significantly affected growth performance of all genotypes. However, the magnitude of reduction in genotypes ‘C5’ was relatively low, possibly due to its better antioxidant activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, ‘C5’ was noted to be the most HS tolerant and ‘Espan’ most HS sensitive genotypes. It was concluded that the heat-tolerant genotypes may have better osmotic adjustment and protection from free radicals by increasing the accumulation of Pro content with increased activities of antioxidant enzyme. 相似文献
19.
Fu BY Xiong JH Zhu LH Zhao XQ Xu HX Gao YM Li YS Xu JL Li ZK 《Molecular genetics and genomics : MGG》2007,278(6):599-609
Drought tolerance (DT) in rice is known to be controlled by many quantitative trait loci (QTLs) and involved differential
expression of large numbers of genes, but linking QTLs with their underlying genes remains the most challenging issue in plant
molecular biology. To shed some light on this issue, differential gene expression in response to PEG simulated drought in
3 unique genetic materials (a lowland rice, IR64 and its derived line, PD86 which has 11 introgressed DT QTLs, and a upland
rice IRAT109) was investigated using a PCR-based subtractive hybridization strategy. More than 300 unique subtracted cDNA
sequences, covering genes of diverse cellular activities and functions, were identified and confirmed by semi-quantitative
and quantitative RT-PCR. Detailed bioinformatics analyses of the data revealed two interesting results. First, the levels
and mechanisms of DT of the three rice lines were associated with the number and types of differentially expressed genes,
suggesting different DT mechanisms in rice are controlled by different sets of genes and different metabolic pathways, and
most differentially expressed genes under drought were able to contribute to DT. Second, there appeared a high correspondence
in genomic location between DT QTLs and clusters of differentially expressed genes in rice, suggesting some DT QTLs may represent
clusters of co-regulated and functionally related genes. Thus, differential gene expression analyses using genetically characterized
materials can provide additional insights into the molecular basis of QTLs and convergent evidence to shortlist the candidate
genes for target QTLs.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Bin-Ying Fu and Jian-Hua Xiong are contributed to this work equally. 相似文献