首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current study was designed multiple occlusions and reperfusion of bilateral carotid arteries induced cerebral injury model and evaluated the protective effect of gallic acid on it. In silico study was involved to study gallic acid binding affinity on cerebrotonic proteins compared with standard drugs using Autodoc vina tool. Cerebral ischemia was induced by occlusion of bilateral common carotid arteries for 10 mins followed by 10 reperfusions (1 cycle), cycle was continued to 3 cycles (MO/RCA), then pathological changes were observed by estimation of brain antioxidants as superoxide dismutase, glutathione, catalase, oxidants like malonaldehyde, cerebral infarction area, histopathology, and study gallic acid treatment against cerebral injury. Gallic acid exhibited a strong binding affinity on targeted cerebrotoxic proteins. MO/RCA rat brain antioxidant levels were significantly decreased and increased MDA levels (p < 0.0001), Infarction size compared to sham rats. Gallic acid treatment rat brain MDA levels significantly decreased (p < 0.4476) and increased SOD (p < 0.0001), CAT (p < 0.0001), GSH (p < 0.0001), cerebral infarction area when compared to MO/RCA group. Developed model showed significant cerebral ischemic injury in rats, injury was ameliorated by Gallic acid treatment and in silico approaches also inhibit the cerebrotoxic protein function by targeting on active sites.  相似文献   

2.
The purpose of this study is to examine the antiarrhythmic and antioxidant effects of tamoxifen, one of the selective estrogen modulators, in ovariectomized rats subjected to myocardial ischemia-reperfusion (I/R) injury. A month after ovariectomy, rats were divided into four groups: (I) ovariectomized controls without any treatment, (II) ovariectomized rats treated with vehicle dimethylsulfoxide (DMSO), (III)–(IV) ovariectomized rats treated with tamoxifen 1 or 10 mg/kg,sc daily for 14 days. To produce arrhythmia, the left main coronary artery was occluded for 7 min, followed by 7 min of reperfusion. The blood pressure (BP), heart rate (HR), electrocardiography (ECG) was recorded before and during the ischemia-reperfusion period. The blood levels of malondialdehyde (MDA), creatine kinase (CK), glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and catalase (CAT) were measured after the rats were killed. Tamoxifen reduced the incidence of ventricular tachycardia (VT) on ischemia and reperfusion as well as the incidence and duration of reversible ventricular fibrillation (VF) on reperfusion. I/R injury caused a significant fall in GSH, GSH-Px as well as an increase in MDA and CK levels in the control group when compared to tamoxifen treated groups. The changes in levels of CAT and GR were however, not significant. In conclusion, our findings suggest that tamoxifen has cardioprotective effects against I/R injury in rats, likely its antioxidant properties.  相似文献   

3.
Copaifera langsdorffii oleo-resin (CLOR) is a reputed herbal medicine used to combat gastrointestinal functional disorders. Our previous studies show that CLOR prevents gastric ulceration and promotes wound healing. This study examined the effects of CLOR on intestinal damage associated with mesenteric ischemia/reperfusion in rat. Wistar albino rats were divided into four groups of six in each. Group 1: Sham operated, Group 2: Vehicle + 45 min of ischemia followed by 60 min reperfusion (I/R), Groups 3 and 4: I/R + CLOR (200 and 400 mg /kg, p.o., respectively). All treatments were given 24 h, 12 h and 2 h before I/R. Animals were sacrificed at the end of reperfusion period and ileal tissue samples were obtained for biochemical analysis. Myeloperoxidase (MPO), an index of polymorphonuclear leukocytes; malondialdehyde (MDA), an end product of lipoperoxidation; catalase (CAT), an antioxidant enzyme; reduced glutathione (GSH), a key antioxidant; and nitrite, a marker of nitric oxide (NO) production were determined in ileum homogenates. The results show that I/R produces a significant increase in MDA content, MPO, and CAT activities with a significant decrease in GSH and an elevation in nitrite production, as compared to sham control. CLOR treatment caused significant attenuations in I/R-associated increases of MPO, MDA and CAT activities and on nitrite level. Besides, CLOR could effectively prevent the I/R-associated depletion of GSH. The data indicate that the oleo-resin has a protective action against I/R-induced intestinal tissue damage, which appeared to be, at least in part, due to an antioxidant and anti-lipid peroxidation mechanism.  相似文献   

4.
The efficacy of Withania somnifera (Ws) to limit myocardial injury after ischemia and reperfusion was explored and compared to that of Vit E, a reference standard known to reduce mortality and infarct size due to myocardial infarction. Wistar rats (150–200 g) were divided into six groups and received orally saline (sham, control group), Ws-50/kg (Ws control and treated group) and Vit E-100 mg/kg (Vit E control and treated group) respectively for 1 month. On the 31st day, rats of the control, Vit E and Ws treated groups were anesthetized and subjected to 45 min occlusion of the LAD coronary artery followed by 60 min reperfusion. Hemodynamic parameters: systolic, diastolic and mean arterial pressure (SAP, DAP, MAP), heart rate (HR), left ventricular end diastolic pressure (LVEDP), left ventricular peak (+) LVdP/dt and (–) LVdP/dt were monitored. Hearts were removed and processed for histopathological and biochemical studies: Myocardial enzyme viz, creatin phosphokinase (CPK), and antioxidant parameters: malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx) were estimated. Postischemic reperfusion produced significant cardiac necrosis, depression of left ventricular functions (MAP, LVEDP, (+) and (–) LVdP/dt) and a significant fall in GSH (p < 0.01), SOD, CAT(p < 0.05), LDH and CPK (p < 0.01) as well as an increase in MDA level (p < 0.05) in the control group rats as compared to sham group. The changes in levels of protein and GPx was however, not significant. Ws and Vit E favorably modulated most of the hemodynamic, biochemical and histopathological parameters though no significant restoration in GSH, MAP (with Vit E) were observed. Ws on chronic administration markedly augmented antioxidants (GSH, GSHPx, SOD, CAT) while Vit E did not stimulate the synthesis of endogenous antioxidants compared to sham. Results indicate that Ws significantly reduced myocardial injury and emphasize the beneficial action of Ws as a cardioprotective agent.  相似文献   

5.
The efficacy of Withania somnifera (Ws) to limit myocardial injury after ischemia and reperfusion was explored and compared to that of Vit E, a reference standard known to reduce mortality and infarct size due to myocardial infarction. Wistar rats (150-200 g) were divided into six groups and received orally saline (sham, control group), Ws-50/kg (Ws control and treated group) and Vit E-100 mg/kg (Vit E control and treated group) respectively for 1 month. On the 31st day, rats of the control, Vit E and Ws treated groups were anesthetized and subjected to 45 min occlusion of the LAD coronary artery followed by 60 min reperfusion. Hemodynamic parameters: systolic, diastolic and mean arterial pressure (SAP, DAP, MAP), heart rate (HR), left ventricular end diastolic pressure (LVEDP), left ventricular peak (+)LVdP/dt and (-)LVdP/dt were monitored. Hearts were removed and processed for histopathological and biochemical studies: Myocardial enzyme viz, creatin phosphokinase (CPK), and antioxidant parameters: malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx) were estimated. Postischemic reperfusion produced significant cardiac necrosis, depression of left ventricular functions (MAP, LVEDP, (+) and (-)LVdP/dt) and a significant fall in GSH (p < 0.01), SOD, CAT (p < 0.05), LDH and CPK (p < 0.01) as well as an increase in MDA level (p < 0.05) in the control group rats as compared to sham group. The changes in levels of protein and GPx was however, not significant. Ws and Vit E favorably modulated most of the hemodynamic, biochemical and histopathological parameters though no significant restoration in GSH, MAP (with Vit E) were observed. Ws on chronic administration markedly augmented antioxidants (GSH, GSHPx, SOD, CAT) while Vit E did not stimulate the synthesis of endogenous antioxidants compared to sham. Results indicate that Ws significantly reduced myocardial injury and emphasize the beneficial action of Ws as a cardioprotective agent.  相似文献   

6.
Dietary cholesterol and aging are major risk factors to accelerate oxidation process for developing hypercholesterolemia. The major aim of this study is to elucidate the effects of rice protein on cholesterol level and oxidative stress in adult rats fed with and without cholesterol. After 2 weeks of feeding, hepatic and plasma contents of cholesterol, reduced glutathione (GSH), oxidized glutathione (GSSG), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In liver, total antioxidative capacity (T-AOC), activities of antioxidant enzymes (total superoxide dismutase, T-SOD; catalase, CAT), glutathione metabolizing enzyme activities and gene expression levels (γ-glutamylcysteine synthetase, γ-GCS; glutathione reductase, GR; glutathione peroxidase, GPx) were determined. Under cholesterol-free/enriched dietary condition, T-AOC, activities of T-SOD and CAT, glutathione metabolism related enzymes' activities and mRNA levels (γ-GCS, GR and GPx) were effectively stimulated by rice proteins as compared to caseins. Compared with caseins, rice proteins significantly increased hepatic and plasma GSH contents, whereas hepatic and plasma accumulations of MDA, PCO and GSSG were significantly reduced by rice protein-feedings. As a result, the marked reductions of cholesterol in the plasma and in the liver were observed in adult rats fed rice proteins with and without cholesterol. The present study demonstrates that the hypocholesterolemic effect of rice protein is attributable to inducing antioxidative response and depressing oxidative damage in adult rats fed cholesterol-free/enriched diets. Results suggest that the antioxidant capability involved in the hypocholesterolemic action exerted by rice protein is independent of dietary cholesterol during adult period.  相似文献   

7.
A close correlation exists between ischemia/reperfusion (I/R)-induced insult and the release of free radicals. Lecithin is a polyunsaturated phosphatidylcholine that corresponds to the phosphatidylcholine molecule. Phosphatidylcholines are high-energy functional and structural elements of all biologic membranes. alpha-Tocopherol is the major lipid-soluble chain-breaking antioxidant in the body tissues and effectively protects against neuronal damage. Therefore, we studied the effect of lecithin (300 mg/kg, p.o., 14 days) and alpha-tocopherol (200 mg/kg, p.o., 14 days), alone or in combination, on the brain redox state during I/R. Adult male Wistar rats were subjected to global ischemia by the occlusion of the two carotid arteries 24 h after the last dose of drug administration. Reperfusion was carried out 1 h after induction of ischemia and lasted for another hour. Brain lipid peroxides (MDA) and glutathione (GSH) contents, as well as superoxide dismutase (SOD) and catalase (CAT) activities were assessed. The results showed that I/R elevated brain lipid peroxides content which was accompanied by a reduction in both antioxidant enzyme activities, however, brain GSH level remained unaltered. Lecithin, alpha-tocopherol and their combination restored MDA content, as well as CAT activity with a slight tendency to normalize SOD activity. We conclude that lecithin has a possible neuroprotective effect partly through its antioxidant action which is comparable to that of alpha-tocopherol.  相似文献   

8.
The aim of this study was to investigate the effects of vitamin E (alpha-tocopherol) and 17β-estradiol (E(2)) supplementation on malondialdehyde (MDA), glutathione (GSH), vitamin A, beta carotene, selenium-dependent glutathione peroxidase (GSH-Px), zinc-dependent superoxide dismutase (SOD), and copper/zinc-dependent catalase (CAT) values in the kidney of ovariectomized (OVX) diabetic rats. Forty-two female rats were randomly divided into seven equal groups as follows: group I, control; group II, OVX; group III, OVX+E(2); group IV, OVX+E(2)+alpha-tocopherol; group V, OVX+diabetic; group VI, OVX+diabetic+E(2); and group VII, OVX+diabetic+E(2)+alpha-tocopherol. E(2) (40?μg?kg(-1)/day) and alpha-tocopherol (100?μg?kg(-1)/day) were given. Bilateral ovariectomy was performed in all groups except group I. After 4?weeks, antioxidant and MDA levels in the kidney for all groups were analyzed. GSH-Px, CAT, SOD, GSH levels, vitamin A, and beta carotene levels were decreased in OVX group compared to those in the control group but MDA level was elevated via ovariectomy. However, E(2) and E(2)+alpha-tocopherol supplementations in OVX group was associated with an increase in the GSH-Px, GSH, CAT and Zn-SOD values, vitamin A, and beta carotene levels but a decrease in MDA levels in kidney. The MDA levels in the kidney of diabetic OVX rats were found higher than those in the control and OVX groups. However, GSH, GSH-Px, CAT, SOD, vitamin A, and beta carotene levels in kidney were lower in OVX diabetic rats. On the other hand, E(2) and E(2)+alpha-tocopherol supplementations to OVX diabetic rats have caused an increase in GSH-Px, CAT and SOD, GSH, vitamin A, and beta carotene levels but a decrease in MDA levels. In conclusion, the E(2) and E(2)+alpha-tocopherol supplementations to diabetic OVX and OVX rats may strengthen the antioxidant defense system by reducing lipid peroxidation, and therefore they may play a role in preventing renal disorders.  相似文献   

9.
Thermal trauma can damage organs away from the skin burn site and lead to multiple organ dysfunction. Following thermal injury, all tissues are exposed to ischemia, and as a result, resuscitation and reperfusion occur during the burning shock. Burn damage starts systemic inflammatory reactions that produce toxins and reactive oxygen radicals that lead to peroxidation. This study aimed to investigate, for the first time, the possible antioxidant effects of Myrtus communis ethanol extract on burn-induced oxidative distant organ injury orally. The thermal trauma was generated under ether anesthesia by exposing the dorsum of rats to 90 °C water bath for 10 s. 100 mg/kg/day Mrytus communis ethanol extract was applied orally for two days. Malondialdehyde (MDA) and glutathione (GSH) levels, glutatinone-S-transferase (GST), superoxidedismutase (SOD) and catalase (CAT) activities were determined to detect the possible antioxidant effects of myrtle on small intestine and lung tissues. Burn damage significantly increased MDA levels in lung and small intestine tissues, and significantly decreased GSH levels, CAT and GST activities in the small intestine and lung tissues compared to control group. Mrytus communis ethanol extract decreased MDA level and increased GSH level, SOD, CAT and GST activities significantly in either small intestine or lung tissues. Mrytus communis extract may be an ideal candidate to be used as an antioxidant adjunct to improve oxidative distant organ damage to limit the systemic inflammatory response and decreasing the recovery time after thermal injury.  相似文献   

10.
Resveratrol, a polyphenol found in various plants, including grapes, plums and peanuts has shown various medIRInal properties, including antioxidant, protection of cardiovascular disease and cancer risk. However, the effects of resveratrol on spinal cord reperfusion injury have not been investigated. Hence, the present study was designed to evaluate the effect of resveratrol on nitric oxide synthase (iNOS)/p38MAPK signaling pathway and to elucidate its regulating effect on the protection of spinal cord injury. Spinal cord ischemia–reperfusion injury (IRI) was performed by the infrarenal abdominal aorta with mini aneurysm clip model. The expressions of iNOS and p38MAPK and the levels of biochemical parameters, including nitrite/nitrate, malondialdehyde (MDA), advanced oxidation products (AOPP), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were measured in control and experimental groups. IRI-induced rats treated with 10 mg/kg resveratrol protected spinal cord from ischemia injury as supported by improved biological parameters measured in spinal cord tissue homogenates. The resveratrol treatment significantly decreased the levels of plasma nitrite/nitrate, iNOS mRNA and protein expressions and phosphorylation of p38MAPK in IRI-induced rats. Further, IRI-produced free radicals were reduced by resveratrol treatment by increasing enzymatic and non-enzymatic antioxidant levels such as GSH, SOD and CAT. Taken together, administration of resveratrol protects the damage caused by spinal cord ischemia with potential mechanism of suppressing the activation of iNOS/p38MAPK pathway and subsequent reduction of oxidative stress due to IRI.  相似文献   

11.
Vitis amurensis (Vitaceae) has been reported to have anti-oxidant and anti-inflammatory activities. The present study investigated a methanol extract from the leaf and stem of V. amurensis for neuroprotective effects on cerebral ischemic damage in rats and on excitotoxicity induced by glutamate in cultured rat cortical neurons. Transient focal cerebral ischemia was induced by 2 h middle cerebral artery occlusion followed by 24 h reperfusion (MCAO/reperfusion) in rats. Orally administered V. amurensis (25-100 mg/kg) reduced MCAO/reperfusion-induced infarct and edema formation, neurological deficits, and neuronal death. Depletion of glutathione (GSH) level and lipid peroxidation induced by MCAO/reperfusion was inhibited by administration of V. amurensis. The increase of phosphorylated mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and pro-apoptotic proteins and the decrease of anti-apoptotic protein in MCAO/reperfusion rats were significantly inhibited by treatment with V. amurensis. Exposure of cultured cortical neurons to 500 μM glutamate for 12 h induced neuronal cell death. V. amurensis (1-50 μg/ml) and (+)-ampelopsin A, γ-2-viniferin, and trans-?-viniferin isolated from the leaf and stem of V. amurensis inhibited glutamate-induced neuronal death, the elevation of intracellular calcium ([Ca2+]i), the generation of reactive oxygen species (ROS), and changes of apoptosis-related proteins in cultured cortical neurons, suggesting that the neuroprotective effect of V. amurensis may be partially attributed to these compounds. These results suggest that the neuroprotective effect of V. amurensis against focal cerebral ischemic injury might be due to its anti-apoptotic effect, resulting from anti-excitotoxic, anti-oxidative, and anti-inflammatory effects and that the leaf and stem of V. amurensis have possible therapeutic roles for preventing neurodegeneration in stroke.  相似文献   

12.
Germacrone (GM) is an anti-inflammatory compound extracted from Rhizoma curcuma. Here, we strived to investigate the neuroprotective effects of GM in rat models of transient middle cerebral artery occlusion/reperfusion injury. Rats immediately after cerebral ischemia were intraperitoneally injected with GM at doses of 5, 10, and 20 mg/kg. After 1 day of reperfusion, the water content in the brain, infarct volume, and neurological deficits were assessed. Hippocampus neurons were histopathologically examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Activities of glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in brain tissue were detected. Real-time PCR and Western blotting were utilized to quantify the expression of apoptosis markers, such as caspase-3, Bax, and Bcl-2. The content of phospho-Akt (p-Akt) was also measured using Western blotting. GM treatment markedly decreased the brain water content, infarct volume and the neurological deficits, which was corroborated by attenuated histopathologic change. MDA levels were reduced and activities of GSH, SOD, and GSH-PX were elevated after GM treatment. Caspase-3 and Bax were decreased, and Bcl-2 was increased at both messenger RNA and protein levels by GM treatment. The p-Akt expression was increased by GM. Our data indicated that the neuroprotective effects of GM may attenuate the injuries from cerebral ischemia/reperfusion in rats through antioxidative and antiapoptotic mechanisms.  相似文献   

13.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of cerebral injury after ischemia-reperfusion (I/R). Fish n-3 essential fatty acids (EFA), contain eicosapentaenoic acids (EPA) and docosahexoenoic acids (DHA), exhibit antioxidant properties. DHA is an important component of brain membrane phospholipids and is necessary for the continuity of neuronal functions. EPA prevents platelet aggregation and inhibits the conversion of arachidonic acid into thromboxane A(2) and prostaglandins. They have been suggested to be protective agents against neurological and neuropsychiatric disorders. In this study, the neuroprotective effects of fish n-3 EFA on oxidant-antioxidant systems and number of apoptotic neurons of the hippocampal formation (HF) subjected to cerebral I/R injury was investigated in Sprague-Dawley rats. Six rats were used as control (Group I). Cerebral ischemia was produced by occlusion of both the common carotid arteries combined with hypotension for 45 min, followed by reperfusion for 30 min, in rats either on a standard diet (Group II) or a standard diet plus fish n-3 EFA (Marincap((R)), 0.4 g/kg/day, by gavage) for 14 days (Group III). At the end of procedures, the rats were sacrificed and their brains were removed immediately. The levels of malonedialdehyde (MDA) and nitric oxide (NO) and activities of superoxide dismutase (SOD) and catalase (CAT) were measured in left HF. In addition, the number of apoptotic neurons was counted by terminal transferase dUTP nick end labelling (TUNEL) assay in histological samples of the right HF. We found that SOD activities and MDA levels increased in Group III rats compared with Group II rats. On the other hand, CAT activities and NO levels were found to be decreased in Group III rats compared with Group II rats. Additionally, the number of apoptotic neurons was lower in Group III in comparison with Group II rats. The present findings suggest that fish n-3 EFA could decrease the oxidative status and apoptotic changes in ischemic rat hippocampal formation. Dietary supplementation of n-3 EFA may be beneficial to preserve or ameliorate ischemic cerebral vascular disease.  相似文献   

14.
Little is known about the effective role of Hypericum perforatum on hepatic ischemia–reperfusion (I/R) injury in rats. Hence, albino rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. Hypericum perforatum extract (HPE) at the dose of 50 mg/kg body weight (HPE50) was intraperitonally injected as a single dose, 15 min prior to ischemia. Rats were sacrificed at the end of reperfusion period and then, biochemical investigations were made in serum and liver tissue. Liver tissue homogenates were used for the measurement of malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels. At the same time alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were assayed in serum samples and compared statistically. While the ALT, AST, LDH activities and MDA levels were significantly increased, CAT and GPx activities significantly decreased in only I/R-induced control rats compared to normal control rats (p < 0.05). Treatment with HPE50 significantly decreased the ALT, AST, LDH activities and MDA levels, and markedly increased activities of CAT and GPx in tissue homogenates compared to I/R-induced rats without treatment–control group (p < 0.05). In oxidative stress generated by hepatic ischemia–reperfusion, H. perforatum L. as an antioxidant agent contributes an alteration in the delicate balance between the scavenging capacity of antioxidant defence systems and free radicals in favour of the antioxidant defence systems in the body.  相似文献   

15.
ABSTRACT

We investigated how resveratrol affects lipid oxidation during experimental renal ischemia-reperfusion injury in rats. We used 48 adult male rats assigned to five groups: group 1, control; group 2, renal ischemia; group 3, renal ischemia + reperfusion; group 4, resveratrol + renal ischemia; group 5, resveratrol + renal ischemia + reperfusion. Plasma and renal tissue malondialdehyde (MDA), and erythrocyte and renal tissue glutathione (GSH) levels were measured and histologic changes in the renal tissue were examined. Ischemia-reperfusion affected the MDA-GSH balance adversely and caused histopathological changes in the renal tissue of the ischemia and ischemia + reperfusion groups. Resveratrol treatment normalized MDA and GSH levels as well as the histopathology that occurred in the renal tissue of the ischemia and ischemia + reperfusion groups.  相似文献   

16.
Cerebral ischemia/reperfusion (I/R) injuries are common and often cause severe complications. Ozone has been applied for protecting I/R injury in animal models of several organs including cerebra, but the detailed mechanism remains unclear. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase measurement were used to determine the influence of ozone on cell activity and damage of SH‐SY5Y cells. Some redox items such as catalase (CAT), malondialdehyde (MDA), glutathione peroxidase (GSH‐Px), and superoxide dismutase (SOD) were measured by enzyme‐linked immunosorbent assay. The mitochondrial membrane potential (ΔΨm) was determined by JC‐1 assay. Cytochrome‐c (cyt‐c) level in the cytoplasm and mitochondrion was measured by western blotting. Apoptosis was determined by flow cytometry, and some apoptosis‐related molecules were detected by quantitative real‐time polymerase chain reaction and western blotting. Ozone alleviated oxidative damage by increasing GSH‐Px, SOD, CAT, and decreasing MDA. Ozone decreased mitochondrial damage caused by I/R injury and inhibited the release of cyt‐c from mitochondrion to cytoplasm in SH‐SY5Y cells. The cell apoptosis caused by I/R was inhibited by ozone, and ozone could decrease apoptosis by increasing the ratio of Bcl‐2/Bax and inhibiting caspase signaling pathway in SH‐SY5Y cells. Ozone has the ability of maintaining redox homeostasis, decreasing mitochondrion damage, and inhibiting neurocytes apoptosis induced by I/R. Therefore, ozone may be a promising protective strategy against cerebral I/R injury.  相似文献   

17.
目的:观察楤木皂苷(total saponins extracted from Aralia taibaiensis,s AT)对大鼠心肌缺血/再灌注(myocardia1 ischemia/reperfusion,MI/R)损伤的影响。方法:可逆性冠脉左前降支结扎缺血30 min再灌注3 h复制MI/R模型,将SD大鼠随机分为假手术组、模型组、s AT低、中、高剂量组,每组10只。采用伊文思蓝(EB)、2,3,5-氯化三苯基四氮唑蓝(TTC)双染法测定心肌梗死面积,苏木精-伊红(HE)染色法观察心肌病理学形态变化,并检测血清中乳酸脱氢酶(LDH)、肌酸激酶同工酶(CK-MB)、超氧化物歧化酶(SOD)、丙二醛(MDA)、过氧化氢酶(CAT)及谷胱甘肽过氧化物酶(GSH-Px)水平。结果:与模型组比较,s AT中、高剂量组可明显缩小心肌梗死面积(P0.05),并显著降低血清中LDH、CK-MB及MDA的含量,同时使得血清中SOD、CAT和GSH-Px的活性增加。且所有给药组心肌组织的病理损伤也小于模型组。结论:s AT对大鼠MI/R损伤具有保护作用,其机制可能与抗氧化作用相关。  相似文献   

18.
The equilibrium between antioxidant function and oxidative stress is implicated in brain pathology. However, human studies on oxidant and antioxidant markers rely on postmortem tissue that might be affected by pre and postmortem factors. To evaluate the effect of these variables, we tested whether antioxidant enzymes [superoxide dismutase (SOD), catalase] glutathione (GSH) and related enzymes [gamma glutamylcysteine ligase (GCL), GSH peroxidase (GPx), GSH reductase (GR), GSH-S-transferase (GST)] and malondialdehyde (MDA, marker of lipid peroxidation) are affected in postmortem human brains (n = 50) by increase in postmortem interval (2.5–26 h), gender difference and agonal state [based on Glasgow coma scale (GCS): range: 3–15] in different anatomical regions-frontal cortex (FC), cerebellum (CB) medulla oblongata (MO), substantia nigra (SN) and hippocampus (HC). While SOD and catalase activities were relatively unaltered, GR and GPx activities were affected by agonal state (GR in CB, p < 0.05; GPx in MO, p < 0.05) indicating altered GSH dynamics during the secondary events following neuronal injury. MO, SN and HC displayed low GSH compared to FC and CB. Total GSH level was decreased with PMI (MO, p = 0.02) which could be partly attributed to increase in MDA levels with increasing PMI in MO (p < 0.05). Total GSH level was higher in CB (p < 0.017) and MO (p < 0.04) in female brains compared to males. Interestingly, HC and SN regions showed significant stability in most of the markers tested. We suggest that while SOD and catalase were relatively unaffected by the pre and postmortem factors, GSH and its metabolic enzymes were significantly altered and this was more pronounced in MO of postmortem human brains. These data highlight the influence of pre and postmortem factors on GSH dynamics and the inherent differences in brain regions, with implications for studies on brain pathophysiology employing human samples.  相似文献   

19.
There is little information about the hepatoprotective effects of gallic acid against ischemia–reperfusion (I/R) damage. Animals were subjected to I/R. Gallic acid at doses of 50 and 100 mg/kg body weight (bw) were injected as a single dose prior to ischemia. Liver tissue homogenates were used for the measurement of malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels. At the same time alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were assayed in serum samples and compared statistically. While the ALT, AST, LDH activities and MDA levels were significantly increased, CAT and GPx activities significantly decreased in only I/R-induced control rats compared to normal control rats (P < 0.05). Treatment with gallic acid at a dose of 100 mg/kg bw significantly decreased the ALT, AST, LDH activities and MDA levels, and markedly increased activities of CAT and GPx in tissue homogenates compared to I/R-induced rats with no treatment group (P < 0.05). In oxidative stress generated by hepatic ischemia–reperfusion, gallic acid contributes partially an alteration in the delicate balance between the scavenging capacity of antioxidant defense systems and free radicals in favour of the antioxidant defense systems in the body.  相似文献   

20.
The effect of quercetin on renal ischemia and reperfusion injury in the rat   总被引:2,自引:0,他引:2  
Renal ischemia-reperfusion injury occurs in many clinical conditions such as hypovolemic shock, thromboembolism, injury and after renal transplantation. Under these conditions, ROS are considered to be the reason for cellular damage. Bioflavonoids have antioxidant and renoprotective properties. We studied the effect of quercetin, a bioflavonoid, on ischemia and reperfusion in rats. The rats (n = 28) were separated into three groups. Group I was the control group. Animals in groups II (IR) and III (IR + Q) underwent 30 min ischemia and 45 min reperfusion, respectively. Rats, in group III, also received 50 mg kg(-1) quercetin before 45 min of reperfusion. The activities of SOD, CAT, GPx, and concentrations of GSH and GSSGR were determined in renal cortex and erythrocytes. Also, the levels of MDA in renal cortex and plasma, and XO in renal cortex were measured in these groups. The renal cortex XO levels in the IR group were higher than that of the control and IR+Q groups (p<0.001). The renal cortex and plasma MDA levels in the IR group were also found to be higher than the control and IR+Q groups (p<0.01, and p<0.001, respectively). However, a decrease in MAD level of the IR+Q group was found in renal cortex and erythrocytes. In addition, SOD, CAT, and GPx activities in renal cortex and erythrocytes of quercetin-treated animals were enhanced compared to animals of the IR group. Furthermore, there were no significant differences in the SOD, CAT, and GPx activities of the control and IR+Q group. A reduction of GSH and GSSGR levels in IR and IR+Q groups was detected but no significant differences were found between these groups. This study stresses that high concentration of ROS leads to renal ischemia and reperfusion, and quercetin reduces the renal injury by preventing the oxidative stress dependent on ischemia and reperfusion. Quercetin may be used in renal transplantation as an antioxidant drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号