首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The world is witnessing a difficult time. The race of developing a new coronavirus (COVID-19) vaccine is becoming more urgent. Many preliminary studies on the pathophysiology of COVID-19 patients have provided some clues to treat this pandemic. However, no suitable treatment has found yet. Various symptoms of patients infected with COVID-19 indicated the importance of immune regulation in the human body. Severe cases admitted to the intensive care unit showed high level of pro-inflammatory cytokines which enhanced the disease severity. Acute Respiratory Distress Syndrome (ARDS) in COVID-19 patients is another critical factor of disease severity and mortality. So, Immune modulation is the only way of regulating immune system. Nigella sativa has been used for medicinal purposes for centuries. The components of this plant are known for its intense immune-regulatory, anti-inflammatory, and antioxidant benefits in obstructive respiratory disorders. A molecular docking study also gave evidences that N. sativa decelerates COVID-19 and might give the same or better results than the FDA approved drugs. The aim of this review was to investigate the possible immune-regulatory effects of N. sativa on COVID-19 pandemic. Our review found N. sativa's Thymoquinone, Nigellidine, and α-hederin can be a potential influencer in reinforcing the immune response on molecular grounds.  相似文献   

2.
BackgroundCoronavirus disease-2019 (COVID-19) caused by infection with severe acute respiratory coronavirus-2 (SARS-CoV-2) has been spreading rapidly throughout China and in other countries since the end of 2019. The World Health Organization (WHO) has declared that the epidemic is a public health emergency of international concerns. The timely and appropriate measures for treating COVID-19 in China, which are inseparable from the contribution of traditional Chinese medicine (TCM), have won much praise of the world.PurposeThis review aimed to summarize and discuss the essential role of TCM in protecting tissues from injuries associated with COVID-19, and accordingly to clarify the possible action mechanisms of TCM from the perspectives of anti-inflammatory, antioxidant and anti-apoptotic effects.MethodsElectronic databases such as Pubmed, ResearchGate, Science Direct, Web of Science, medRixv and Wiley were used to search scientific literatures.ResultsThe present review found that traditional Chinese herbs commonly used for the clinical treatment of organ damages caused by COVID-19, such as Scutellaria baicalensis, Salvia miltiorrhizaSalvia miltiorrhiza, and ginseng, could act on multiple signaling pathways involved in inflammation, oxidative stress and apoptosis.ConclusionTCM could protect COVID-19 patients from tissue injuries, a protection that might be, at least partially, attributed to the anti-inflammatory, antioxidant and anti-apoptotic effects of the TCM under investigation. This review provides evidence and support for clinical treatment and novel drug research using TCM.  相似文献   

3.
Phytomelatonin in the leaves and fruits of wild perennial plants   总被引:1,自引:0,他引:1  
Phytomelatonin has been documented in numerous flowering plants, mostly in cultivated species consumed by humans. Although frugivorous animals feed on fruits, the phytomelatonin content of these organs has hardly ever been tested in wild plants. The aim of this study was to determine the levels of phytomelatonin in the leaves and fleshy fruits of 31 wild perennial species known to be eaten by herbivorous and frugivorous mammals and birds. Considerable levels of phytomelatonin were found in the leaves of all the tested species, and some contained melatonin in their fruits as well. The melatonin content was found to vary significantly in different life forms (trees, shrubs, and climbers), with trees possessing the highest levels. The analysis revealed a significant positive correlation between the phytomelatonin levels in the leaves and the fruits of various species. However, the concentration found in the fruits was generally lower than that found in the leaves of the same species. Despite the presence of phytomelatonin in the fleshy fruits of different families, there was no noticeable common attribute among them. Phytomelatonin was exhibited in both the seeds and the pulp, with no obvious preference for either one. Although it was determined that ingested melatonin enters the bloodstream of birds and mammals, its specific role is still not certain. The potential impact of edible phytomelatonin on the circadian rhythm of herbivores and frugivores is discussed on the basis of these findings.  相似文献   

4.
Obesity, type 2 diabetes (T2DM), hypertension (HTN), and Cardiovascular Disease (CVD) often cluster together as “Cardiometabolic Disease” (CMD). Just under 50% of patients with CMD increased the risk of morbidity and mortality right from the beginning of the COVID-19 pandemic as it has been reported in most countries affected by the SARS-CoV2 virus.One of the pathophysiological hallmarks of COVID-19 is the overactivation of the immune system with a prominent IL-6 response, resulting in severe and systemic damage involving also cytokines such as IL2, IL4, IL8, IL10, and interferon-gamma were considered strong predictors of COVID-19 severity. Thus, in this mini-review, we try to describe the inflammatory state, the alteration of the adipokine profile, and cytokine production in the obese state of infected and not infected patients by SARS-CoV2 with the final aim to find possible influences of COVID-19 on CMD and CVD.The immunological-based discussion of the molecular processes could inspire the study of promising targets for managing CMD patients and its complications during COVID-19.  相似文献   

5.
The outbreak of mysterious pneumonia at the end of 2019 is associated with widespread research interest worldwide. The coronavirus disease-19 (COVID-19) targets multiple organs through inflammatory, immune, and redox mechanisms, and no effective drug for its prophylaxis or treatment has been identified until now. The use of dietary bioactive compounds, such as phenolic compounds (PC), has emerged as a putative nutritional or therapeutic adjunct approach for COVID-19. In the present study, scientific data on the mechanisms underlying the bioactivity of PC and their usefulness in COVID-19 mitigation are reviewed. In addition, antioxidant, antiviral, anti-inflammatory, and immunomodulatory effects of dietary PC are studied. Moreover, the implications of digestion on the putative benefits of dietary PC against COVID-19 are presented by addressing the bioavailability and biotransformation of PC by the gut microbiota. Lastly, safety issues and possible drug interactions of PC and their implications in COVID-19 therapeutics are discussed.  相似文献   

6.
The coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe COVID-19 exhibit hyper-inflammatory responses characterized by excessive activation of myeloid cells, including monocytes, macrophages, and neutrophils, and a plethora of pro-inflammatory cytokines and chemokines. Accumulating evidence also indicates that hyper-inflammation is a driving factor for severe progression of the disease, which has prompted the development of anti-inflammatory therapies for the treatment of patients with COVID-19. Corticosteroids, IL-6R inhibitors, and JAK inhibitors have demonstrated promising results in treating patients with severe disease. In addition, diverse forms of exosomes that exert anti-inflammatory functions have been tested experimentally for the treatment of COVID-19. Here, we briefly describe the immunological mechanisms of the hyper-inflammatory responses in patients with severe COVID-19. We also summarize current anti-inflammatory therapies for the treatment of severe COVID-19 and novel exosome-based therapeutics that are in experimental stages.  相似文献   

7.
COVID-19 is an important global public health problem that causes millions of infections worldwide. The specific antiviral drug for this new infection is still under research. Some new antiviral drugs, including molnupiravir and favipiravir, are proposed for usefulness in management of COVID-19. Additionally, some classic antiviral drugs used for other viral infections are also reproposed for the potentials for management of COVID-19. In the management of COVID-19, there are several pharmacological actions. An important consideration in antiviral therapy is the management of oxidative stress, which plays important roles in viral infections including to COVID-19. The analysis of antioxidative properties of alternative drugs for management of COVID-19 is interesting and can give basic data for further new antiviral drug researching. Here, the authors perform a molecular analysis on molnupiravir, favipiravir and other antiviral drugs with proposed potentials for management of COVID-19 to determine their antioxidative properties. Data from electron acceptor and donor calculation for each drug is used for further estimating overall antioxidative characteristic. Based on the present study, all studied drugs have overall antioxidative properties. Hence, the advantage of molnupiravir, favipiravir and other antiviral drugs with proposed potentials for the management of COVID-19 is their direct action on viral molecule via binding-blocking process as well as antixodiative process. For management of COVID-19 antioxidative stress, other non-antiviral drugs that are proposed for clinical advantage might also be useful.  相似文献   

8.
The coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), appears with a wide spectrum of mild-to-critical clinical complications. Many clinical and experimental findings suggest the role of inflammatory mechanisms in the immunopathology of COVID-19. Hence, cellular and molecular mediators of the immune system can be potential targets for predicting, monitoring, and treating the progressive complications of COVID-19. In this review, we assess the latest cellular and molecular data on the immunopathology of COVID-19 according to the pathological evidence (e.g., mucus and surfactants), dysregulations of pro- and anti-inflammatory mediators (e.g., cytokines and chemokines), and impairments of innate and acquired immune system functions (e.g., mononuclear cells, neutrophils and antibodies). Furthermore, we determine the significance of immune biomarkers for predicting, monitoring, and treating the progressive complications of COVID-19. We also discuss the clinical importance of recent immune biomarkers in COVID-19, and at the end of each section, recent clinical trials in immune biomarkers for COVID-19 are mentioned.  相似文献   

9.
10.
Coronavirus Disease 2019 (COVID-19), caused by a new strain of coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was declared a pandemic by WHO on March 11, 2020. Soon after its emergence in late December 2019, it was noticed that diabetic individuals were at an increased risk of COVID-19–associated complications, ICU admissions, and mortality. Maintaining proper blood glucose levels using insulin and/or other oral antidiabetic drugs (such as Metformin) reduced the detrimental effects of COVID-19. Interestingly, in diabetic COVID-19 patients, while insulin administration was associated with adverse outcomes, Metformin treatment was correlated with a significant reduction in disease severity and mortality rates among affected individuals. Metformin was extensively studied for its antioxidant, anti-inflammatory, immunomodulatory, and antiviral capabilities that would explain its ability to confer cardiopulmonary and vascular protection in COVID-19. Here, we describe the various possible molecular mechanisms that contribute to Metformin therapy’s beneficial effects and lay out the scientific basis of repurposing Metformin for use in COVID-19 patients.  相似文献   

11.
Adenosine 5′‐triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane‐associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area.  相似文献   

12.
Several plants have traditionally been used since antiquity to treat various gastroenteritis and respiratory symptoms similar to COVID-19 outcomes. The common symptoms of COVID-19 include fever or chills, cold, cough, flu, headache, diarrhoea, tiredness/fatigue, sore throat, loss of taste or smell, asthma, shortness of breath, or difficulty breathing, etc. This study aims to find out the plants and plant-derived products which are being used by the COVID-19 infected patients in Bangladesh and how those plants are being used for the management of COVID-19 symptoms. In this study, online and partially in-person survey interviews were carried out among Bangladeshi respondents. We selected Bangladeshi COVID-19 patients who were detected Coronavirus positive (+) by RT-PCR nucleic acid test and later recovered. Furthermore, identified plant species from the surveys were thoroughly investigated for safety and efficacy based on the previous ethnomedicinal usage reports. Based on the published data, they were also reviewed for their significant potentialities as antiviral, anti-inflammatory, and immunomodulatory agents. We explored comprehensive information about a total of 26 plant species, belonging to 23 genera and 17 different botanical families, used in COVID-19 treatment as home remedies by the respondents. Most of the plants and plant-derived products were collected directly from the local marketplace. According to our survey results, greatly top 5 cited plant species measured as per the highest RFC value are Camellia sinensis (1.0) > Allium sativum (0.984) > Azadirachta indica (0.966) > Zingiber officinale (0.966) > Syzygium aromaticum (0.943). Previously published ethnomedicinal usage reports, antiviral, anti-inflammatory, and immunomodulatory activity of the concerned plant species also support our results. Thus, the survey and review analysis simultaneously reveals that these reported plants and plant-derived products might be promising candidates for the treatment of COVID-19. Moreover, this study clarifies the reported plants for their safety during COVID-19 management and thereby supporting them to include in any future pre-clinical and clinical investigation for developing herbal COVID-19 therapeutics.  相似文献   

13.
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.  相似文献   

14.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), is a new coronavirus strain that was first reported in December 2019 in Wuhan, China. A specific treatment for COVID-19 has yet to be identified. Potential therapeutic targets include SARS-CoV-2 main protease (Mpro) and the SARS-CoV-2 spike-ACE2 interaction. Molecular docking, molecular dynamics (MD), solvent screening for the extraction of the specified compounds, and prediction of the drug properties of certain molecules were the methods used in this study to investigate compounds from the medicinal plant Myristica fragrans, which is one of twelve herbs in Prasachandaeng remedy (PSD). ArgusLab, AutoDock Vina, and AutoDock were used to perform docking tasks. The examined ligands were compared with panduratin A as a standard (Kanjanasirirat et al., 2020), which is a promising medicinal plant molecule for the treatment of COVID-19. Molecular docking revealed that malabaricones B and C and licarins A, B and C bound to SARS-CoV-2/ACE2 and SARS-CoV-2 Mpro with low binding energies compared to that of the standard ligand. Furthermore, appropriate solvent usage is important. Acetone was selected by COSMOquick software for compound extraction in this investigation because it can extract large amounts of all five of the abovementioned M. fragrans compounds. Furthermore, the drug-like properties of these compounds were studied utilizing the Lipinski, Veber, and Ghose criteria. The results revealed that these M. fragrans compounds have potential as effective medicines to combat the COVID-19 pandemic. However, to assess the therapeutic potential of these ligands, additional research is needed, which will use our findings as a foundation.  相似文献   

15.
当前因SARS-CoV-2感染而引起的2019新型冠状病毒肺炎(COVID-19)肆虐全球,严重危害人类健康。SARS-CoV-2感染性强,危重症患者死亡率高,尽管各种各样的治疗正在进行临床试验,但目前尚无有效的治疗方法。间充质干细胞(mesenchymal stem cell,MSC)在临床前试验中对多种疾病有良好的治疗效果,因而受到了广泛地关注。MSC可能利用分化潜能诱导分化成功能性肺样细胞、免疫调节与免疫细胞互作、抑制炎症来降低促炎细胞因子分泌、迁移和归巢靶向损伤肺部、抗病毒作用来减少肺上皮细胞中的病毒复制、产生细胞外囊泡来修复受损的组织,进而使COVID-19患者肺功能逐渐恢复正常,缓解并达到治疗COVID-19的目的。综合讨论了COVID-19的基本特征和当前主要治疗手段,同时总结了MSC在COVID-19中的临床研究和当前面临的挑战,探讨了MSC治疗COVID-19的应用前景,为MSC在COVID-19中的治疗提供了理论基础和现实依据。  相似文献   

16.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the zoonotic pathogen that causes the “Coronavirus Disease of 2019 (COVID-19)”, and COVID-19 itself is yet to be thoroughly understood. Both the disease as well as the mechanisms by which the host interacts with the SARS-CoV-2 have not been fully enlightened. The epidemiological factors –e.g. age, sex, race-, the polymorphisms of the host proteins, the blood types and individual differences have all been in discussions about affecting the progression and the course of COVID-19 both individually and collectively, as their effects are mostly interwoven. We focused mainly on the effect of polymorphic variants of the host proteins that have been shown to take part in and/or affect the pathogenesis of COVID-19. Additionally, how the procedures of diagnosing and treating COVID-19 are affected by these variants and what possible changes can be implemented are the other questions, which are sought to be answered.  相似文献   

17.
Fungal infections remain hardly treatable because of unstandardized diagnostic tests, limited antifungal armamentarium, and more specifically, potential toxic interactions between antifungals and immunosuppressants used during anti-inflammatory therapies, such as those set up in critically ill COVID-19 patients. Taking into account pre-existing difficulties in treating vulnerable COVID-19 patients, any co-occurrence of infectious diseases like fungal infections constitutes a double debacle for patients, healthcare experts, and the public economy. Since the first appearance of SARS-CoV-2, a significant rise in threatening fungal co-infections in COVID-19 patients has been testified in the scientific literature. Better management of fungal infections in COVID-19 patients is, therefore, a priority and requires highlighting common risk factors, relationships with immunosuppression, as well as challenges in fungal diagnosis and treatment. The present review attempts to highlight these aspects in the three most identified causative agents of fungal co-infections in COVID-19 patients: Aspergillus, Candida, and Mucorales species.  相似文献   

18.
A widespread occurrence of melatonin (MEL) in plant kingdom has been reported. MEL is a highly conserved molecule occurring in evolutionary distant organisms. Its role in plants seems to be similar to that in animals. Although MEL function in plants is not well known, yet a hypothesis can be put forward that it probably functions as a night signal, coordinating responses to diurnal and photoperiodic environmental cues. It has also been suggested that MEL is an independent plant growth regulator, probably its action is analogous to IAA and it may mediate the actions of other plant growth regulators. Due to its antioxidant properties MEL may also stabilize cell red-ox status and protect them against reactive oxygen species (ROS) and other harmful environmental influence.  相似文献   

19.
20.
Coronavirus disease 2019(COVID-19), a pandemic disease caused by the severe acute respiratory syndrome coronavirus 2(SARS-Co V2), is growing at an exponential rate worldwide. Manifestations of this disease are heterogeneous; however, advanced cases often exhibit various acute respiratory distress syndrome-like symptoms, systemic inflammatory reactions, coagulopathy, and organ involvements. A common theme in advanced COVID-19 is unrestrained immune activation, classically referred to as a "cytokine storm", as well as deficiencies in immune regulatory mechanisms such as T regulatory cells. While mesenchymal stem cells(MSCs) themselves are objects of cytokine regulation, they can secrete cytokines to modulate immune cells by inducing antiinflammatory regulatory Treg cells, macrophages and neutrophils; and by reducing the activation of T and B cells, dendritic and nature killer cells. Consequently, they have therapeutic potential for treating severe cases of COVID-19. Here we discuss the unique ability of MSCs, to act as a "living antiinflammatory", which can "rebalance" the cytokine/immune responses to restore equilibrium. We also discuss current MSC trials and present different concepts for optimization of MSC therapy in patients with COVID-19 acute respiratory distress syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号