首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Pot experiments were conducted to investigate the role of selenium in alleviating cadmium stress in Solanum lycopersicum seedlings. Cadmium (150 mg L?1) treatment caused a significant reduction in growth in terms of height and biomass accumulation and affected chlorophyll pigments, gas exchange parameters, and chlorophyll fluorescence. Selenium (10 μM) application mitigated the adverse effects of cadmium on growth, chlorophyll and carotenoid contents, leaf relative water content, and other physiological attributes. Lipid peroxidation and electrolyte leakage increased because of cadmium treatment and selenium-treated plants exhibited considerable reduction because of the decreased production of hydrogen peroxide in them. Cadmium-treated plants exhibited enhanced activity of antioxidant enzymes that protected cellular structures by neutralizing reactive free radicals. Supplementation of selenium to cadmium-treated plants (Cd + Se) further enhanced the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) by 19.69, 31.68, 33.14, and 54.47%, respectively. Osmolytes, including proline and glycine betaine, increased with selenium application, illustrating their role in improving the osmotic stability of S. lycopersicum under cadmium stress. More importantly, selenium application significantly reduced cadmium uptake. From these results, it is clear that application of selenium alleviates the negative effects of cadmium stress in S. lycopersicum through the modifications of osmolytes and antioxidant enzymes.  相似文献   

2.
Drought stress has a negative impact on plant cells and results in the generation of reactive oxygen species (ROS). To increase our understanding of the effects of drought stress on antioxidant processes, we investigated the response of the ascorbate-deficient Arabidopsis thaliana vtc1 mutant to drought stress. After drought stress, vtc1 mutants exhibited increases in several oxidative parameters, including H2O2 content and the production of thiobarbituric acid reactive substances. Decreases in chlorophyll content and chlorophyll fluorescence parameters were also observed. The vtc1 mutants had higher total glutathione than did wild-type (WT) plants after 48 h of drought stress. A reduced ratio of glutathione/total glutathione and an increased ratio of dehydroascorbate/total ascorbate were observed in the vtc1 mutants compared with the WT plants. In addition, the activities of enzymes that are responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, were decreased in the vtc1 mutants compared with the WT plants. Similar reductions in activity in the vtc1 mutant were observed for the enzymes that are responsible for the regeneration of ascorbate and glutathione, including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. These results suggest that low intrinsic ascorbate and impaired ascorbate–glutathione cycling in the vtc1 mutant induced a decrease in the reduced form of ascorbate, which enhanced sensitivity to drought stress.  相似文献   

3.
Growth promoting potential of Bacillus subtilis (BS) in drought stressed Abelmoschus esculentus (L.) Moench (okra) was assessed by measuring the chlorophyll stability index (CSI), chlorophyll a (Chl-a) fluorescence, leaf osmotic potential and lipid peroxidation by malondialdehyde content, emission of reactive oxygen species (ROS), osmolyte content and the activity of non-enzyme and enzyme antioxidants. BS treatment significantly increased the leaf osmotic potential, osmolyte production and the activity of non-enzyme and enzyme antioxidants under drought stress. BS treatment mitigated the drought-induced reduction in Chl a fluorescence and CSI. Concomitant increase in total sugar, proline, non-enzyme antioxidants [glutathione and ascorbate] and enzyme antioxidants like superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase modulate the intracellular ROS concentration in okra to resist the stress induced oxidative damage in BS treated plants led to fast recovery and less photodamage.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00982-8.  相似文献   

4.
The nicotinamide adenine dinucleotide phosphate (NADPH) and reduced glutathione (GSH) molecules play important roles in the redox homeostasis of plant cells. Using tomato (Solanum lycopersicum) plants grown with 120 mM NaCl, we studied the redox state of NADPH and GSH as well as ascorbate, nitric oxide (NO) and S-nitrosoglutathione (GSNO) content and the activity of the principal enzymes involved in the metabolism of these molecules in roots. Salinity caused a significant reduction in growth parameters and an increase in oxidative parameters such as lipid peroxidation and protein oxidation. Salinity also led to an overall decrease in the content of these redox molecules and in the enzymatic activities of the main NADPH-generating dehydrogenases, S-nitrosoglutathione reductase and catalase. However, NO content as well as gluthahione reductase and glutathione peroxidase activity increased under salinity stress. These findings indicate that salinity drastically affects redox and NO homeostasis in tomato roots. In our view, these molecules, which show the interaction between ROS and RNS metabolisms, could be excellent parameters for evaluating the physiological conditions of plants under adverse stress conditions.  相似文献   

5.
Ultraviolet-B (UV-B) radiation has a negative impact on plant cells, and results in the generation of reactive oxygen species (ROS). In order to increase our understanding of the effects of UV-B on antioxidant processes, we investigated the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc1 to short-term increased UV-B exposure. After UV-B supplementation, vtc1 mutants exhibited oxidative damage. Evidence for damage included an increase in H(2)O(2) content and the production of thiobarbituric acid reactive substances (TBARS); a decrease in chlorophyll content and chlorophyll fluorescence parameters were also reported. The vtc1 mutants had higher total glutathione than the wild type (WT) during the first day of UV-B treatment. We found reduced ratio of glutathione/total glutathione and increased ratio of dehydroascorbate/total ascorbate in the vtc1 mutants, compared to the WT plants. In addition, the enzymes responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, had insufficient activity in the vtc1 mutants, compared to the WT plants. The same reduced activity in the vtc1 mutants was reported for the enzymes responsible for the regeneration of ascorbate and glutathione (including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase). These results suggest that the ascorbate-deficient mutant vtc1 is more sensitive to supplementary UV-B treatment than WT plants and ascorbate can be considered an important antioxidant for UV-B radiation.  相似文献   

6.
Experiments were carried out to investigate the role of nitric oxide (NO) in ameliorating the negative effects of cadmium stress in tomato seedlings. Plants treated with cadmium (CdCl2, 150 μM) showed reduced growth, biomass yield, pigment content, chlorophyll fluorescence, and gas exchange parameters. Exogenous application of NO donor (sodium nitroprusside) with nutrient solution protected chlorophyll pigments, restored chlorophyll fluorescence and gas exchange parameters, and caused significant enhancements in growth and biomass yield. Cadmium triggered the synthesis of proline and glycine betaine; however, application of NO caused further enhancement of their accumulation, reflecting an obvious amelioration of the cadmium-induced decline in relative water content. Activities of the antioxidant enzymes superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase, and other enzymatic activities of ascorbate-glutathione cycle were enhanced following the application of NO, as compared with those in untreated seedlings under control and cadmium stress conditions. NO increased the flavonoid and total phenol content in Cd-stressed tomato plants. Moreover, NO application restricted the uptake of cadmium and enhanced the accumulation of nutrients in different parts of tomato plants. On the basis of the findings of the present study, we propose that NO has a potential role as a growth promoter for tomato under cadmium stress.  相似文献   

7.
8.
9.

Adverse effects caused by inadequate magnesium (Mg) supply (deficiency or excess) often cause oxidative stress in chloroplasts and a decline in photosynthetic activity. However, 24-epibrassinolide (EBR) is a natural, biodegradable, and ecologically viable plant growth regulator with multiple roles in plant metabolism. This research aims to determine whether the foliar application of EBR (1) can delay chlorophyll degradation and/or (2) mitigate oxidative stress on the photosynthetic process in magnesium-stressed soybean plants. The experiment followed a completely randomized factorial design with two concentrations of 24-epibrassinolide (0 and 0.1 mM EBR, described as – EBR and?+?EBR, respectively) and three Mg supplies (0.0225, 2.25 and 225 mM Mg, described as low, control and high supply of Mg). Inadequate Mg supplies (deficiency and excess) negatively interfered with photosynthetic pigments, chlorophyll fluorescence and gas exchange. However, exogenous EBR sprayed in plants under high Mg maximized superoxide dismutase (37%), catalase (34%), ascorbate peroxidase (48%) and peroxidase (49%), protecting against oxidative stress and delaying chlorophyll degradation. Concomitantly, plants sprayed with this steroid had increases in Mg content, improving the photochemical efficiency and gas exchange because Mg plays an essential role during the light capture process.

  相似文献   

10.
We studied the extent to which catechin applied as a soil drench modifies the effects of soil waterlogging on plant growth, the functioning of the free radical scavenging system and on oxidative stress levels. Forty-day-old tomato plants (Solanum lycopersicum L.) were treated with 0 and 2?mM catechin 48 h prior to 5 d waterlogging followed by a 4 d drainage period. Exogenous catechin increased total fresh and dry weight of flooded plants, reduced membrane damage, maintained chlorophyll concentrations, promoted photosynthesis and increased ATP concentration in the leaves, and raised sucrose synthase and alcohol dehydrogenase activities in the roots. Catechin pre-treatment also reduced hydrogen peroxide and superoxide radical concentration and increased various components of the antioxidative system in leaves. Catechin treatment affected superoxide dismutase and catalase activities in close coordination with ascorbate peroxidases and glutathione reductase. Exogenous catechin can markedly reduce the waterlogging injury in leaves and roots of tomato by enhancing free radical scavenging system sufficiently to lower hydrogen peroxide and superoxide concentrations.  相似文献   

11.
The purpose of this study was to elucidate whether exogenous spermidine (Spd) protection of tomato (Solanum lycopersicum L.) seedlings under salinity-alkalinity stress is associated with antioxidant enzymes in the chloroplast. The effects of exogenous Spd on antioxidant enzyme activity and antioxidant content in the chloroplast were evaluated in seedlings of salt-sensitive ecotype (Zhongza 9) grown in a 75 mM salinity-alkalinity solution, with or without 0.25 mM Spd foliar spraying. Results showed that salinity-alkalinity stress increased MDA content, superoxide anion O2?- generation rate, superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) activities and ratio of AsA/DHA and reduced contents of ascorbate (AsA), dehydroascorbate (DHA), AsA+DHA, glutathione (GSH), oxidized glutathione (GSSG), GSH+GSSG, dehydroascorbate reductase (DHAR) activity and ratio of GSH/GSSG in chloroplasts. The exogenous Spd application combined with salinity-alkalinity stress decreased the O2?- generation rate and MDA content compared to salinity-alkalinity stress alone. The exogenous Spd also increased AsA-GSH cycle components and increased all antioxidant enzyme activities in most cases. Therefore, exogenous Spd alleviates salinity-alkalinity stress damage using antioxidant enzymes and non-enzymatic systems in chloroplasts.  相似文献   

12.
Sunflower mutant lines with an enhanced tolerance and metal accumulation capacity obtained by mutation breeding have been proposed for Zn, Cd and Cu removal from metal-contaminated soils in previous studies. However, soils contaminated with trace elements induce various biochemical alterations in plants leading to oxidative stress. There is a lack of knowledge concerning the metal accumulation and antioxidant responses during the growth and development of sunflowers. This study, therefore, aimed to characterise metal accumulation and possible metal detoxification mechanisms in young seedlings and adult sunflowers. Beside the inbred line, two mutant lines with an improved growth and enhanced metal uptake capacity on a metal contaminated soil were investigated in more detail.Sunflowers cultivated on a metal-contaminated soil in the greenhouse showed a decrease in shoot biomass and chlorophyll concentration in two different developmental stages. Adult sunflowers showed a lower sensitivity to metal toxicity than young seedlings, whereas mutant lines were more tolerant to metal stress than the control. Mutant lines also produced a higher amount of carotenoids on a metal-contaminated soil than on the control soil, indicating a possible protective mechanism of sunflower mutants against oxidative stress caused by Cd and excess Zn.Heavy metals primarily increased the activity of antioxidant enzymes involved in the ascorbate–glutathione cycle in sunflower leaves. Activity of dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) was strongly increased in young seedlings exposed to heavy metals. The enzyme activities were even more pronounced in mutant lines. A significantly increased ascorbate peroxidase (APOX) activity in adult sunflowers exposed to heavy metals indicated an elevated use of ascorbate after a longer exposure to metal stress.An increased antioxidant level corresponded to a high Cd and Zn accumulation in young and adult sunflowers. Metal distribution, zinc translocation in particular, from the root into the shoot tissue obviously increased during sunflower growth and ripening. Altogether, these results suggest that sunflower plants, primarily the mutant lines, possess an efficient defence mechanism against oxidative stress caused by metal toxicity. A good tolerance of sunflowers toward heavy metals coupled with an increased metal accumulation capacity might contribute to an efficient removal of heavy metals from a polluted area.  相似文献   

13.
Tocopherols (α-, β-, γ- and δ-tocopherols) represent a group of lipophilic antioxidants which are synthesized only by photosynthetic organisms. It is widely believed that protection of pigments and proteins of photosynthetic system and polyunsaturated fatty acids from oxidative damage caused by reactive oxygen species (ROS) is the main function of tocopherols. The wild type Columbia and two mutants of Arabidopsis thaliana with T-DNA insertions in tocopherol biosynthesis genes – tocopherol cyclase (vte1) and γ-tocopherol methyltransferase (vte4) – were analyzed after long-term outdoor growth. The concentration of total tocopherol was up to 12-fold higher in outdoor growing wild type and vte4 plant lines than in plants grown under laboratory conditions. The vte4 mutant plants had a lower concentration of chlorophylls and carotenoids, whereas the mutant plants had a higher level of total glutathione than of wild type. The activities of antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate oxidase (AO, EC 1.10.3.3) were lower in both mutants, whereas activities of catalase (EC 1.11.1.6) and ascorbate peroxidase (APx, EC 1.11.1.11) were lower only in vte1 mutant plants in comparison to wild type plants. However, the activity of guaiacol peroxidase (GuPx, EC 1.11.1.7) was higher in vte1 and vte4 mutants than that in wild type. Additionally, both mutant plant lines had higher concentration of protein carbonyl groups and oxidized glutathione compared to the wild type, indicating the development of oxidative stress. These results demonstrate in plants that tocopherols play a crucial role for growth of plants under outdoor conditions by preventing oxidation of cellular components.  相似文献   

14.
In this study, we have analyzed superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) activities, biomass accumulation and chlorophyll‐a content in the Arthrospira platensis ‐M2 strain grown at different concentrations of zinc (Zn), tin (Sn) and mercury (Hg). We found that there is a close relationship between chlorophyll‐a content and biomass accumulation in A. platensis ‐M2 strain as a result of Zn, Sn and Hg exposures. Sn was found to be the most toxic heavy metal among others because of the continious inhibition of both biomass and chlorophyll‐a accumulation at 500 and 1000 μg mL?1 concentrations after the third day of the study, while they represented continuous increases at each Zn and Hg concentration over 7 days. Lower concentrations of Zn and Sn stimulate SOD and GR activities remarkably, probably due to oxidative stress caused by heavy metal toxicity. APX activity was significantly lowered by higher concentrations of the three metals used in this study. Our results suggest that higher heavy metal concentrations inhibited SOD, APX and GR activities but biomass and chlorophyll‐a accumulation endured in a time‐dependent manner, possibly due to some different defence mechanisms, which remain to be investigated.  相似文献   

15.
Citrus plants originate from southeastern Asia, in a large area with various climates characterized by a broad range of temperatures. Some species have been diversified in temperate climates, others in subtropical climates. Temperature is assumed to be a key factor in citrus species adaptation and diversification of basic cellular functions. In a field experiment, the tolerance of the three fundamental Citrus species C. medica L., C. reticulata Blanco and C. maxima (Burm.) Merr., and Fortunella japonica (Thunb.) Swing. to photooxidative stress caused by seasonal climatic changes was evaluated on adult trees by measuring net photosynthesis (Pnet), stomatal conductance (Gs), maximum photosynthesis (Pmax) and chlorophyll fluorescence (Fv/Fm). In addition, seasonal changes in oxidative status, antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) and antioxidant metabolites (ascorbate and glutathione) were monitored. Mandarin and pummelo appeared to be the most tolerant, showing the lowest down-regulation of photosynthetic parameters, and the lowest accumulation of oxidized compounds associated with efficiency of their antioxidant system. Kumquat showed intermediate behaviour, with a large diminution of photosynthetic parameters and marked accumulation of hydrogen peroxide, whereas the malondialdehyde content remained low, with a strong induction of glutathione synthesis. Finally, citron appeared to be the most sensitive genotype with a marked decrease in photosynthetic performance, the largest accumulation of oxidative parameters, insufficient induction of antioxidant enzymes and down-regulation of ascorbate and glutathione synthesis.  相似文献   

16.
臭氧胁迫对大豆叶片抗坏血酸-谷胱甘肽循环的影响   总被引:4,自引:1,他引:3  
王俊力  王岩  赵天宏  曹莹  刘玉莲  段萌 《生态学报》2011,31(8):2068-2075
由于城市化的加剧导致近地面臭氧(O3)浓度日益增加,对植物生长和生态系统的功能产生了显著影响,因此准确评估近地层O3浓度升高对植物的影响具有重要意义。本文利用开顶式气室(OTCs),系统探讨了模拟O3胁迫下大豆抗氧化系统抗坏血酸(AsA)-谷胱甘肽(GSH)循环清除活性氧(ROS)的机制及其对植株生长发育的影响。结果表明,在整个生育期内,与对照相比, 80?10 nL?L-1和110?10 nL?L-1 O3可以使大豆叶片丙二醛(MDA)含量、相对电导率增大,超氧阴离子(O2 )产生速率、过氧化氢(H2O2)含量升高,超氧化物歧化酶(SOD)活性减弱; AsA-GSH循环中的AsA、GSH含量减少,脱氢抗坏血酸(DHA)、氧化型谷胱甘肽(GSSG)含量增加,过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、谷胱甘肽还原酶(GR)活性呈现出前期增强后期减弱趋势,而脱氢抗坏血酸还原酶(DHAR)活性呈现出增强-减弱-增强的趋势。以上结果说明,O3浓度升高促进了大豆叶片ROS的代谢速率,降低了AsA-GSH循环效率,表明抗氧化系统不能长时间忍受高浓度O3带来的氧化伤害,从而使膜脂过氧化程度加重,对大豆表现为伤害效应。  相似文献   

17.
The effects of different culture conditions, unpolluted and polluted substrates, on an antioxidative system – antioxidant enzymes, such as catalase, ascorbate peroxidase and guaiacol peroxidase, and ascorbic acid – were investigated to establish its relationship with the acclimatization success of Spartina densiflora. Plants of this species growing in the polluted Odiel marshes (Huelva, Spain) showed high levels of catalase, ascorbate and guaiacol peroxidase activities and ascorbate concentration (reduced and oxidized ascorbate). In addition, we found significant oxidation of the ascorbate pool, since only 40% of ascorbate was reduced, and low levels of photosynthetic pigments, suggesting that an oxidative stress was impairing S. densiflora. Transplantation to an unpolluted substrate in the laboratory led to a gradual change in all tested parameters: antioxidative activities and total ascorbate concentration decreased while the percentage of reduced ascorbate and pigment concentrations increased; these data agreed with the hypothesis that oxidative stress conditions in S. densiflora habitat were due to a polluted substrate. After 28 days, the plants were transplanted for a second time to polluted conditions, equivalent to those in their habitats, and a rapid alteration of the antioxidative system was observed. In the first 24 h, catalase and guaiacol peroxidase activities and ascorbate concentration increased greatly and the percentage of reduced ascorbate fell drastically. Regardless of this fact, ascorbate peroxidase activity did not change until the end of the first week, while photosynthetic pigments declined at a constant rate during the whole culture period. Subsequently, we found that the antioxidative system improved its reductive capacity gradually and slowly – over weeks – but this reductive power was rapidly lost within days or even hours. It may be concluded that S. densiflora undergoes oxidative stress in its natural environment and is able to modulate its antioxidative system, based on the degree of pollution, in order to acclimatize successfully to its fluctuating environment.  相似文献   

18.
We measured dry matter accumulation and allocation to the roots, leaf gas exchange, chlorophyll fluorescence, antioxidant enzymes, and ABA and polyamine (PA) contents in Populus przewalskii under three different watering regimes (100, 50, and 25% of the field capacity) to investigate the morphological and physiological responses to water deficit in woody plants. The results showed that drought stress retarded P. przewalskii as evident from a decreased biomass accumulation and the reduced increment of shoot height and basal diameter. Drought stress also affected the biomass partition by higher biomass allocated to the root systems for water uptake. The contents of ABA and PAs especially were increased under stressful conditions. Drought stress caused oxidative burst indicated by the accumulation of peroxide (H2O2), and fluorimetric detection also confirmed the increased accumulation of H2O2. The antioxidant enzymes, including superoxide dimutase, peroxidase, ascorbate peroxidase, and reductase, were activated to bring the reactive oxygen species to their homeostasis; however, oxidative damages to lipids, proteins, and membranes were significantly manifested by the increase in total carbonyl (C=O) and electric conductance (EC).  相似文献   

19.
Low temperature has a negative impact on plant cells and results in the generation of reactive oxygen species (ROS). In order to study the role of ascorbate under chilling stress, the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc2-1 to low temperature (2°C) was investigated. After chilling stress, vtc2-1 mutants exhibited oxidative damage. An increase in the H2O2 generation and the production of thiobarbituric acid reactive substances (TBARS), and a decrease in chlorophyll content, the maximal photochemical efficiency of PSII (Fv/Fm) and oxidizable P700 were also noted. The ratio of ascorbate/dehydroascorbate and reduced glutathione/oxidzed glutathione in the vtc2-1 mutants were reduced, compared with the wild type (WT) plants. The activities of antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX), and soluble antioxidants were lower in the vtc2-1 mutants than those in WT plants. These results suggested that the ascorbate-deficient mutant vtc2-1 was more sensitive to chilling treatment than WT plants. The low temperature-induced oxidative stress was the major cause of the decrease of PSII and PSI function in the vtc2-1 mutants. Ascorbate plays a critical role of defense without which the rest of the ROS defense network is unable to react effectively.  相似文献   

20.
This study evaluates the role of exogenous foliar application of 5-aminolevulinic acid (ALA) on water relations, gas exchange, chlorophyll fluorescence, and the activities and gene expression patterns of antioxidant enzymes in leaves of oilseed rape under drought stress and recovery conditions. Seedlings at four-leaf stage were imposed to well-watered condition (80 % of water-holding capacity) or drought stress (40 % of water-holding capacity) and subsequently foliar sprayed with water or ALA (30 mg l?1). Drought suppressed the accumulation of plant biomass and decreased chlorophyll content and leaf water status (relative water content and water potential). The actual quantum yield of photosystem II and electron transport rates were hampered in parallel to net photosynthetic rate. However, drought stress induced the accumulation of malondialdehyde (MDA) and hydrogen peroxide, enhanced the activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase and up-regulated the expression of APX and GR. After rehydration for 4 days, the growth of drought-treated seedlings was restored to normal level for most of the physiological parameters. Foliar application of ALA maintained relatively higher leaf water status and enhanced chlorophyll content, net photosynthetic rate, actual quantum yield of photosystem II, photochemical quenching, non-photochemical quenching and electron transport rates in stressed leaves. Exogenous ALA also alleviated the accumulation of MDA and hydrogen peroxide, increased the activities of antioxidant enzymes and enhanced the expression of CAT and POD in drought-treated plants. These results indicate that ALA may effectively protect rapeseed seedlings from damage induced by drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号