首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The larvicidal effect of the crude carbon tetrachloride, methanol and petroleum ether leaf extracts of a widely grown medicinal plant, Ocimum basilicum, against Anopheles stephensi and Culex quinquefasciatus was evaluated. Petroleum ether extract was found to be the most effective against the larvae of both mosquitoes, with LC50 values of 8.29, 4.57; 87.68, 47.25 ppm and LC90 values of 10.06, 6.06; 129.32, 65.58 ppm against A. stephensi and C. quinquefasciatus being observed after 24 and 48 h of treatment, respectively. The efficacy of petroleum ether was followed by that of the carbon tetrachloride and methanol extracts, which had LC50 values of 268.61, 143.85; 446.61, 384.84 ppm and LC90 values of 641.23, 507.80; 923.60, 887.00 ppm against A. stephensi after 24 and 48 h, respectively, and LC50 values of 24.14, 17.02; 63.48, 53.77 ppm and LC90 values of 295.38, 204.23; 689.71, 388.87 ppm against C. quinquefasciatus after 24 and 48 h of treatment, respectively. These extracts are highly toxic against mosquito larvae from a range of species; therefore, they may be useful for the management of mosquito larvae to control vector borne diseases.  相似文献   

2.
Plant secondary metabolites have been recently used for the synthesis of different nanoparticles. The present investigation aimed at evaluating the effect of gold (AuNPs) and silver (AgNPs) nanoparticles synthesized using Acalypha fruticosa leaf extracts to control the mosquito Culex pipiens. The A. fruticosa AuNPs and AgNPs spectra displayed their maximum absorption at 550 nm and 440 nm, respectively. The infrared spectra revealed different functional groups related to different chemical compounds. The larval mortality of aqueous leaf extract of A. fruticosa was 499.54 ppm (LC50) and 1734.06 ppm (LC90) after 24 h of treatment. This study revealed that AuNP (LC50, 30.2 and LC90, 104.83 ppm) and AgNP (LC50, 52.86 and LC90, 157.227 ppm) preparations were highly effective compared to the A. fruticosa extract alone and also more affordable, as a smaller amount was required. The present findings show the potential larvicidal effect of the synthesized AuNPs and AgNPs for the control of mosquito-mediated disease transmission.  相似文献   

3.
《Journal of Asia》2007,10(3):251-255
The toxicity of seed extracts of three Indian medicinal plants, Azadirachta indica, Momordica charantia and Ricinus communis, was evaluated for their larvicidal efficacy against Anopheles stephensi. The methanol extract of A. indica exhibited potent larvicidal activity with LC50 15.25 and 12.70 ppm and LC90 46.79 and 45.56 ppm after 24 and 48 hrs, respectively, followed by methanol extract of R. communis with LC50 54.95 and 23.06 ppm and LC90 251.03 and 144.54 ppm after 24 and 48 hrs of post treatment, respectively. In case of M. charantia, the carbon tetrachloride extract possess potential larvicidal efficacy with LC50 values 87.00 and 57.53 ppm and LC90 301.20 and 262.21 ppm after 24 and 48 hrs of exposure period. The results indicate that A. indica methanol extract was most potential mosquito larvicide and can be use as alternate potential to synthetic insecticides.  相似文献   

4.
The bio-efficacy of Aloe vera leaf extract and bacterial insecticide, Bacillus sphaericus larvicidal activity was assessed against the first to fourth instars larvae of Aedes aegypti, under the laboratory conditions. The plant material was shade dried at room temperature and powdered coarsely. A. vera and B. sphaericus show varied degrees of larvicidal activity against various instars larvae of A. aegypti. The LC50 of A. vera against the first to fourth instars larvae were 162.74, 201.43, 253.30 and 300.05 ppm and the LC90 442.98, 518.86, 563.18 and 612.96 ppm, respectively. B. sphaericus against the first to fourth instars larvae the LC50 values were 68.21, 79.13, 93.48, and 107.05 ppm and the LC90 values 149.15, 164.67, 183.84, and 201.09 ppm, respectively. However, the combined treatment of A. vera + B. sphaericus (1:2) material shows highest larvicidal activity of the LC50 values 54.80, 63.11, 74.66 and 95.10 ppm; The LC90 values of 145.29, 160.14, 179.74 and 209.98 ppm, against A. aegypti in all the tested concentrations than the individuals and clearly established that there is a substantial amount of synergist act. The present investigation clearly exhibits that both A. vera and B. sphaericus materials could serve as a potential larvicidal agent. Since, A. aegypti is a container breeder vector mosquito this user and eco-friendly and low-cost vector control strategy could be a viable solution to the existing dengue disease burden. Therefore, this study provides first report on the mosquito larvicidal activity the combined effect of A. vera leaf extract and B. sphaericus against as target species of A. aegypti.  相似文献   

5.
The efficacy of three formulations (i.e., natural lavender crude, essential oil, and gel) extracted from Lavender angustifolia was tested against vectors of the epidemic dengue virus, Aedesaegypti, to evaluate their larvicidal activity effect. The ethanolic extract of the lavender crude was prepared using a rotary evaporator, while the other extracts, such as essential oil and gel, were obtained from iHerb, a supplier of medicinal herbs in the US. The mortality rate of larvae was evaluated 24 h after exposure. Larvicidal activity of the lavender crude was 91% mortality at 150 ppm, 94% for essential oil at a concentration of 3000 ppm, and 97% for lavender gel at a 1000 ppm. Natural lavender crude was one of the most promising extracts tested against Ae.aegypti larvae, with lethal concentrations at LC50 and LC90 of 76.4 and 174.5 ppm post-treatment. The essential oil had the least effect on mosquito larvae, with LC50 and LC90 reaching 1814.8 and 3381.9 ppm, respectively. The lavender gel was moderately effective against Ae. aegypti larvae, with LC50 and LC90 values reaching 416.3 and 987.7 ppm after exposure. The occurrence of morphological abnormalities in the larvae treated with the three compounds, in turn, resulted in an incomplete life cycle. Therefore, our results indicated that natural lavender crude displayed the highest larvicidal activity against larvae, followed by gel and essential oil. Thus, this study concluded that lavender crude is an effective, eco-friendly compound that can be used as an alternative to chemical products to control vector-borne epidemic diseases.  相似文献   

6.
Hydro-distilled essential oil from Kenyan Piper capense (Piperaceae) was analysed by gas chromatography mass spectrometry (GC–MS) and evaluated for larvicidal activity against the malaria vector, Anopheles gambiae. The oil consisted mainly of sesquiterpene hydrocarbons which accounted for 43.9% of the oil. The major sesquiterpenes were δ-cadinene (16.82%), β-bisabolene (5.65%), and bicyclogermacrene (3.30%). The oil also had appreciable amounts of monoterpene hydrocarbons (30.64%), including β-pinene (7.24%) and α-phellandrene (4.76%), and arylpropanoids (8.64%), including myristicin (4.26%). The oil showed larvicidal activity against third instar larvae of A. gambiae, with LC50 and LC90 values of 34.9 and 85.0 ppm, respectively. Most of the larvae died within the first few hours. The high larvicidal activity of this oil was indicated by the fact that over 80% mortality was observed at a concentration of 100 ppm after 24 h. These results compared favourably with the commercial larvicide pylarvex® which had LC50 and LC90 values of 3.7 and 7.8 ppm, respectively. Application of this oil or of products derived from it to larval habitats may lead to promising results in malaria and mosquito management programmes.  相似文献   

7.
Ethanol extract obtained from dried leaves of Acmella oleracea afforded after a liquid/liquid partition procedure a larvicidal hexane fraction (LC50 = 145.6 ppm) and a non larvicidal dichloromethane one. From the inactive fraction, three amides were identified, two new structures, named deca-6,9-dihydroxy-(2E,7E)-dienoic acid isobutylamide (1), deca-8,9-dihydroxy-(2E,6Z)-dienoic acid isobutylamide (2) and the known nona-2,3-dihydroxy-6,8-diynoic acid 2-phenylethylamide (3). Bioassay-guided chromatographic fractionation of the hexane partition led to the identification of an amide mixture, nona-(2Z)-en-6,8-diynoic acid 2-phenylethylamide (4) and deca-(2Z)-en-6,8-diynoic acid 2-phenylethlylamide (5). This mixture was active against Aedes aegypti larvae at LC50 = 7.6 ppm. Low toxicity of crude extracts and derived fractions on Artemia salina nauplies showed the possibility of using them to control the A. aegypti mosquito larvae. This is the first report on larvicidal activity of acetylenic 2-phenylethylamides and their identification in A. oleracea leaves.  相似文献   

8.
Alternative control strategies for the dengue vector Aedes aegypti L. (Diptera: Culicidae) include botanical insecticides. They are believed to pose little threat to the environment or to human health and may provide practical substitutes for synthetic insecticides. In this study, we determined the biological activities of methanol extracts of Acalypha indica L. (Euphorbiaceae) and Achyranthes aspera L (Amaranthaceae) leaves individually and in combination as botanical insecticides against Ae. aegypti. Based on LC50 values for 4th instar Ae. aegypti, the combined extracts showed the strongest larvicidal activity (277 ppm). A. aspera and A. indica extracts individually gave similar results (409 and 420 ppm, respectively). Respective LC50 values for pupae were 326 ppm, 456 ppm, and 467 ppm. In studies of smoke toxicity, 64% of females exposed to negative control smoke (no extract) blood fed on chicken, whereas 17% blood fed when exposed to smoke containing A. aspera extract and to positive control smoke (0.2% d-allethrin). In the field, treatment of water storage tanks (≈ 0.5 m3) with combined plant extract reduced larval and pupal populations by 97% and 81%, respectively, after 5 days. Given the results of this study, further evaluation of the combined (A. indica + A. aspera) extract as a mosquito larvicide is warranted. Mosquito coils with A. aspera extract also show promise as a practical and potentially economical means for mitigating mosquito blood feeding.  相似文献   

9.
《Journal of Asia》2022,25(3):101963
Biological control of larval mosquitoes is in great demand due to the development of resistance against synthetic insecticides, environmental toxicity and the inability to protect habitats from further oviposition. In the present study, three botanical essential oils (BEOs) – citronella, eucalyptus, and pine oils – were formulated for the assessment of larvicidal and oviposition repellent efficacies against Culex quinquefasciatus Say, the filaria vector. The GC–MS profiling of BEOs showed the presence of 16 – 19 compounds covering 87.7–93% of oil composition. The resistance status of Culex quinquefasciatus population was evaluated with temephos (LC50 = 0.001 ppm, LC90 = 0.01 ppm). Larval bioassay of emulsifiable concentrate (EC) formulations prepared from eucalyptus and pine oils showed promising efficacy (LC50 = 22.7 and 23.2 ppm) and LC90 (63.8 and 62.4 ppm) compared to citronella oil EC (LC50 = 43.4 ppm and LC90 = 199.0 ppm). The field trials of eucalyptus + pine (1:1 ratio) EC showed 100% larval mortality for 3 weeks at 300 ppm compared to 2 weeks of individual oils. Further, the oviposition attraction index (OAI) for ECs of eucalyptus, pine, and their combination showed complete protection of breeding habitats from oviposition at 1st week and ?0.9 to ?1.0 OAI at 2nd week with slight reduction to ?0.5 at 3rd week. Citronella EC provided shortest larvicidal and oviposition repellent efficacy under the field conditions. The promising mosquitocidal activities of EC formulations of eucalyptus and pine or their combination suggest them as potential biocontrol vector control candidates over citronella oil.  相似文献   

10.
The current works report the bio-efficacy of Pimenta dioica leaf derived silver nanoparticles (Pd@AgNPs) and leaf extract obtained trough different solvents against the larvae of malaria, filarial and dengue vectors. Synthesis of silver nanoparticles (AgNPs) was done by adding 10 ml of P. dioica leaf extract into 90 ml of 1 mM silver nitrate solution, a slow colour change was observed depicting the formation of AgNPs. Further, Pd@AgNPs was confirmed through Ultraviolet–visible spectroscopy which exhibited characteristic absorption peak at 422 nm wavelength. X-ray diffraction and selected area electron diffraction analysis confirmed monodispersed and crystalline nature of Pd@AgNPs with 32 nm an average size. Scanning electron microscopy and transmission electron microscopy showed the most of Pd@AgNPs were spherical and triangular in shape and energy-dispersive X-ray spectroscopy revealed silver elemental nature of nanoparticles. Zeta potential of Pd@AgNPs is highly negative which confirmed its stable nature. Pd@AgNPs showed prominent absorption peaks at 1015, 1047, 1243, 1634, 2347, 2373, 2697 and 3840 cm?1 which are corresponding to following compounds polysaccharides, carboxylic acids, water, alcohols, esters, ethers, amines, amides and phenol, respectively as reported by Fourier-transform infrared spectroscopy analysis. Gas chromatography–mass spectrometry and Liquid chromatography–mass spectrometry analysis revealed 39 and 70 compounds, respectively, which might be contributed for bio-reduction, capping, stabilization and larvicidal behavior of AgNPs. A comparable lethality (LC50 and LC90) was observed in case of Pd@AgNPs over leaf extract alone. The potential larvicidal activity of Pd@AgNPs was observed against the larvae of Aedes aegypti,(LC50, 2.605; LC90, 5.084 ppm) Anopheles stephensi (LC50, 3.269; LC90, 7.790 ppm) and Culex quinquefasciatus (LC50, 5.373; LC90, 14.738 ppm without affecting non-targeted organism, Mesocyclops thermocyclopoides after 72 hr of exposure. This study entails green chemistry behind synthesis of AgNPs which offers effective technique for mosquito control and other therapeutic applications.  相似文献   

11.
《Journal of Asia》2020,23(1):260-267
The increasing risk of insecticide resistance in mosquito populations has led to the search for new larvicidal agents. Evaluation of bioassay-guided fractionation of the rhizome extract of Alpinia galanga (L.) Willd against Aedes aegypti was assessed. Bioactive fractions were isolated from the rhizome extract of A. galanga using a Soxhlet extractor and chromatography techniques, and subsequently tested against the fourth instar of Culex pipiens. The lethal concentration (LC) was calculated via log-probit analysis. The active fraction was evaluated by gas chromatography-mass spectroscopy (GC–MS) and infrared (IR) analysis. The highest larvicidal potential obtained from bioassays using the Soxhlet apparatus was observed in dichloromethane (DCM) and ethyl acetate (EtoAc) extracts, with LC50 values of 124.49 and 176.30 ppm, respectively, after 24 h of exposure. Subsequently, the DCM extract was subjected to column and thin-layer chromatography. Results of the DCM extraction and the active TLC fraction (F133) of the Rf value 0.5 revealed that LC50 and LC90 values decreased over time. The F133 fraction of A. galanga exhibited zero hatchability (100% mortality) at LC50 (63.416 ppm) and LC25 (31.70 ppm) against Cx. pipiens eggs. GC–MS analysis of the active thin-layer chromatography TLC fraction (F133) revealed the presence of phenol 2 4-bis (1 1-dimethylethyl), which was identified as the major compound. Alpinia galanga extract is a promising candidate for the control of mosquito populations. Further study is required to determine the effect of the extracts on non-target organisms.  相似文献   

12.
Natural products are considered a good choice in the biological control of mosquitoes because they are an effective way to eliminate larvae and prevent an increase in mosquito numbers, while simultaneously not polluting the environment or damaging health. This investigation was designed to study the potential toxicity of three species of algae, Caulerpa racemosa (Weber-van Bosse, 1909), Padina boryana (Thivy, 1966), and Turbinaria ornata (Turner J. Agardh, 1848), on the larvae of Aedes aegypti mosquito, the vector of dengue and Zika viruses. Among the studied species, Caulerpa racemosa showed the greatest effectiveness in eradicating A. aegypti larvae with an LC50 = 43.5 ppm, followed by Padina boryana with an LC50 = 51.93 ppm. Both species proved to be excellent candidates as a source of larvicidal agents and could be used commercially in mosquito control programs as eco-friendly biopesticides. The combined activity of different mixtures against mosquito larvae was expressed as the coeffective factor (C.F.). C.F. values showed that the joint activity of insect growth regulator Dudim in combination with Caulerpa racemosa and Padina boryana extracts produced degrees of potentiation effects and degrees of additive effects were obtained with Dudim in combination with Turbinaria ornata extract.  相似文献   

13.
Culex pipiens mosquitoes are the most widely distributed primary vector of the West Nile virus worldwide. Many attempts for investigation of botanical pesticides to avoid the development of pesticide resistance to conventional synthetic pesticides that are recognized as a threat to the diversity of ecosystems. The study aimed to determine the components of three essential oils of Lamiaceae family, lavender (Lavandula angustifolia), peppermint (Mentha piperita L.), and rosemary (Rosmarinus officinalis L.) by gas chromatography-mass spectrometry (GC–MS) analysis. Furthermore, aimed to validate the insecticidal activities of these oils as larvicidal agents against the third instar larvae of Culex pipiens using five different concentrations (62.5, 125, 250, 500, and 1000 ppm) for each oil in five replicates and as an adulticidal agent against approximately three-day-old female adults of Cx. Pipiens using 0.5, 1, 2, 4, and 5% concentrations in three replicates. The results generally showed a dose-related response. At 1000 ppm, rosemary oil showed the highest larvicidal (100%) (LC50, 214.97 ppm), followed by peppermint oil (92.00% mortality and LC50 (269.35 ppm). Lavender oil showed the lowest efficacy with 87.20% mortality and LC50 (301.11 ppm). At 5% oil concentration, the highest knockdown rate at 1 h was recorded for lavender oil (95.55%), followed by peppermint oil (88.89%) and lastly rosemary oil (84.44%). After 24 h, rosemary oil showed the lowest adult mortality rate (88.89%; LC50, 1.44%), while lavender and peppermint oils both showed a 100% mortality rate, with (LC50, 0.81% and 0.91%, respectively). The chemical constituents of the oils consisted of monoterpenes and sesquiterpenes that determined their insecticidal activities against the target insect stage. The study proposed that rosemary essential oil may be useful for the control of Cx. pipiens larvae as part of an integrated water treatment strategy, and lavender and peppermint oils may be used in an integrated plan for adult’s control.  相似文献   

14.
Aedes mosquitoes are the most important group of vectors that transmit pathogens, including arboviruses, and cause human diseases such as dengue fever, yellow fever, Zika virus, and Chikungunya. Biosynthesis and the use of green silver nanoparticles (AgNPs) is a vital step to identify reliable and eco-friendly controls for these vectors. In this study, Aedes (Ae.) aegypti larvae (2nd and 3rd instar) were exposed to leaf extracts of Ricinus communis (Castor) and AgNPs synthesized from the extract to evaluate their larvicidal potential. Synthesized AgNPs were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (XRD). Ae. aegypti larvae were treated with different concentrations (50–250 ppm) of the leaf extract and synthesized AgNPs. There were five replicates per treatment, in addition to a positive (temephos) and negative control (dechlorinated water). Mortality was recorded after 12, 24, 36, and 48 h and the data were subjected to Probit analysis. The nanoparticles were more toxic (LC50 = 46.22 ppm and LC90 = 85.30 ppm) than the plant extract (106.24 and 175.73 ppm, respectively). The leaf extracts of Ricinus communis were subjected to HPLC analysis to identify their chemical constituents. This study suggests that plant extracts and synthesized nanoparticles are excellent alternatives to hazardous chemical pesticides used to control vector mosquitoes. This is a potentially useful technique that can reduce aquatic toxicity from insecticide use.  相似文献   

15.
The present study focused on extracting green larvicides from extracts of the combination of Foeniculum vulgare and Matricaria chamomilla using different solvents of increasing polarity in a Soxhlet extractor and evaluating their ovicidal, larvicidal, and cytotoxic activities. The most promising among all tested extracts was hexane extract. The ovicidal activity of the hexane PH2 extract resulted in a significant (p < 0.05) decrease in egg hatchability from 95.00 ± 6.16% to 15 ± 9.04% at doses ranging from 62.5 to 500 µg/mL. The larval mortality with the hexane extract ranged from 13.33 ± 3.3% to 93.33 ± 3.3% at doses ranging from 31.25 to 250 µg/mL, respectively. The LC50 and LC90 values of the larvicidal activity of the hexane extract were estimated to be 148.3 and 242.17 µg/mL, respectively, after 24 h of exposure. Similarly, the LC50 values after 48 and 72 h of exposure were 124.93 and 100.3 µg/mL, respectively, against the third instar of Cx. pipiens. PH2 treatment of larvae resulted in histopathological changes such as degenerated epithelial cells and destruction of microvilli on the epithelial cells. The PH2 extract achieved a dose-dependent decrease in the rate of cell survival. The IC50 value of PH2-treated HUVECs was 192.07 µg/mL after 24 h of incubation. The cells showed changes in cellular and nuclear morphology. In conclusion, the hexane extract of PH2 could be used in mosquito management programs.  相似文献   

16.
Effects of methanol extracts of Xanthium strumarium on different cancer cell lines and on the mortality rates of Aedes caspius, Culex pipiens (Diptera: Culicidae) were investigated. Among the cell lines tested, the Jurkat cell line was the most sensitive to the methanol extract and ethyl acetate fraction, with reported LC50 values of 50.18 and 48.73 μg/ml respectively. Conversely, methanol extracts were not that toxic to the A549 cell line though the toxicity increased on further purification. The percentage of growth inhibition was dose dependent for the methanol extract and ethyl acetate fraction. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The results showed that methanol extracts of plant seeds caused 100% mortality of mosquito larvae at a concentration of 1000 μg/ml after 24 h of treatment. The LC50 and LC90 values of X. strumarium were found to be 531.07 and 905.95 μg/ml against Ae. caspius and 502.32 and 867.63 μg/ml against Cx. Pipiens, respectively. From the investigations, it was concluded that the crude extract of X. strumarium showed a weak potential for controlling the larval instars of Ae. caspius and Cx. pipiens. However, on further purification the extract lost the larvicidal activity. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The ethyl acetate fraction investigated in this study appears to have a weak larvicidal activity but a promising cytotoxic activity. Future studies will include purification and investigation in further detail of the action of X. strumarium on Cancer Cell Lines and mosquitoes.  相似文献   

17.
Mosquitoes are potent vectors by serving as agents to life-threatening diseases in humans. Increasing resistance in mosquitoes against existing insecticides and repellents brings new challenges and an opportunity to explore sustainable compounds. We chose six medicinal plants to screen potential bioactive compounds that could act as an insecticide. Among these, crude hexane leaf extract of Acorus calamus showed higher mortality percentage against Aedes aegypti and Culex quinquefasciatus. The LC50 and LC90 values were 151.86 ppm and 536.36 ppm, respectively, for the third instar A. aegypti larvae, and 174.70 ppm and 696.73 ppm, respectively, for C. quinquefasciatus. The treated larvae of both species showed morphological and physiological variations when compared to control. The GC–MS profile of purified fractions showed a single peak. Further, FT-IR and NMR analyses confirmed the propensity of the purified compound as trans asarone (phenylpropanoid; C12H16O3. LC50 and LC90 values of purified asasone-treated larvae were 2.35 ppm and 12.58 ppm, respectively, for A. aegypti and 2.15 ppm and 11.58 ppm, respectively, for C. quinquefasciatus. Treatment of different sub-lethal doses of asarone to mosquito larvae at various time intervals showed disruption of intestinal layers. By showing negligible toxicity to non-target organism, purified asarone has a great potential in vector management.  相似文献   

18.
The present study aimed to investigate, the larvicidal, adult emergence inhibition and oviposition deterrent activity of aqueous leaves extract of Calotropis procera against Anopheles arabiensis and Culex quinquefasciatus as natural mosquito larvicide. The larvicidal activity was monitored against 2nd, 3rd and 4th instar larvae of each mosquito species 24 h post-treatment. Adult emergence inhibition activity was tested by exposing 3rd instar larvae of each mosquito species to different concentrations of extracts (200, 400, 600, 800 and 1000 ppm for An. arabiensis and 100, 200, 300, 400, 500 and 600 ppm for Cx. quinquefasciatus). Probit analysis was used to analyze data from bioassay experiments. The oviposition deterrent activity was tested by using three different concentrations of extracts (1000, 500 and 200 for An. arabiensis, and 1000, 500 and 100 for Cx. quinquefasciatus) that caused high, moderate and low larval mortality in the larvicidal experiment against 3rd instar larvae. It was found that, LC50–LC90 values calculated were 273.53–783.43, 366.44–1018.59 and 454.99–1224.62 ppm for 2nd, 3rd and 4th larval instars, respectively, of An. arabiensis and 187.93–433.51, 218.27–538.27 and 264.85–769.13 ppm for 2nd, 3rd and 4th larval instars, respectively, of Cx. quinquefasciatus. Fifty percent of adult emergence inhibition (EI50) was shown at 277.90 and 183.65 ppm for An. arabiensis and Cx. quinquefasciatus, respectively. The pupal stage was not affected till a concentration of 5000 ppm. The extract showed oviposition deterrence and effective repellence against both mosquito species at different concentrations, with the observation on that maximal eggs were laid in low concentration of extract. These results suggest that the leaves extract of C. procera possess remarkable larvicidal, adult emergence inhibitor, repellent and oviposition deterrent effect against both An. arabiensis and Cx. quinquefasciatus, and might be used as natural biocides for mosquito control.  相似文献   

19.
The essential oils of leaves, stems and inflorescences of Piper marginatum, harvested in the Atlantic forest in the State of Pernambuco, Brazil, were obtained by hydrodistillation. GC and GC–MS analyses revealed the presence of 40 components accounting, respectively, for 99.6%, 99.7% and 99.1% of the leaf, stem and inflorescence oil, the most abundant being (Z)- or (E)-asarone and patchouli alcohol. The essential oil of the inflorescences exhibited potent activity against the 4th instar of Aedes aegypti with LC10 and LC50 values of 13.8 and 20.0 ppm, respectively. Furthermore, the inflorescence oil did not interfere in the oviposition of A. aegypti females when assayed at 50 ppm. These properties suggest that P. marginatum oil is a potential source of valuable larvicidal compounds for direct use or in conjunction with baits in traps constructed to capture eggs and larvae.  相似文献   

20.
A preliminary study was conducted to investigate the effects of the extracts of 112 medicinal plant species, collected from the southern part of Thailand, on Aedes aegypti. Studies on larvicidal properties of plant extracts against the fourth instar larvae revealed that extracts of 14 species showed evidence of larvicidal activity. Eight out of the 14 plant species showed 100% mosquito larvae mortality. The LC50 values were less than 100μg/mL (4.1μg/ mL-89.4μg/mL). Six plant species were comparatively more effective against the fourth instar larvae at very low concentrations. These extracts demonstrated no or very low toxicity to guppy fish (Poecilia reticulata), which was selected to represent most common non-target organism found in habitats ofAe. aegypti, at concentrations active to mosquito larvae. Three medicinal plants with promising larvicidal activity, having LC50 and LC50 values being 4.1 and 16.4 μg/mL for Mammea siamensis, 20.2 and 34.7 μg/mL forAnethum graveolens and 67.4 and 110.3μg/mL forAnnona muricata, respectively, were used to study the impact of the extracts on the life cycle ofAe. aegypti. These plants affected pupal and adult mortality and also affected the reproductive potential of surviving adults by reducing the number of eggs laid and the percentage of egg hatchability. When each larval stage was treated with successive extracts at the LC50 value, the first instar larvae were found to be very susceptible to A. muricata and the second instar larvae were found to be susceptible to A. graveolens, while the third and fourth instar larvae were found to be susceptible to M. siamensis. These extracts delayed larval development and inhibited adult emergence and had no adverse effects on P. reticulata at LC50 and LC50 values, except for the M. siamensis extract at its LC50 value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号