首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The heme-regulated eukaryotic initiation factor-2alpha (eIF2alpha) kinase (HRI) regulates the initiation of protein synthesis in reticulocytes. The binding of NO to the N-terminal heme-binding domain (NTD) of HRI positively modulates its kinase activity. By utilizing UV-visible absorption, resonance Raman, EPR and CD spectroscopies, two histidine residues have been identified that are crucial for the binding of heme to the NTD. The UV-visible absorption and resonance Raman spectra of all the histidine to alanine mutants constructed were similar to those of the unmutated NTD. However, the change in the CD spectra of the NTD construct containing mutation of His78 to Ala (H78A) indicated loss of the specific binding of heme. The EPR spectrum for the ferric H78A mutant was also substantially perturbed. Thus, His78 is one of the axial ligands for the NTD of HRI. Significant changes in the EPR spectrum of the H123A mutant were also observed, and heme readily dissociated from both the H123A and the H78A NTD mutants, suggesting that His123 was also an axial heme ligand. However, the CD spectrum for the Soret region of the H123A mutant indicated that this mutant still bound heme specifically. Thus, while both His78 and His123 are crucial for stable heme binding, the effects of their mutations on the structure of the NTD differed. His78 appears to play the primary role in the specific binding of heme to the NTD, acting analogously to the "proximal histidine" ligand of globins, while His123 appears to act as the "distal" heme ligand.  相似文献   

2.
Heme-regulated eIF2alpha kinase [heme-regulated inhibitor (HRI)] plays a critical role in the regulation of protein synthesis by heme iron. The kinase active site is located in the C-terminal domain, whereas the N-terminal domain is suggested to regulate catalysis in response to heme binding. Here, we found that the rate of dissociation for Fe(III)-protoporphyrin IX was much higher for full-length HRI (1.5 x 10(-)(3) s(-)(1)) than for myoglobin (8.4 x 10(-)(7) s(-)(1)) or the alpha-subunit of hemoglobin (7.1 x 10(-)(6) s(-)(1)), demonstrating the heme-sensing character of HRI. Because the role of the N-terminal domain in the structure and catalysis of HRI has not been clear, we generated N-terminal truncated mutants of HRI and examined their oligomeric state, heme binding, axial ligands, substrate interactions, and inhibition by heme derivatives. Multiangle light scattering indicated that the full-length enzyme is a hexamer, whereas truncated mutants (truncations of residues 1-127 and 1-145) are mainly trimers. In addition, we found that one molecule of heme is bound to the full-length and truncated mutant proteins. Optical absorption and electron spin resonance spectra suggested that Cys and water/OH(-) are the heme axial ligands in the N-terminal domain-truncated mutant complex. We also found that HRI has a moderate affinity for heme, allowing it to sense the heme concentration in the cell. Study of the kinetics showed that the HRI kinase reaction follows classical Michaelis-Menten kinetics with respect to ATP but sigmoidal kinetics and positive cooperativity between subunits with respect to the protein substrate (eIF2alpha). Removal of the N-terminal domain decreased this cooperativity between subunits and affected the other kinetic parameters including inhibition by Fe(III)-protoporphyrin IX, Fe(II)-protoporphyrin IX, and protoporphyrin IX. Finally, we found that HRI is inhibited by bilirubin at physiological/pathological levels (IC(50) = 20 microM). The roles of the N-terminal domain and the binding of heme in the structural and functional properties of HRI are discussed.  相似文献   

3.
The heme-regulated inhibitor of protein synthesis (HRI) regulates translation through the phosphorylation of the alpha-subunit of eukaryotic initiation factor-2 (eIF 2). While HRI is best known for its activation in response to heme-deficiency, we recently showed that the binding of NO and CO to the N-terminal heme-binding domain (NT-HBD) of HRI activated and suppressed its activity, respectively. Here, we examined the effect of hemin, NO, and CO on the interaction between the NT-HBD and the catalytic domain of HRI (HRI/Delta HBD). Hemin stabilized the interaction of NT-HBD with HRI/Delta HBD, and NO and CO disrupted and stabilized this interaction, respectively. Mutant HRI (Delta H-HRI), lacking amino acids 116-158 from the NT-HBD, was less sensitive to heme-induced inhibition, and mutant NT-HBD lacking these residues did not bind to HRI/Delta HBD. HRI/Delta HBD and Delta H-HRI also activated more readily than HRI in response to heme-deficiency. Thus, HRI's activity is regulated through the modulation of the interaction between its NT-HBD and catalytic domain.  相似文献   

4.
5.
Bauer BN  Rafie-Kolpin M  Lu L  Han A  Chen JJ 《Biochemistry》2001,40(38):11543-11551
In heme-deficient reticulocytes, protein synthesis is inhibited due to the activation of heme-regulated eIF2alpha kinase (HRI). Activation of HRI is accompanied by its phosphorylation. We have investigated the role of autophosphorylation in the formation of active and stable HRI. Two autophosphorylated species of recombinant HRI expressed in Escherichia coli were resolved by SDS-PAGE. Both species of HRI were multiply autophosphorylated on serine, threonine, and to a lesser degree also tyrosine residues. Species II HRI exhibited a much higher extent of autophosphorylation and thus migrates slower in SDS-PAGE than species I HRI. Similarly, HRI naturally present in reticulocytes also exhibited these species with different degrees of phosphorylation. Importantly, in heme-deficient intact reticulocytes, inactive species I HRI was converted completely into species II. We further separated and characterized these two species biochemically. We found that species I was inactive and had a tendency to aggregate while the more extensively autophosphorylated species II was an active heme-regulated eIF2alpha kinase and stable homodimer. Our results strongly suggest that autophosphorylation regulates HRI in a two-stage mechanism. In the first stage, autophosphorylation of newly synthesized HRI stabilizes species I HRI against aggregation. Although species I is an active autokinase, it is still without eIF2alpha kinase activity. Additional multiple autophosphorylation in the second stage is required for the formation of stable dimeric HRI (species II) with eIF2alpha kinase activity that is regulated by heme.  相似文献   

6.
Heme-regulated eIF2alpha kinase (HRI) is an important enzyme that modulates protein synthesis during cellular emergency/stress conditions, such as heme deficiency in red cells. It is essential to identify the heme axial ligand(s) and/or binding sites to establish the heme regulation mechanism of HRI. Previous reports suggest that a His residue in the N-terminal region and a Cys residue in the C-terminal region trans to the His are axial ligands of the heme. Moreover, mutational analyses indicate that a residue located in the kinase insertion (KI) domain between Kinase I and Kinase II domains in the C-terminal region is an axial ligand. In the present study, we isolate the KI domain of mouse HRI and employ site-directed mutagenesis to identify the heme axial ligand. The optical absorption spectrum of the Fe(III) hemin-bound wild-type KI displays a broad Soret band at around 373nm, while that of the Fe(II) heme-bound protein contains a band at 422nm. Spectral titration studies conducted for both the Fe(III) hemin and Fe(II) heme complexes with KI support a 1:1 stoichiometry of heme iron to protein. Resonance Raman spectra of Fe(III) hemin-bound KI suggest that thiol is the axial ligand in a 5-coordinate high-spin heme complex as a major form. Electron spin resonance (ESR) spectra of Fe(III) hemin-bound KI indicate that the axial ligands are OH(-) and Cys. Since Cys385 is the only cysteine in KI, the residue was mutated to Ser, and its spectral characteristics were analyzed. The Soret band position, heme spectral titration behavior and ESR parameters of the Cys385Ser mutant were markedly different from those of wild-type KI. Based on these spectroscopic findings, we conclude that Cys385 is an axial ligand of isolated KI.  相似文献   

7.
Erythroid expression of the heme-regulated eIF-2 alpha kinase.   总被引:2,自引:0,他引:2       下载免费PDF全文
The role of heme-regulated eIF-2 alpha kinase (HRI) in the regulation of protein synthesis in rabbit reticulocytes is well documented. Inhibitors of protein synthesis with properties similar to those of HRI have been described in some nonerythroid cell types, but it has not yet been determined whether these eIF-2 alpha kinase activities are mediated by HRI or one or more as yet uncharacterized kinases. We have studied the expression of mRNA, polypeptide, and kinase activities of HRI in various tissues from both nonanemic and anemic rabbits. Our results indicate that HRI is expressed in an erythroid cell-specific manner. HRI is present in the bone marrow and peripheral blood of both nonanemic and anemic rabbits but not in any of the other tissues tested. HRI mRNA is present at low levels in uninduced mouse erythroleukemic (MEL) cells and human K562 cells and accumulates to higher levels upon induction. The accumulation of HRI mRNA in differentiating MEL cells is dependent upon the presence of heme. The addition of 3-amino-1,2,4-triazole (AT), an inhibitor of heme biosynthesis, to the induction medium markedly reduced HRI mRNA accumulation. Simultaneous addition of hemin and AT to the dimethyl sulfoxide induction medium largely prevented the inhibition of HRI mRNA induction by AT. These findings indicate that HRI is expressed in an erythroid cell-specific manner and that the major physiologic role of HRI is in adjusting the synthesis of globins to the availability of heme.  相似文献   

8.
The heme-regulated inhibitor of protein synthesis (HRI) regulates translation through the phosphorylation of the α-subunit of eukaryotic initiation factor-2 (eIF2). While HRI is best known for its activation in response to heme-deficiency, we recently showed that the binding of NO and CO to the N-terminal heme-binding domain (NT-HBD) of HRI activated and suppressed its activity, respectively. Here, we examined the effect of hemin, NO, and CO on the interaction between the NT-HBD and the catalytic domain of HRI (HRI/ΔHBD). Hemin stabilized the interaction of NT-HBD with HRI/ΔHBD, and NO and CO disrupted and stabilized this interaction, respectively. Mutant HRI (ΔH-HRI), lacking amino acids 116–158 from the NT-HBD, was less sensitive to heme-induced inhibition, and mutant NT-HBD lacking these residues did not bind to HRI/ΔHBD. HRI/ΔHBD and ΔH-HRI also activated more readily than HRI in response to heme-deficiency. Thus, HRI's activity is regulated through the modulation of the interaction between its NT-HBD and catalytic domain.  相似文献   

9.
10.
Shao J  Hartson SD  Matts RL 《Biochemistry》2002,41(21):6770-6779
The maturation and activation of newly synthesized molecules of the heme-regulated inhibitor of protein synthesis (HRI) in reticulocytes require their functional interaction with Hsp90. In this report, we demonstrate that protein phosphatase 5 (PP5), a previously documented component of the Hsp90 chaperone machine, is physically associated with HRI maturation intermediates. The interaction of PP5 with HRI is mediated through Hsp90, as mutants of PP5 that do not bind Hsp90 do not interact with HRI. PP5 was also present in Hsp90 heterocomplexes with another Hsp90 cohort, p50(cdc37), and expression of newly synthesized HRI enhanced the amount of p50(cdc37) associated with Hsp90/PP5-HRI heterocomplexes. The functional significance of the interaction of PP5 with Hsp90-HRI heterocomplexes was examined by characterizing the effects of compounds that impact PP5 activity in vitro. The protein phosphatase inhibitors okadaic acid and nodularin enhanced the kinase activity of HRI when applied during HRI maturation/activation, while the PP5 activators arachidonic and linoleic acid repressed HRI activity when applied during HRI maturation/activation. However, application of these compounds after HRI's "transformation" to an Hsp90-independent form did not similarly impact HRI's kinase activity. Furthermore, the Hsp90 inhibitor geldanamycin negated the effects of phosphatase inhibitors on HRI maturation/activation. The finding that PP5 downregulates an Hsp90-dependent process supports models for regulated Hsp90 function and describes a novel potential substrate for PP5 function in vivo.  相似文献   

11.
Heme-regulated eukaryotic initiation factor 2alpha (eIF2alpha) kinase (HRI) functions in response to the heme iron concentration. At the appropriate heme iron concentrations under normal conditions, HRI function is suppressed by binding of the heme iron. Conversely, upon heme iron shortage, HRI autophosphorylates and subsequently phosphorylates the substrate, eIF2alpha, leading to the termination of protein synthesis. The molecular mechanism of heme sensing by HRI, including identification of the specific binding site, remains to be established. In the present study we demonstrate that His-119/His-120 and Cys-409 are the axial ligands for the Fe(III)-protoporphyrin IX complex (hemin) in HRI, based on spectral data on site-directed mutant proteins. Cys-409 is part of the heme-regulatory Cys-Pro motif in the kinase domain. A P410A full-length mutant protein displayed loss of heme iron affinity. Surprisingly, inhibitory effects of the heme iron on catalysis and changes in the heme dissociation rate constants in full-length His-119/His-120 and Cys-409 mutant proteins were marginally different to wild type. In contrast, heme-induced inhibition of Cys-409 mutants of the isolated kinase domain and N-terminal-truncated proteins was substantially weaker than that of the full-length enzyme. A pulldown assay disclosed heme-dependent interactions between the N-terminal and kinase domains. Accordingly, we propose that heme regulation is induced by interactions between heme and the catalytic domain in conjunction with global tertiary structural changes at the N-terminal domain that accompany heme coordination and not merely by coordination of the heme iron with amino acids on the protein surface.  相似文献   

12.
13.
Var2CSA, a key molecule linked with pregnancy-associated malaria (PAM), causes sequestration of Plasmodium falciparum infected erythrocytes (PEs) in the placenta by adhesion to chondroitin sulfate A (CSA). Var2CSA possesses a 300 kDa extracellular region composed of six Duffy-binding like (DBL) domains and a cysteine-rich interdomain region (CIDRpam) module. Although initial studies implicated several individual var2CSA DBL domains as important for adhesion of PEs to CSA, new studies revealed that these individual domains lack both the affinity and specificity displayed by the full-length extracellular region. Indeed, recent evidence suggests the presence of a single CSA-binding site formed by a higher-order domain organization rather than several independent binding sites located on the different domains. Here, we search for the minimal binding region within var2CSA that maintains high affinity and specificity for CSA binding, a characteristic feature of the full-length extracellular region. Accordingly, truncated recombinant var2CSA proteins comprising different domain combinations were expressed and their binding characteristics assessed against different sulfated glycosaminoglycans (GAGs). Our results indicate that the smallest region within var2CSA with similar binding properties to those of the full-length var2CSA is DBL1X-3X. We also demonstrate that inhibitory antibodies raised in rabbit against the full-length DBL1X-6ε target principally DBL3X and, to a lesser extent, DBL5ε. Taken together, our results indicate that efforts should focus on the DBL1X-3X region for developing vaccine and therapeutic strategies aimed at combating PAM.  相似文献   

14.
Recent studies indicate that p50(cdc37) facilitates Hsp90-mediated biogenesis of certain protein kinases. In this report, we examined whether p50(cdc37) is required for the biogenesis of the heme-regulated eIF2 alpha kinase (HRI) in reticulocyte lysate. p50(cdc37) interacted with nascent HRI co-translationally and this interaction persisted during the maturation and activation of HRI. p50(cdc37) stimulated HRI's activation in response to heme deficiency, but did not activate HRI per se. p50(cdc37) function was specific to immature and inactive forms of the kinase. Analysis of mutant Cdc37 gene products indicated that the N-terminal portion of p50(cdc37) interacted with immature HRI, but not with Hsp90, while the C-terminal portion of p50(cdc37) interacted with Hsp90. The Hsp90-specific inhibitor geldanamycin disrupted the ability of both Hsp90 and p50(cdc37) to bind HRI and promote its activation, but did not disrupt the native association of p50(cdc37) with Hsp90. A C-terminal truncated mutant of p50(cdc37) inhibited HRI's activation, prevented the interaction of Hsp90 with HRI, and bound to HRI irrespective of geldanamycin treatment. Additionally, native complexes of HRI with p50(cdc37) were detected in cultured K562 erythroleukemia cells. These results suggest that p50(cdc37) provides an activity essential to HRI biogenesis via a process regulated by nucleotide-mediated conformational switching of its partner Hsp90.  相似文献   

15.
16.
In heme deficiency, protein synthesis in reticulocytes is inhibited by activation of heme-regulated alpha-subunit of eukaryotic initiation factor-2alpha (eIF-2alpha) kinase (HRI). Previous studies indicate that HRI contains two distinct heme-binding sites per HRI monomer. To study the role of the N terminus in the heme regulation of HRI, two N-terminally truncated mutants, Met2 and Met3 (deletion of the first 103 and 130 amino acids, respectively), were prepared. Met2 and Met3 underwent autophosphorylation and phosphorylated eIF-2alpha with a specific activity of approximately 50% of that of the wild type HRI. These mutants were significantly less sensitive to heme regulation both in vivo and in vitro. In addition, the heme contents of purified Met2 and Met3 HRI were less than 5% of that of the wild type HRI. These results indicated that the N terminus was important but was not the only domain involved in the heme-binding and heme regulation of HRI. Heme binding of the individual HRI domains showed that both N terminus and kinase insertion were able to bind hemin, whereas the C terminus and the catalytic domains were not. Thus, both the N terminus and the kinase insertion, which are unique to HRI, are involved in the heme binding and the heme regulation of HRI.  相似文献   

17.
The GCN2 eIF2alpha kinase is essential for activation of the general amino acid control pathway in yeast when one or more amino acids become limiting for growth. GCN2's function in mammals is unknown, but must differ, since mammals, unlike yeast, can synthesize only half of the standard 20 amino acids. To investigate the function of mammalian GCN2, we have generated a Gcn2(-/-) knockout strain of mice. Gcn2(-/-) mice are viable, fertile, and exhibit no phenotypic abnormalities under standard growth conditions. However, prenatal and neonatal mortalities are significantly increased in Gcn2(-/-) mice whose mothers were reared on leucine-, tryptophan-, or glycine-deficient diets during gestation. Leucine deprivation produced the most pronounced effect, with a 63% reduction in the expected number of viable neonatal mice. Cultured embryonic stem cells derived from Gcn2(-/-) mice failed to show the normal induction of eIF2alpha phosphorylation in cells deprived of leucine. To assess the biochemical effects of the loss of GCN2 in the whole animal, liver perfusion experiments were conducted. Histidine limitation in the presence of histidinol induced a twofold increase in the phosphorylation of eIF2alpha and a concomitant reduction in eIF2B activity in perfused livers from wild-type mice, but no changes in livers from Gcn2(-/-) mice.  相似文献   

18.
We have engineered ecotropic Moloney murine leukemia virus-derived envelopes targeted to cell surface molecules expressed on human cells by the N-terminal insertion of polypeptides able to bind either Ram-1 phosphate transporter (the first 208 amino acids of amphotropic murine leukemia virus surface protein) or epidermal growth factor receptor (EGFR) (the 53 amino acids of EGF). Both envelopes were correctly processed and incorporated into viral particles. Virions carrying these envelopes could specifically bind the new cell surface receptors. Virions targeted to Ram-1 could infect human cells, although the efficiency was reduced compared with that of virions carrying wild-type amphotropic murine leukemia virus envelopes. The infectivity of virions targeted to EGFR was blocked at a postbinding step, and our results suggest that EGFR-bound virions were rapidly trafficked to lysosomes. These data suggest that retroviruses require specific properties of cell surface molecules to allow the release of viral cores into the correct cell compartment.  相似文献   

19.
Evidence that HAX-1 is an interleukin-1 alpha N-terminal binding protein   总被引:5,自引:0,他引:5  
During studies aimed at understanding the function of the N-terminal peptide of interleukin-1 alpha (IL-1 NTP, amino acids 1-112), which is liberated from the remainder of IL-1 alpha during intracellular processing, we identified by yeast two-hybrid analysis a putative interacting protein previously designated as HAX-1. In vitro binding studies and transient transfection experiments confirmed that HAX-1 can associate with the IL-1 NTP. HAX-1 was first identified as a protein that associates with HS1, a target of non-receptor protein tyrosine kinases within haematopoietic cells. Recent data have also revealed interactions between HAX-1 and three disparate proteins, polycystin-2 (derived from the PKD2 gene), a protein linked to polycystic kidney disease, cortactin, and Epstein-Barr virus nuclear antigen leader protein (EBNA-LP). Sequence analysis of different HAX-1 binding domains revealed a putative consensus binding motif that is present in various intracellular proteins. Overlapping peptides comprising the IL-1 NTP were synthesized, and binding experiments revealed that discrete peptides were capable of interacting with HAX-1. HAX-1 may serve to retain the IL-1 NTP in the cytoplasm, and complex formation between the IL-1 NTP and HAX-1 may play a role in motility and/or adhesion of cells.  相似文献   

20.
R Fagard  J P Boissel 《Biochimie》1983,65(7):441-445
The Mr 80,000 subunit of the inhibitor of protein synthesis that is activated in heme deficiency was purified from SDS gels. Radiolabelled reagents were used to determine the end terminal residues: the N-terminal residue was found to be only glutamine, and the C-terminal residue only valine. Phosphoaminoacids determination revealed both phosphoserine and phosphothreonine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号