首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Nguyen A  Chen P  Cai H 《FEBS letters》2004,572(1-3):307-313
Growing evidence suggests that reactive oxygen species such as hydrogen peroxide (H(2)O(2)) can function as important signaling molecules in vascular cells. H(2)O(2)-activated redox-sensitive pathways mediate both physiological and pathological responses given the location and concentration of H(2)O(2). We showed previously for the first time that calcium/calmodulin-dependent protein kinase II (CaMKII) is redox-sensitive in endothelial cells, mediating H(2)O(2) upregulation of endothelial nitric oxide synthase. This response is always accompanied by an elongation phenotype of endothelial cells, implying modulation of actin cytoskeleton. In the present study, we investigated the role of CaMKII in H(2)O(2) activation of p38 MAPK/heat shock protein 27 (HSP27) pathway and ERK1/2, both of which have been known to regulate actin reorganization in endothelial cells. Addition of H(2)O(2) to bovine aortic endothelial cells increased ERK1/2 phosphorylation and activity, which was attenuated by a specific inhibitor of CaMKII, KN93. KN93 also prevented H(2)O(2) activation of p38 MAPK. Transfection of endothelial cells with a CaMKII-specific inhibitory peptide (AA 281-309) reduced H(2)O(2) phosphorylation of p38 MAPK and ERK1/2. Furthermore, blockade of CaMKII or janus kinase 2 (JAK2, downstream of CaMKII) prevented H(2)O(2) activation of HSP27. KN93 attenuated, whereas AG490 (JAK2 inhibitor) abolished, H(2)O(2)-induced formation of actin stress fibers. Blockade of ERK1/2 inhibited H(2)O(2) phosphorylation of HSP27 transiently. It also partially prevented H(2)O(2) induction of actin stress fibers. In summary, redox-sensitive activation of p38 MAPK/HSP27 pathway or ERK1/2 in endothelial cells requires CaMKII. These pathways are at least partially responsible for H(2)O(2) induced reorganization of actin cytoskeleton.  相似文献   

2.
Mitogen-activated protein kinases (MAPKs) play different regulatory roles in signaling oxidative stress-induced apoptosis in cardiac ventricular myocytes. The regulation and functional role of cross-talk between p38 MAPK and extracellular signal-regulated kinase (ERK) pathways were investigated in cardiac ventricular myocytes in the present study. We demonstrated that inhibition of p38 MAPK with SB-203580 and SB-239063 enhanced H(2)O(2)-stimulated ERK phosphorylation, whereas preactivation of p38 MAPK with sodium arsenite reduced H(2)O(2)-stimulated ERK phosphorylation. In addition, pretreatment of cells with the protein phosphatase 2A (PP2A) inhibitors okadaic acid and fostriecin increased basal and H(2)O(2)-stimulated ERK phosphorylation. We also found that PP2A coimmunoprecipitated with ERK and MAPK/ERK (MEK) in cardiac ventricular myocytes, and H(2)O(2) increased the ERK-associated PP2A activity that was blocked by inhibition of p38 MAPK. Finally, H(2)O(2)-induced apoptosis was attenuated by p38 MAPK or PP2A inhibition, whereas it was enhanced by MEK inhibition. Thus the present study demonstrated that p38 MAPK activation decreases H(2)O(2)-induced ERK activation through a PP2A-dependent mechanism in cardiac ventricular myocytes. This represents a novel cellular mechanism that allows for interaction of two opposing MAPK pathways and fine modulation of apoptosis during oxidative stress.  相似文献   

3.
Evidence suggests that p38 mitogen-activated protein kinase (MAPK) activation influences cardiac function on an acute basis. The characterization and mechanisms by which this occurs were investigated in the present study. Adult rat ventricular myocytes treated with 1 mM arsenite for 30 min had a 16-fold increase in p38 MAPK phosphorylation that was attenuated by SB-203580 (a p38 MAPK inhibitor). Extracellular signal-regulated protein kinase (ERK) and c-Jun NH2-terminal kinase (JNK) were also minimally activated, but this activation was not sensitive to SB-203580. In addition, arsenite caused a p38 MAPK-independent translocation/activation of protein phosphatase 2a (PP2a) and decrease in phosphorylation of myosin light chain 2 (LC2). Arsenite-p38 MAPK activation led to translocation of heat shock protein 27 but not alpha B-crystallin to the myofilaments. Using isolated cardiomyocytes, we determined that arsenite reduces isometric tension without a change in Ca2+ sensitivity of tension via p38 MAPK and lowers myofibrillar actomyosin Mg2+-ATPase activity in a p38 MAPK-independent manner. Thus arsenite induces a p38 MAPK-independent change in PP2a and LC2 that may account for the arsenite-dependent decrease in ATPase and a p38 MAPK-dependent modification of the myofilaments that decreases myocardial force development.  相似文献   

4.
The signaling axis of p38 mitogen-activated protein kinase (p38 MAPK) and MAPK-activated protein kinase 2 (MK2) is the dominant pathway that leads to heat shock protein 27 (HSP27) phosphorylation. After activation of MK2 by p38 MAPK, HSP27 is phosphorylated and depolymerized by MK2, thereby increasing the cell migration and directly interfering with the apoptotic signaling cascades. Sec6 is one of the components of the exocyst complex that is an evolutionarily conserved 8-protein complex. Even though several studies have demonstrated that Sec6 is involved in various cellular physiological functions, the relationship between Sec6 and HSP27 or p38 MAPK during cell migration and apoptosis remains unclear. In the present study, we observed that Sec6 increased the phosphorylation of p38 MAPK through the activation of MAPK kinase 3/6 (MKK3/6). Moreover, Sec6 knockdown suppressed the phosphorylation of HSP27 at Ser78 and Ser82 sites via suppression of activated MK2. Furthermore, the reduction of phosphorylated HSP27 or p38 MAPK by Sec6 knockdown suppressed cell migration and promoted apoptosis after treatment with tumor necrosis factor-α and cycloheximide. The present study suggested that Sec6 is involved in the enhancement of cell migration and suppression of apoptosis through the activation of HSP27 or p38 MAPK phosphorylation.  相似文献   

5.
We previously demonstrated that myocardial p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27) are phosphorylated following cardioplegic arrest in patients undergoing cardiac surgery and correlate with reduced cardiac function. The following studies were performed to determine whether inhibition of p38 MAPK and/or overexpression of nonphosphorylatable HSP27 improves cardiac function following cardioplegic arrest. Langendorff-perfused isolated rat hearts were subjected to 2 h of intermittent cold cardioplegia followed by 30 min of reperfusion. Hearts were treated with (CP+SB) or without (CP) the p38 MAPK inhibitor SB-203580 (5 μM) supplied in the cardioplegia. Sham-treated hearts served as controls. In separate experiments, isolated rat ventricular myocytes infected with either green fluorescent protein (GFP) or a nonphosphorylatable HSP27 mutant (3A-HSP27) were subjected to 3 h of cold hypoxic cardioplegia and simulated reperfusion (CP) followed by video microscopy and length change measurements. Baseline parameters of cardiac function were similar between groups [left ventricular developed pressure (LVDP), 119 ± 4.9 mmHg; positive and negative first derivatives of LV pressure (± dP/dt), 3,139 ± 245 and 2, 314 ± 110 mmHg/s]. CP resulted in reduced cardiac function (LVDP, 72.2 ± 5.8 mmHg; ± dP/dt, 2,076 ± 231 and -1,317 ± 156 mmHg/s) compared with baseline. Treatment with 5 μM SB-203580 significantly improved CP-induced cardiac function (LVDP, 101.9 ± 0 mmHg; ± dP/dt, 2,836 ± 163 and -2,108 ± 120 mmHg/s; P = 0.03, 0.01, and 0.04, CP+SB vs. CP). Inhibition of p38 MAPK significantly lowered CP-induced p38 MAPK, HSP27, and αB-crystallin (cryAB) phosphorylation. In vitro CP decreased myocyte length changes from 10.3 ± 1.5% (GFP) to 5.7 ± 0.8% (GFP+CP). Infection with 3A-HSP27 completely rescued CP-induced decreased myocyte contraction (11.1 ± 1.0%). However, infection with 3A-HSP27 did not block the endogenous HSP27 response. We conclude that inhibition of p38 MAPK and subsequent HSP27 and cryAB phosphorylation and/or overexpression of nonphosphorylatable HSP27 significantly improves cardiac performance following cardioplegic arrest. Modulation of HSP27 phosphorylation may improve myocardial stunning following cardiac surgery.  相似文献   

6.
Low density lipoproteins (LDL) inhibit the Na+/H+ antiport and thereby sensitize platelet towards agonist. However, mechanisms underlying the suppressing effect of LDL on Na+/H+ exchange are unclear. We here show that the lowering of intracellular pH and the suppression of the sodium propionate-induced Na+/H+ exchange in the presence of LDL are abolished by SKF86002, a selective inhibitor of p38MAP kinase (p38MAPK). The inhibitory effect of LDL on Na+/H+ exchange was mimicked by H2O2, which directly activates p38MAPK. Exposure of platelets to LDL or H2O2 led to phosphorylation of p38MAPK, its upstream regulator MAP kinase kinase 3/6 (MKK 3/6), and its downstream target heat shock protein 27 (HSP27), and this effect was abrogated in SKF86002-pretreated platelets. In addition, both LDL and H2O2 produced the SKF86002-sensitive phosphorylation of an oligopeptide encompassing p38MAPK phosphorylation sequence derived from NHE-1, a major Na+/H+ exchanger in platelets. We further show that the sensitizing effects of LDL on the thrombin-induced platelet activation, as reflected by aggregation and granule secretion, are abolished in cells pretreated with SKF86002. We conclude that activation of p38MAPK is required for the inhibitory effect of LDL on Na+/H+ antiport and thereby for LDL-dependent sensitization in human platelets.  相似文献   

7.
8.
HSP25 has been shown to induce resistance to radiation and oxidative stress; however, its exact mechanisms remain unclear. In the present study, a high concentration of H2O2 was found to induce DNA fragmentation in L929 mouse fibroblast cells, and HSP25 overexpression attenuated this phenomenon. To elucidate the mechanisms of H2O2-mediated cell death, ERK1/2, p38 MAPK, and JNK1/2 phosphorylation in the cells after treatment with H2O2 were examined. ERK1/2 and JNK1/2 were activated by H2O2; ERK1/2 activation was inhibited in HSP25-overexpressed cells, while JNK1/2 was indifferent. Inhibition of ERK1/2 activation by treatment of the cells with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced cell death; similarly treated HSP25-overexpressed cells were not at all affected. Moreover, inhibition of JNK1/2 by dominant-negative JNK1 or JNK2 transfection did not affect H2O2-mediated cell death in control cells. Dominant-negative Ras or Raf transfection inhibited H2O2-mediated ERK1/2 activation and cell death in control cells. On the contrary, HSP25-overexpressed cells did not show any differences. Upstream pathways of H2O2-mediated ERK1/2 activation and cell death involved both tyrosine kinase (PDGFbeta receptor and Src) and PKCdelta, while in HSP25-overexpressed cells these kinases did not respond to H2O2 treatment. Since HSP25 overexpression reduced reactive oxygen species (ROS), increased manganese superoxide dismutase (MnSOD) gene expression, and increased enzyme activity, involvement of MnSOD in HSP25-mediated attenuation of H2O2-mediated ERK1/2 activation and cell death was examined. Blockage of MnSOD with antisense oligonucleotides prevented DNA fragmentation and returned the ERK1/2 activation to the control level. Indeed, when MnSOD was overexpressed in L929 cells, similar to in HSP25-overexpressed cells, DNA fragmentation and ERK1/2 activation were reduced. From the above results, we suggest for the first time that reduced oxidative damage by HSP25 was due to MnSOD-mediated downregulation of ERK1/2.  相似文献   

9.
Hsp105alpha and Hsp105beta are major heat shock proteins in mammalian cells that belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105alpha has opposite effects on stress-induced apoptosis depending on the cell type. However, it is not fully understood how Hsp105 regulates stress-induced apoptosis. In this study, we examined how Hsp105alpha and Hsp105beta regulate H2O2-induced apoptosis by using HeLa cells in which expression of Hsp105alpha or Hsp105beta was regulated using doxycycline. Overexpression of Hsp105alpha and Hsp105beta suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria in H2O2-treated cells. Furthermore, both c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) were activated by treatment with H2O2, and the activation of both kinases was suppressed by overexpression of Hsp105alpha and Hsp105beta. However, H2O2-induced apoptosis was suppressed by treatment with a potent inhibitor of p38 MAPK, SB202190, but not a JNK inhibitor, SP600125. These findings suggest that Hsp105alpha and Hsp105beta suppress H2O2-induced apoptosis by suppression of p38 MAPK signaling, one of the essential pathways for apoptosis.  相似文献   

10.
The activation of p38 MAPK by dual phosphorylation aggravates myocardial ischemic injury and depresses cardiac contractile function. SB203580, an ATP-competitive inhibitor of p38 MAPK and other kinases, prevents this dual phosphorylation during ischemia. Studies in non-cardiac tissue have shown receptor-interacting protein 2 (RIP2) lies upstream of p38 MAPK, is SB203580-sensitive and ischemia-responsive, and aggravates ischemic injury. We therefore examined the RIP2-p38 MAPK signaling axis in the heart. Adenovirus-driven expression of wild-type RIP2 in adult rat ventricular myocytes caused robust, SB203580-sensitive dual phosphorylation of p38 MAPK associated with activation of p38 MAPK kinases MKK3, MKK4, and MKK6. The effect of SB203580 was recapitulated by unrelated inhibitors of RIP2 or the downstream MAPK kinase kinase, TAK1. However, overexpression of wild-type, kinase-dead, caspase recruitment domain-deleted, or kinase-dead and caspase recruitment domain-deleted forms of RIP2 had no effect on the activating dual phosphorylation of p38 MAPK during simulated ischemia. Similarly, p38 MAPK activation and myocardial infarction size in response to true ischemia did not differ between hearts from wild-type and RIP2 null mice. However, both p38 MAPK activation and the contractile depression caused by the endotoxin component muramyl dipeptide were attenuated by SB203580 and in RIP2 null hearts. Although RIP2 can cause myocardial p38 MAPK dual phosphorylation in the heart under some circumstances, it is not responsible for the SB203580-sensitive pattern of activation during ischemia.  相似文献   

11.
Heat shock protein (HSP) 27 has long been known to be a component of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. p38 MAPK has important functions in the inflammatory response, but the role of HSP27 in inflammation has remained unknown. We have used small interfering RNAs to suppress HSP27 expression in HeLa cells and fibroblasts and found that it is required for pro-inflammatory cell signaling and the expression of pro-inflammatory genes. HSP27 is needed for the activation by interleukin (IL)-1 of TAK1 and downstream signaling by p38 MAPK, JNK, and their activators (MKK-3, -4, -6, -7) and IKKbeta. IL-1-induced ERK activation appears to be independent of HSP27. HSP27 is required for both IL-1 and TNF-induced signaling pathways for which the most upstream common signaling protein is TAK1. HSP27 is also required for IL-1-induced expression of the pro-inflammatory mediators, cyclooxygenase-2, IL-6, and IL-8. HSP27 functions to drive cyclooxygenase-2 and IL-6 expression by augmenting the activation of the kinase downstream of p38 MAPK, MK2, resulting in stabilization of cyclooxygenase-2 and IL-6 mRNAs. The mechanism may not occur in cells of myeloid lineage because HSP27 protein was undetectable in human monocytes and murine macrophages.  相似文献   

12.
MAPKAPK-2 (MK2) is a protein kinase activated downstream of p38-MAPK which phosphorylates the small heat shock proteins HSP27 and αB crystallin and modulates p38-MAPK cellular distribution. p38-MAPK activation is thought to contribute to myocardial ischemic injury; therefore, we investigated MK2 effects on ischemic injury and p38 cellular localization using MK2-deficient mice (KO). Immunoblotting of extracts from Langendorff-perfused hearts subjected to aerobic perfusion or global ischemia or reperfusion showed that the total and phosphorylated p38 levels were significantly lower in MK2−/− compared to MK2+/+ hearts at baseline, but the ratio of phosphorylated/total p38 was similar. These results were confirmed by cellular fractionation and immunoblotting for both cytosolic and nuclear compartments. Furthermore, HSP27 and αB crsytallin phosphorylation were reduced to baseline in MK2−/− hearts. On semiquantitative immunofluorescence laser confocal microscopy of hearts during aerobic perfusion, the mean total p38 fluorescence was significantly higher in the nuclear compared to extranuclear (cytoplasmic, sarcomeric, and sarcolemmal compartments) in MK2+/+ hearts. However, although the increase in phosphorylated p38 fluorescence intensity in all compartments following ischemia in MK2+/+ hearts was lost in MK2−/− hearts, it was basally elevated in nuclei of MK2−/− hearts and was similar to that seen during ischemia in MK2+/+ hearts. Despite these differences, similar infarct volumes were recorded in wild-type MK2+/+ and MK2−/− hearts, which were decreased by the p38 inhibitor SB203580 (1 μM) in both genotypes. In conclusion, p38 MAPK-induced myocardial ischemic injury is not modulated by MK2. However, the absence of MK2 perturbs the cellular distribution of p38. The preserved nuclear distribution of active p38 MAPK in MK2−/− hearts and the conserved response to SB203580 suggests that activation of p38 MAPK may contribute to injury independently of MK2. Diana A Gorog and Rita I Jabr made equal contributions to this work.  相似文献   

13.
We have recently reported that attenuated phosphorylation of heat shock protein (HSP) 27 correlates with tumor progression in patients with hepatocellular carcinoma (HCC). In the present study, we investigated what kind of kinase regulates phosphorylation of HSP27 in human HCC-derived HuH7 cells. 12-O-tetradecanoylphorbol-13-acetate (TPA) and 1-oleoyl-2-acetylglycerol, direct activators of protein kinase C (PKC), markedly strengthened the phosphorylation of HSP27. Bisindorylmaleimide I, an inhibitor of PKC, suppressed the TPA-induced levels of HSP27 phosphorylation in addition to its basal levels. Knock down of PKCdelta suppressed HSP27 phosphorylation, as well as p38 mitogen-activated protein kinase (MAPK) phosphorylation. SB203580, an inhibitor of p38 MAPK, suppressed the TPA-induced HSP27 phosphorylation. Our results strongly suggest that activation of PKCdelta regulates the phosphorylation of HSP27 via p38 MAPK in human HCC.  相似文献   

14.
15.
It has been shown that endogenous production of reactive oxygen species (ROS) during T cell activation regulates signaling events including MAPK activation. Protein tyrosine phosphatases (PTPs) have been regarded as targets of ROS which modify the catalytic cysteine residues of the enzymes. We have analyzed the interplay between the inhibition of PTPs and the activation of MAPK by H(2)O(2). Stimulation of Jurkat T cells with H(2)O(2) induces the phosphorylation of ERK, p38, and JNK members of MAPK family. H(2)O(2) stimulation of T cells was found to inhibit the PTP activity of CD45, SHP-1, and HePTP. Transfection of cells with wtSHP-1 decreased H(2)O(2)-induced ERK and JNK phosphorylation without affecting p38 phosphorylation. Transfection with wtHePTP inhibited H(2)O(2)-induced ERK and p38 phosphorylation without inhibiting JNK phosphorylation. The Src-family kinase inhibitor, PP2, inhibited the H(2)O(2)-induced phosphorylation of ERK, p38, and JNK. The phospholipase C (PLC) inhibitor, U73122, or the protein kinase C (PKC) inhibitor, Ro-31-8425, blocked H(2)O(2)-induced ERK phosphorylation, whereas the same treatment did not inhibit p38 or JNK phosphorylation. Taken together, these results suggest that inhibition of PTPs by H(2)O(2) contributes to the induction of distinct MAPK activation profiles via differential signaling pathways.  相似文献   

16.
Esophageal (ESO) circular muscle contraction and lower esophageal sphincter (LES) tone are PKC dependent. Because MAPKs may be involved in PKC-dependent contraction, we examined ERK1/ERK2 and p38 MAPKs in ESO and LES. In permeabilized LES muscle cells, ERK1/2 antibodies reduced 1,2-dioctanoylglycerol (DG)- and threshold ACh-induced contraction, which are PKC dependent, but not maximal ACh, which is calmodulin dependent. LES tone was reduced by the ERK1/2 kinase inhibitor PD-98059 and by the p38 MAPK inhibitor SB-203580. In permeable ESO cells, ACh contraction was reduced by ERK1/ERK2 and p38 MAPK antibodies and by PD-98059 and SB-203580. ACh increased MAPK activity and phosphorylation of MAPK and of p38 MAPK. The 27-kDa heat shock protein (HSP27) antibodies reduced ACh contraction. HSP27 and p38 MAPK antibodies together caused no greater inhibition than either one alone. p38 MAPK and HSP27 coprecipitated after ACh stimulation, suggesting that HSP27 is linked to p38 MAPK. These data suggest that PKC-dependent contraction in ESO and LES is mediated by the following two distinct MAPK pathways: ERK1/2 and HSP27-linked p38 MAPK.  相似文献   

17.
Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.  相似文献   

18.
19.
Exposure of WI38 human diploid fibroblasts (HDFs) to hydrogen peroxide (H2O2) induced premature senescence. The senescent HDFs were permanently arrested and exhibited a senescent phenotype including enlarged and flattened cell morphology and increased senescence-associated beta-galactosidase (SA-beta-gal) activity. The induction of HDF senescence was associated with an activation of p53, increased expression of p21Cip1/WAF1, and hypophosphorylation of retinoblastoma protein (Rb), while no changes in the expression of p16Ink4a, p27Kip1, and p14Arf were observed. Exposure of WI38 cells to H2O2 also selectively activated phosphatidylinostol 3-kinase (PI3 kinase) and mitogen-activated protein kinase (MAPK) kinase (MEK), while no changes in p38 MAPK and Jun kinase (JNK) activities were observed. Selective inhibition of PI3 kinase activity with LY294002 abrogated H2O2-induced cell enlargement and flattened morphology and significantly attenuated the increase in SA-beta-gal activity, but did not affect H2O2-induced cell cycle arrest. In contrast, selective inhibition of MEK and p38 MAPK with PD98059 and SB203580, respectively, produced no significant effect on H2O2-induced senescent phenotype and cell cycle arrest. These findings demonstrate that expression of the senescent phenotype can be uncoupled from cell cycle arrest in prematurely senescent cells induced by H2O2 and does not contribute to the maintenance of permanent cell cycle arrest.  相似文献   

20.
It has been shown that anesthetics have effects of cardiac preconditioning. Heat shock proteins (HSPs) function as molecular chaperone. Among them, HSP27, a low-molecular-weight HSP, abundantly exist in heart. However, the relationship between anesthetics and HSP27 in heart is not yet clarified. We investigated whether thrombin induces or phosphorylates HSP27 in primary cultured mouse myocytes and the effect of midazolam on the thrombin-stimulated HSP27 phosphorylation and the mechanism behind it. Thrombin time dependently phosphorylated HSP27 at Ser-15 and Ser-85 while having no effect on the levels of HSP27. Midazolam markedly suppressed the thrombin-induced phosphorylation of HSP27 at both Ser-15 and Ser-85. Thrombin induced the phosphorylation of p44/p42 MAP kinase and p38 MAP kinase without affecting stress-activated protein kinase/c-Jun N-terminal kinase. In addition, midazolam attenuated the phosphorylation of thrombin-induced p38 MAP kinase but not that of p44/p42 MAP kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the thrombin-induced phosphorylation of HSP27 at both Ser-15 and Ser-85. These results strongly suggest that thrombin induces the HSP27 phosphorylation at least through the p38 MAP kinase activation in cardiac myocytes and that midazolam inhibits the thrombin-induced HSP27 phosphorylation via suppression of p38 MAP kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号