首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Like other neurons of the central nervous system (CNS), retinal ganglion cells (RGCs) are normally unable to regenerate injured axons and instead undergo apoptotic cell death. This regenerative failure leads to lifelong visual deficits after optic nerve damage and is partially attributable to factors located in the inhibitory environment of the forming glial scar and myelin as well as to an insufficient intrinsic ability for axonal regrowth. In addition to its ophthalmological relevance, the optic nerve has long been used as a favorable paradigm for studying regenerative failure in the CNS as a whole. Findings over the last 15 years have shown that, under certain circumstances, mature RGCs can be transformed into an active regenerative state enabling these neurons to survive axotomy and to regenerate axons in the optic nerve. Moreover, combinatorial treatments overcoming the inhibitory environment of the glial scar and optic nerve myelin, together with approaches activating the intrinsic growth program, can further enhance the amount of regeneration in vivo. These findings are encouraging and open the possibility that clinically meaningful regenerationmay become achievable in the future.  相似文献   

2.
Although neurons within the peripheral nervous system (PNS) have a remarkable ability to repair themselves after injury, neurons within the central nervous system (CNS) do not spontaneously regenerate. This problem has remained recalcitrant despite a century of research on the reaction of axons to injury. The balance between inhibitory cues present in the environment and the intrinsic growth capacity of the injured neuron determines the extent of axonal regeneration following injury. The cell body of an injured neuron must receive accurate and timely information about the site and extent of axonal damage in order to increase its intrinsic growth capacity and successfully regenerate. One of the mechanisms contributing to this process is retrograde transport of injury signals. For example, molecules activated at the injury site convey information to the cell body leading to the expression of regeneration-associated genes and increased growth capacity of the neuron. Here we discuss recent studies that have begun to dissect the injury-signaling pathways involved in stimulating the intrinsic growth capacity of injured neurons.  相似文献   

3.
Failure of injured axons to regenerate in the central nervous system (CNS) is the main obstacle for repair of stroke and traumatic injuries to the spinal cord and sensory roots. This regeneration failure is high-lighted at the dorsal root transitional zone (DRTZ), the boundary between the peripheral (PNS) and central nervous system where sensory axons enter the spinal cord. Injured sensory axons regenerate in the PNS compartment of the dorsal root but are halted as soon as they reach the DRTZ. The failure of regenerating dorsal root axons to re-enter the mature spinal cord is a reflection of the generally nonpermissive nature of the CNS environment, in contrast to the regeneration supportive properties of the PNS. The dorsal root injury paradigm is therefore an attractive model for studying mechanisms underlying CNS regeneration failure in general and how to overcome the hostile CNS environment. Here we review the main lines that have been pursued to achieve growth of injured dorsal root axons into the spinal cord: (i) modifying the inhibitory nature of the DRTZ by breaking down or blocking the effect of growth repelling molecules, (ii) stimulate elongation of injured dorsal root axons by a prior conditioning lesion or administration of specific growth factors, (iii) implantation of olfactory ensheathing cells to provide a growth supportive cellular terrain at the DRTZ, and (iv) replacing the regeneration deficient adult dorsal root ganglion neurons with embryonic neurons or neural stem cells.  相似文献   

4.
Nogo-A, a member of the reticulon family, is present in neurons and oligodendrocytes. Nogo-A in central nervous system (CNS) myelin prevents axonal regeneration through interaction with Nogo receptor 1, but the function of Nogo-A in neurons is less known. We found that after axonal injury, Nogo-A is increased in dorsal root ganglion (DRG) neurons unable to regenerate following a dorsal root injury or a sciatic nerve ligation-cut injury and that exposure in vitro to CNS myelin dramatically enhanced neuronal Nogo-A mRNA and protein through activation of RhoA while inhibiting neurite growth. Knocking down neuronal Nogo-A by small interfering RNA results in a marked increase of neurite outgrowth. We constructed a nonreplicating herpes simplex virus vector (QHNgSR) to express a truncated soluble fragment of Nogo receptor 1 (NgSR). NgSR released from QHNgSR prevented myelin inhibition of neurite extension by hippocampal and DRG neurons in vitro. NgSR prevents RhoA activation by myelin and decreases neuronal Nogo-A. Subcutaneous inoculation of QHNgSR to transduce DRG neurons resulted in improved regeneration of myelinated fibers in both the dorsal root and the spinal dorsal root entry zone, with concomitant improvement in sensory behavior. The results indicate that neuronal Nogo-A is an important intermediate in neurite growth dynamics and its expression is regulated by signals related to axonal injury and regeneration, that CNS myelin appears to activate signaling events that mimic axonal injury, and that NgSR released from QHNgSR may be used to improve recovery after injury.  相似文献   

5.
Loss of cortical neurons may lead to sever and sometimes irreversible deficits in motor function in a number of neuropathological conditions. Absence of spontaneous axonal regeneration following trauma in the adult central nervous system (CNS) is attributed to inhibitory factors associated to the CNS white matter and to the non-permissive environment provided by reactive astrocytes that form a physical and biochemical barrier scar. Neural transplantation of embryonic neurons has been widely assessed as a potential approach to overcome the generally limited capacity of the mature CNS to regenerate axons or to generate new neurons in response to cell loss. We have recently shown that embryonic (E14) mouse motor cortical tissue transplanted into the damaged motor cortex of adult mice developed efferent projections to appropriate cortical and subcortical host targets including distant areas such as the spinal cord, with a topographical organization similar to that of intact motor cortex. Several parameters might account for the outgrowth of axonal projections from embryonic neurons within a presumably non-permissive adult brain, among which are astroglial reactions and myelin formation. In the present study, we have examined the role of astrocytes and myelin in the axonal outgrowth of transplanted neurons.  相似文献   

6.
It is well known that mature neurons in the central nervous system (CNS) cannot regenerate their axons after injuries due to diminished intrinsic ability to support axon growth and a hostile environment in the mature CNS1,2. In contrast, mature neurons in the peripheral nervous system (PNS) regenerate readily after injuries3. Adult dorsal root ganglion (DRG) neurons are well known to regenerate robustly after peripheral nerve injuries. Each DRG neuron grows one axon from the cell soma, which branches into two axonal branches: a peripheral branch innervating peripheral targets and a central branch extending into the spinal cord. Injury of the DRG peripheral axons results in substantial axon regeneration, whereas central axons in the spinal cord regenerate poorly after the injury. However, if the peripheral axonal injury occurs prior to the spinal cord injury (a process called the conditioning lesion), regeneration of central axons is greatly improved4. Moreover, the central axons of DRG neurons share the same hostile environment as descending corticospinal axons in the spinal cord. Together, it is hypothesized that the molecular mechanisms controlling axon regeneration of adult DRG neurons can be harnessed to enhance CNS axon regeneration. As a result, adult DRG neurons are now widely used as a model system to study regenerative axon growth5-7.Here we describe a method of adult DRG neuron culture that can be used for genetic study of axon regeneration in vitro. In this model adult DRG neurons are genetically manipulated via electroporation-mediated gene transfection6,8. By transfecting neurons with DNA plasmid or si/shRNA, this approach enables both gain- and loss-of-function experiments to investigate the role of any gene-of-interest in axon growth from adult DRG neurons. When neurons are transfected with si/shRNA, the targeted endogenous protein is usually depleted after 3-4 days in culture, during which time robust axon growth has already occurred, making the loss-of-function studies less effective. To solve this problem, the method described here includes a re-suspension and re-plating step after transfection, which allows axons to re-grow from neurons in the absence of the targeted protein. Finally, we provide an example of using this in vitro model to study the role of an axon regeneration-associated gene, c-Jun, in mediating axon growth from adult DRG neurons9.  相似文献   

7.
Glial inhibition of CNS axon regeneration   总被引:13,自引:0,他引:13  
Damage to the adult CNS often leads to persistent deficits due to the inability of mature axons to regenerate after injury. Mounting evidence suggests that the glial environment of the adult CNS, which includes inhibitory molecules in CNS myelin as well as proteoglycans associated with astroglial scarring, might present a major hurdle for successful axon regeneration. Here, we evaluate the molecular basis of these inhibitory influences and their contributions to the limitation of long-distance axon repair and other types of structural plasticity. Greater insight into glial inhibition is crucial for developing therapies to promote functional recovery after neural injury.  相似文献   

8.
Multiple genetic and epigenetic events determine neuronal phenotype during nervous system development. After the mature mammalian neuronal phenotype has been determined it is usually static for the remainder of life, unless an injury or degenerative event occurs. Injured neurons may suffer one of three potential fates: death, persistent atrophy, or recovery. The ability of an injured adult neuron to recover from injury in adulthood may be determined by events that also influence neuronal phenotype during development, including expression of growth-related genes and responsiveness to survival and growth signals in the environment. The latter signals include neurotrophic factors and substrate molecules that promote neurite growth. Several adult CNS regions exhibit neurotrophic-factor responsiveness, including the basal forebrain, entorhinal cortex, hippocampus, thalamus, brainstem, and spinal cord. The specificity of neurotrophic-factor responsiveness in these regions parallels patterns observed during development. In addition, neurons of several CNS regions extend neurites after injury when presented with growth-promoting substrates. Whenboth neurotrophic factors and growth-promoting substrates are provided to adult rats that have undergone bilateral fimbria-fornix lesions, then partial morphological and behavioral recovery can be induced. Gene therapy is one useful tool for providing these substances. Thus, the mature CNS remains robustly responsive to signals that shape nervous system development, and is highly plastic when stimulated by appropriate cues.  相似文献   

9.
Severe traumatic injury to the adult mammalian CNS leads to life-long loss of function. By contrast, several non-mammalian vertebrate species, including adult zebrafish, have a remarkable ability to regenerate injured organs, including the CNS. However, the cellular and molecular mechanisms that enable or prevent CNS regeneration are largely unknown. To study brain regeneration mechanisms in adult zebrafish, we developed a traumatic lesion assay, analyzed cellular reactions to injury and show that adult zebrafish can efficiently regenerate brain lesions and lack permanent glial scarring. Using Cre-loxP-based genetic lineage-tracing, we demonstrate that her4.1-positive ventricular radial glia progenitor cells react to injury, proliferate and generate neuroblasts that migrate to the lesion site. The newly generated neurons survive for more than 3 months, are decorated with synaptic contacts and express mature neuronal markers. Thus, regeneration after traumatic lesion of the adult zebrafish brain occurs efficiently from radial glia-type stem/progenitor cells.  相似文献   

10.
Loss of cortical neurons may lead to sever and sometimes irreversible deficits in motor function in a number of neuropathological conditions. Absence of spontaneous axonal regeneration following trauma in the adult central nervous system (CNS) is attributed to inhibitory factors associated to the CNS white matter and to the non-permissive environment provided by reactive astrocytes that form a physical and biochemical barrier scar. Neural transplantation of embryonic neurons has been widely assessed as a potential approach to overcome the generally limited capacity of the mature CNS to regenerate axons or to generate new neurons in response to cell loss. We have recently shown that embryonic (E14) mouse motor cortical tissue transplanted into the damaged motor cortex of adult mice developed efferent projections to appropriate cortical and subcortical host targets including distant areas such as the spinal cord, with a topographical organization similar to that of intact motor cortex. Several parameters might account for the outgrowth of axonal projections from embryonic neurons within a presumably non-permissive adult brain, among which are astroglial reactions and myelin formation. In the present study, we have examined the role of astrocytes and myelin in the axonal outgrowth of transplanted neurons.Key Words: motor cortex, neuronal transplantation, embryonic cells, GFP, GFAP, PLP  相似文献   

11.
Stein V  Nicoll RA 《Neuron》2003,37(3):375-378
In the CNS, gamma-aminobutyric acid (GABA) acts as an inhibitory transmitter via ligand-gated GABA(A) receptor channels and G protein-coupled GABA(B) receptors. Both of these receptor types mediate inhibitory postsynaptic transmission throughout the nervous system. For GABA(A) receptors, this inhibitory action is associated with a hyperpolarization due to an increase in conductance to chloride ions. Previous studies show that GABA(A) receptor activation in neonatal neurons and spinal cord neurons can be excitatory. Two papers recently appeared that clearly demonstrate that GABA can have a depolarizing and excitatory action in mature cortical neurons. Here we discuss the evolving story on chloride ion homeostasis in CNS neurons and its role in the bipolar life of the GABA(A) receptor.  相似文献   

12.
Central neurons regenerate axons if a permissive environment is provided; after spinal cord injury, however, inhibitory molecules are present that make the local environment nonpermissive. A promising new strategy for inducing neurons to overcome inhibitory signals is to activate cAMP signaling. Here we show that cAMP levels fall in the rostral spinal cord, sensorimotor cortex and brainstem after spinal cord contusion. Inhibition of cAMP hydrolysis by the phosphodiesterase IV inhibitor rolipram prevents this decrease and when combined with Schwann cell grafts promotes significant supraspinal and proprioceptive axon sparing and myelination. Furthermore, combining rolipram with an injection of db-cAMP near the graft not only prevents the drop in cAMP levels but increases them above those in uninjured controls. This further enhances axonal sparing and myelination, promotes growth of serotonergic fibers into and beyond grafts, and significantly improves locomotion. These findings show that cAMP levels are key for protection, growth and myelination of injured CNS axons in vivo and recovery of function.  相似文献   

13.
Park JB  Yiu G  Kaneko S  Wang J  Chang J  He XL  Garcia KC  He Z 《Neuron》2005,45(3):345-351
A major obstacle for successful axon regeneration in the adult central nervous system (CNS) arises from inhibitory molecules in CNS myelin, which signal through a common receptor complex on neurons consisting of the ligand-binding Nogo-66 receptor (NgR) and two transmembrane coreceptors, p75 and LINGO-1. However, p75 expression is only detectable in subpopulations of mature neurons, raising the question of how these inhibitory signals are transduced in neurons lacking p75. In this study, we demonstrate that TROY (also known as TAJ), a TNF receptor family member selectively expressed in the adult nervous system, can form a functional receptor complex with NgR and LINGO-1 to mediate cellular responses to myelin inhibitors. Also, both overexpressing a dominant-negative TROY or presence of a soluble TROY protein can efficiently block neuronal response to myelin inhibitors. Our results implicate TROY in mediating myelin inhibition, offering new insights into the molecular mechanisms of regeneration failure in the adult nervous system.  相似文献   

14.
In the past decade there has been an explosion in our understanding, at the molecular level, of why axons in the adult, mammalian central nervous system (CNS) do not spontaneously regenerate while their younger counterparts do. Now a number of inhibitors of axonal regeneration have been described, some of the receptors they interact with to transduce the inhibitory signal are known, as are some of the steps in the signal transduction pathway that is responsible for inhibition. In addition, developmental changes in the environment and in the neurons themselves are also now better understood. This knowledge in turn reveals novel, putative sites for drug development and therapeutic intervention after injury to the brain and spinal cord. The challenge now is to determine which of these putative treatments are the most effective and if they would be better applied in combination rather than alone. In this review I will summarize what we have learnt about these molecules and how they signal. Importantly, I will also describe approaches that have been shown to block inhibitors and encourage regeneration in vivo. I will also speculate on what the differences are between the neonatal and adult CNS that allow the former to regenerate and the latter not to.  相似文献   

15.
Interneurons, which release the neurotransmitter γ-aminobutyric acid (GABA), are the major inhibitory cells of the central nervous system (CNS). Despite comprising only 20-30% of the cerebral cortical neuronal population, these cells play an essential and powerful role in modulating the electrical activity of the excitatory pyramidal cells onto which they synapse. Although interneurons are present in all regions of the mature telencephalon, during embryogenesis these cells are generated in specific compartments of the ventral (subpallial) telencephalon known as ganglionic eminences. To reach their final destinations in the mature brain, immature interneurons migrate from the ganglionic eminences to developing telencephalic structures that are both near and far from their site of origin. The specification and migration of these cells is a complex but precisely orchestrated process that is regulated by a combination of intrinsic and extrinsic signals. The final outcome of which is the wiring together of excitatory and inhibitory neurons that were born in separate regions of the developing telencephalon. Disruption of any aspect of this sequence of events during development, either from an environmental insult or due to genetic mutations, can have devastating consequences on normal brain function.  相似文献   

16.
Neurons in the mammalian central nervous system (CNS) have a poor capacity for regenerating their axons after injury. In contrast, neurons in the CNS of lower vertebrates and in the peripheral nervous system (PNS) of mammals are endowed with a high posttraumatic capacity to regenerate. The differences in regenerative capacity have been attributed to the different compositions of the respective cellular environments and to different responses to injury the nonneuronal cells display, which range from supportive and permissive to nonsupportive and hostile for regeneration. The same cell type may support or inhibit regeneration, depending on its state of maturity or differentiation. Astrocytes and oligodendrocytes are examples of cells in which such a dichotomy is manifested. In developing and in spontaneously regenerating nerves, these cells support (astrocytes) and permit (oligodendrocytes) growth. However, in nonregenerating adult mammalian nerves, astrocytes form the nonsupportive scar tissue; and the mature oligodendrocytes inhibit axonal growth. Maturation of these cells may be regulated differently during development than after injury. Among the putative regulators are factors derived from astrocytes, resident microglia; or cytokines produced by macrophages. During development, regulation leads to a temporal separation between axonal growth and maturation of the cellular environment, which might not occur spontaneously after injury in a nonregenerating CNS without intervention at the appropriate time. Data suggest that temporal intervention aimed at the glial cells might enhance the poor regenerative capacity of the mammalian CNS. Possible regulation of the nonneuronal cell response to injury via involvement of protooncogenes is proposed.  相似文献   

17.
In higher vertebrates, the central nervous system (CNS) is unable to regenerate after injury, at least partially because of growth-inhibiting factors. Invertebrates lack many of these negative regulators, allowing us to study the positive factors in isolation. One possible molecular player in neuronal regeneration is the nitric oxide (NO)-cyclic guanosine-monophosphate (cGMP) transduction pathway which is known to regulate axonal growth and neural migration. Here, we present an experimental model in which we study the effect of NO on CNS regeneration in flat-fillet locust embryo preparations in culture after crushing the connectives between abdominal ganglia. Using whole-mount immunofluorescence, we examine the morphology of identified serotonergic neurons, which send a total of four axons through these connectives. After injury, these axons grow out again and reach the neighboring ganglion within 4 days in culture. We quantify the number of regenerating axons within this period and test the effect of drugs that interfere with NO action. Application of exogenous NO or cGMP promotes axonal regeneration, whereas scavenging NO or inhibition of soluble guanylyl cyclase delays regeneration, an effect that can be rescued by application of external cGMP. NO-induced cGMP immunostaining confirms the serotonergic neurons as direct targets for NO. Putative sources of NO are resolved using the NADPH-diaphorase technique. We conclude that NO/cGMP promotes outgrowth of regenerating axons in an insect embryo, and that such embryo-culture systems are useful tools for studying CNS regeneration.  相似文献   

18.
Embryonic birds and mammals display a remarkable ability to regenerate axons after spinal injury, but then lose this ability during a discrete developmental transition. To explain this transition, previous research has emphasized the emergence of myelin and other inhibitory factors in the environment of the spinal cord. However, research in other CNS tracts suggests an important role for neuron-intrinsic limitations to axon regeneration. Here we re-examine this issue quantitatively in the hindbrain-spinal projection of the embryonic chick. Using heterochronic cocultures we show that maturation of the spinal cord environment causes a 55% reduction in axon regeneration, while maturation of hindbrain neurons causes a 90% reduction. We further show that young neurons transplanted in vivo into older spinal cord can regenerate axons into myelinated white matter, while older axons regenerate poorly and have reduced growth cone motility on a variety of growth-permissive ligands in vitro, including laminin, L1, and N-cadherin. Finally, we use video analysis of living growth cones to directly document an age-dependent decline in the motility of brainstem axons. These data show that developmental changes in both the spinal cord environment and in brainstem neurons can reduce regeneration, but that the effect of the environment is only partial, while changes in neurons by themselves cause a nearly complete reduction in regeneration. We conclude that maturational events within neurons are a primary cause for the failure of axon regeneration in the spinal cord.  相似文献   

19.
Notch signaling inhibits axon regeneration   总被引:1,自引:0,他引:1  
El Bejjani R  Hammarlund M 《Neuron》2012,73(2):268-278
Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian central nervous system do not regenerate, and even neurons in the peripheral nervous system often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, using single-neuron analysis of regeneration in?vivo, we show that Notch/lin-12 signaling inhibits the regeneration of mature C.?elegans neurons. Notch signaling suppresses regeneration by acting autonomously in the injured cell to prevent growth cone formation. The metalloprotease and gamma-secretase cleavage events that lead to Notch activation during development are also required for its activity in regeneration. Furthermore, blocking Notch activation immediately after injury improves regeneration. Our results define a postdevelopmental role for the Notch pathway as a repressor of axon regeneration in?vivo.  相似文献   

20.
The central nervous system (CNS) has been traditionally considered as an organ that fails to regenerate in response to injury. Indeed, the lesioned CNS faces a number of obstacles during regeneration, including an overall non-permissive environment for axonal regeneration. However, research during the last few decades has identified axon sprouting as an anatomical correlate for the regenerative capability of the CNS to establish new connections. The immunoglobulin superfamily member L1CAM has been shown to promote the capability of neurons for regenerative axon sprouting and to improve behavioral outcomes after CNS injury. Here, we discuss the cell-autonomous role of L1CAM for axon sprouting in experimental rodent injury models and highlight the molecular interactions of L1CAM with ankyrins, ezrin-radixin-moesin proteins and the Sema3A/Neuropilin ligand-receptor complex in the context of axonal branching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号