首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the role of the sarcolemmal and mitochondrial K(ATP) channels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 +/- 1%) versus control (56 +/- 1%). The sarcolemmal K(ATP) channel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial K(ATP) channel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 +/- 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 +/- 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 +/- 0.30 micromol x min(-1) x mg mitochondrial protein(-1). Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 +/- 0.06 micromol x min(-1) x mg mitochondrial protein(-1). IPC significantly increased ATP synthesis to 1.86 +/- 0.23 micromol x min(-1) x mg mitochondrial protein(-1). However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 +/- 0.15 micromol x min(-1) x mg mitochondrial protein(-1)). These data are consistent with the notion that inhibition of mitochondrial K(ATP) channels attenuates IPC by reducing IPC-induced protection of mitochondrial function.  相似文献   

2.
Mitochondrial ATP-sensitive K+ channels (mitoKATP) mediate ischemic preconditioning, a cardioprotective procedure. MitoKATP activity has been proposed to either enhance or prevent the release of reactive oxygen species. This study tested the redox effects of mitoKATP in order to clarify the role of these channels during preconditioning. We found no evidence that mitoKATP channels increase mitochondrial reactive oxygen species release directly. In addition, neither ischemic preconditioning nor the mitoKATP agonist diazoxide increased antioxidant defenses. Furthermore, increases in reactive oxygen species observed during ischemic preconditioning were not inhibited by mitoKATP antagonists, suggesting that they occur upstream of channel activity. Antioxidants were tested to verify if diazoxide-promoted ischemic protection was dependent on reactive oxygen species. N-Acetylcysteine proved to be an inadequate antioxidant for these tests since it directly interfered with the ability of diazoxide to activate mitoKATP. Catalase reversed the beneficial effect of preconditioning, but not of diazoxide, indicating that reactive oxygen species mediating preconditioning occur upstream of mitoKATP. Taken together, these results demonstrate that ischemic preconditioning increases reactive oxygen release independently of mitoKATP and suggest that the activity of this channel prevents oxidative reperfusion damage by decreasing reactive oxygen species production.  相似文献   

3.
Ischemic preconditioning (IPC) is a phenomenon of protection in various tissues from normothermic ischemic injury by previous exposure to short cycles of ischemia-reperfusion. The ability of IPC to protect hepatocytes from a model of hypothermic transplant preservation injury was tested in this study. Rat hepatocytes were subjected to 30min of warm ischemia (37 degrees C) followed by 24 or 48h of hypothermic (4 degrees C) storage in UW solution and subsequent re-oxygenation at normothermia for 1h. Studies were performed with untreated control cells and cells treated with IPC (10min anoxia followed by 10min re-oxygenation, 1 cycle). Hepatocytes exposed to IPC prior to warm ischemia released significantly less LDH and had higher ATP concentrations, relative to untreated ischemic hepatocytes. IPC significantly reduced LDH release after 24h of cold storage before reperfusion and after 48h of cold storage and after 60min of warm re-oxygenation, relative to the corresponding untreated hepatocytes. ATP levels were also significantly higher when IPC was used prior to the warm and cold ischemia-re-oxygenation protocols. In parallel studies, IPC increased new protein synthesis and lactate after cold storage and reperfusion compared to untreated cells but no differences in the patterns of protein banding were detected on electrophoresis between the groups. In conclusion, IPC significantly improves hepatocyte viability and energy metabolism in a model of hypothermic preservation injury preceded by normothermic ischemia. These protective effects on viability may be related to enhanced protein and ATP synthesis at reperfusion.  相似文献   

4.
缺血预处理减轻在体家兔心肌细胞凋亡   总被引:14,自引:2,他引:14  
Ding YF  Zhang MM  He RR 《生理学报》2000,52(3):220-224
对麻醉家兔心肌缺血-再灌注(ischemia-reperfusion,IR)模型上,观察IR和缺血预处理(ischemic preconditionign,IP)对血流动力学、心外膜电图、心肌梗塞范围、心肌细胞调亡和调亡相关调控基因蛋白(Fas、Bcl-2、Bax等)的影响。所得结果如下:⑴在IR过程中,动脉血压、心率和心肌耗氧量进行性降低;心外膜电图ST段在缺血期明显抬高(P<0.001),再灌  相似文献   

5.
Although the induction of myocyte apoptosis by ischemia-reperfusion (I/R) is attenuated by ischemic preconditioning (IPC), the underlying mechanism is not fully understood. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) promotes apoptosis through Akt-dependent and -independent mechanisms. We tested the hypothesis that IPC attenuates the mitochondrial localization of PTEN in the myocardium induced by I/R. Isolated hearts from wild-type mice were exposed to IPC or normal perfusion followed by 30 min of ischemia and reperfusion. IPC attenuated myocardial infarct size and apoptosis after I/R. Heart fractionation showed that mitochondrial PTEN and Bax protein levels and the physical association between them were increased by 30 min of I/R and that IPC attenuated all of these effects of I/R. Muscle-specific PTEN knockout decreased mitochondrial Bax protein levels in the reperfused myocardium and increased cell survival. To determine whether PTEN relocalization to mitochondria was influenced by I/R-induced production of ROS, hearts were perfused with N-acetylcysteine (NAC) to scavenge ROS or H(2)O(2) to mimic I/R-induced ROS. Mitochondrial PTEN protein levels were decreased by NAC and increased by H(2)O(2). PTEN protein overexpression was generated in mouse hearts by adenoviral gene transfer. PTEN overexpression increased mitochondrial PTEN and Bax protein levels and ROS production, whereas muscle-specific PTEN knockout produced the opposite effects. In conclusion, myocardial I/R causes PTEN localization to the mitochondria, related to the generation of ROS; IPC attenuates the mitochondrial localization of PTEN after I/R, potentially inhibiting the translocation of Bax to the mitochondria and resulting in improved cell viability.  相似文献   

6.
Although Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) is known to modulate the function of cardiac sarcoplasmic reticulum (SR) under physiological conditions, the status of SR CaMK II in ischemic preconditioning (IP) of the heart is not known. IP was induced by subjecting the isolated perfused rat hearts to three cycles of brief ischemia-reperfusion (I/R; 5 min ischemia and 5 min reperfusion), whereas the control hearts were perfused for 30 min with oxygenated medium. Sustained I/R in control and IP groups was induced by 30 min of global ischemia followed by 30 min of reperfusion. The left ventricular developed pressure, rate of the left ventricular pressure, as well as SR Ca(2+)-uptake activity and SR Ca(2+)-pump ATPase activity were depressed in the control I/R hearts; these changes were prevented upon subjecting the hearts to IP. The beneficial effects of IP on the I/R-induced changes in contractile activity and SR Ca(2+) pump were lost upon treating the hearts with KN-93, a specific CaMK II inhibitor. IP also prevented the I/R-induced depression in Ca(2+)/calmodulin-dependent SR Ca(2+)-uptake activity and the I/R-induced decrease in the SR CaMK II activity; these effects of IP were blocked by KN-93. The results indicate that IP may prevent the I/R-induced alterations in SR Ca(2+) handling abilities by preserving the SR CaMK II activity, and it is suggested that CaMK II may play a role in mediating the beneficial effects of IP on heart function.  相似文献   

7.
8.
Reduction of postischemic edema with hyperbaric oxygen   总被引:3,自引:0,他引:3  
In recent years, reports have shown positive effects of hyperbaric oxygen (HBO) treatment in posttraumatic circulatory insufficiency of the extremities. A tourniquet model for temporary ischemia was used to examine such treatment in rats. The circulation of the rat hindlimb was interrupted for 3 hours, while the contralateral uninjured leg served as control. There was a significant (p less than 0.001) postischemic edema in the tourniquet leg up to 48 hours after restoration of circulation. One group of animals received treatment with hyperbaric oxygen at 2.5 atmospheres absolute (ATA) for 45 minutes after release of the tourniquet. This significantly reduced (p less than 0.001) the postischemic edema, and the reduction persisted for 40 hours after the last treatment. It is concluded that hyperbaric oxygen reduces postischemic edema. Hyperbaric oxygen may therefore be useful as an adjuvant in the treatment of acute ischemic conditions when surgical repair alone fails or is not sufficient to reverse the ischemic process.  相似文献   

9.
10.
The effect of ischemic preconditioning and superoxide dismutase (SOD) on endothelial glycocalyx and endothelium-dependent vasodilation in the postischemic isolated guinea-pig hearts was examined. Seven groups of hearts were used: group 1 underwent sham aerobic perfusion; group 2 was subjected to 40 min global ischemia without reperfusion; group 3, 40 min ischemia followed by 40 min reperfusion; group 4 was preconditioned with three cycles of 5 min global ischemia followed by 5 min of reperfusion (IPC), prior to 40 min ischemia; group 5 was subjected to IPC prior to standard ischemia/reperfusion; group 6 underwent standard ischemia/reperfusion and SOD infusion (150 U/ml) was begun 5 min before 40 min ischemia and continued during the initial 5 min of the reperfusion period; group 7 was subjected to 80 min aerobic perfusion with NO-synthase inhibitor, L-NAME, to produce a model of endothelial dysfunction independent from the ischemia/reperfusion. Coronary flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were used as measures of endothelium-dependent and endothelium-independent vascular function, respectively. Reduction in coronary flow caused by NO-synthase inhibitor, L-NAME, served as a measure of a basal endothelium-dependent vasodilator tone. After completion of each experimental protocol, the hearts were stained with ruthenium red or lanthanum chloride for electron microscopy evaluation of the endothelial glycocalyx. While ischemia led only to a slightly flocculent appearance of the glycocalyx, in ischemia/reperfused hearts the glycocalyx was disrupted, suggesting that it is the reperfusion injury which leads to the glycocalyx injury. Moreover, the coronary flow responses to ACh and L-NAME were impaired, while the responses to SNP were unchanged in the ischemia/reperfused hearts. The disruption of the glycocalyx and the deterioration of ACh and L-NAME responses was prevented by IPC. In addition, the alterations in the glycocalyx and the impairment of ACh responses were prevented by SOD. The glycocalyx appeared to be not changed in the hearts subjected to 80 min aerobic perfusion with L-NAME. In conclusion: (1) the impairment of the endothelium-dependent coronary vasodilation is paralleled by the endothelial glycocalyx disruption in the postischemic guinea-pig hearts; (2) both these changes are prevented by SOD, suggesting the role of free radicals in the mechanism of their development; (3) both changes are prevented by IPC. We hypothesize, therefore, that alterations in the glycocalyx contribute to the mechanism of the endothelial dysfunction in the postischemic hearts.  相似文献   

11.
The aim of this study was to evaluate the additive protective efficiency of ischemic preconditioning when used in combination with conventional clinically relevant cardioprotective methods of hypothermia or hypothermic cardioplegia during sustained global ischemia.Isolated rat hearts were aorta-perfused with Krebs-Henseleit buffer and were divided into six groups (n = 10 each). Group I: Ischemia at 34°C for 60 min; Group PC+I: preconditioned (PC) ischemia at 34°C, 2 episodes of 5 min ischemia and 10 min reperfusion at 34°C followed by I; Group HI: hypothermic ischemia at 10°C for 60 min; Group PC+HI: preconditioned (PC) hypothermic ischemia, 2 episodes of 5 min ischemia and 10 min reperfusion at 34°C followed by HI; Group CPL+HI: single dose of 'Plegisol' cardioplegia followed by HI; Group PC+CPL+HI: preconditioned hypothermic cardioplegia, followed by CPL+HI. At the end of 60 min ischemia, all the hearts were reperfused at 34°C for 30 min when post-ischemic recovery in left ventricular contractile function and coronary vascular dynamics was computed and compared.There was a significant depression in the post-ischemic recovery of developed pressure (Pmax), positive derivative of pressure (+dp/dt), negative derivative of pressure (-dp/dt) and heterometric autoregulation (HA) of contractile force in all the groups, with no major differences between the groups. Left ventricular end-diastolic pressure (LVEDP) was significantly elevated after I at 34°C. Preconditioning (PC+I) prevented the rise in the LVEDP and this was accompanied by a significant reduction in the release of purine metabolises in the coronary effluents, particularly adenosine, during the immediate reperfusion period. Hypothermia (HI) provided essentially the same level of metabolic and mechanical preservation as offered by PC+I. Combination of hypothermia with preconditioning (PC+HI) or cardioplegia (PC+CPL+HI), did not further enhance the preservation. Post-ischemic recovery in the regional contractile function (segment shortening, %SS) followed nearly identical pattern to global (Pmax) recovery. Post-ischemic recovery in coronary flow (CF) was significantly reduced and coronary vascular resistance (CVR) was significantly increased in all the groups. Myogenic autoregulation (transient and sustained) was generally enhanced indicating increased vascular reactivity. Preconditioning did not alter the time-course of these changes.Preconditioned ischemia (34°C) preserved left ventricular diastolic functions and prevented the contracture development after sustained ischemia reperfusion at 34°C. This protective effect of preconditioning was possibly mediated by the reduction in the breakdown of purine metabolises. Hypothermia alone or in combination with crystalloid cardioplegia prevented the irreversibility of the ischemic injury but produced contractile and vascular stunning which was not improved by ischemic preconditioning. The results of this study indicate that preconditioning when combined with hypothermia or hypothermic cardioplegia offered no significant additional protection.  相似文献   

12.
The effects of ischemia on mitochondrial function and the unidirectional rate of ATP synthesis (Pi----ATP rate) were studied using a Langendorff-perfused heart preparation and 31P NMR spectroscopy. There was significant postischemic depression of mechanical function assessed as the heart rate pressure product, and the myocardial oxygen consumption rate at a given rate pressure product was elevated. Experiments performed on glucose- and pyruvate-perfused hearts demonstrated the presence of a large contribution to the unidirectional Pi----ATP rate catalyzed by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. This rate was much greater than the maximal glucose utilization rate in the myocardium, demonstrating that the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase reactions are near equilibrium both before and after ischemia. In the pyruvate-perfused postischemic hearts, the glycolytic contribution was eliminated and the net rate of ATP synthesis by oxidative phosphorylation was measurable. Despite the reduced mechanical function and increased myocardial oxygen consumption rate, the ratio of the net rate of ATP synthesis by oxidative phosphorylation to oxygen consumption rate (the P:O ratio) was not altered subsequent to ischemia (2.34 +/- 0.12 and 2.36 +/- 0.09 in normal and postischemic hearts, respectively). Therefore, mitochondrial uncoupling cannot be the cause of postischemic depression in mechanical function; instead, the data suggest the existence of ischemia-induced inefficiency in ATP utilization.  相似文献   

13.
14.
15.
Dopamine is a neurotransmitter that has been related to mitochondrial dysfunction. In this study, striatal intact mitochondria and submitochondrial membranes were incubated with different dopamine concentrations, and changes on mitochondrial function, hydrogen peroxide, and nitric oxide production were evaluated. A 35% decrease in state 3 oxygen uptake (active respiration state) was found after 1 mM dopamine incubation. In addition, mitochondrial respiratory control significantly decreased, indicating mitochondrial dysfunction. High dopamine concentrations induced mitochondrial depolarization. Also, evaluation of hydrogen peroxide production by intact striatal mitochondria showed a significant increase after 0.5 and 1 mM dopamine incubation. Incubation with 0.5 and 1 mM dopamine increased nitric oxide production in submitochondrial membranes by 28 and 49%, respectively, as compared with control values. This study provides evidence that high dopamine concentrations induce striatal mitochondrial dysfunction through a decrease in mitochondrial respiratory control and loss of membrane potential, probably mediated by free radical production.  相似文献   

16.
Recent studies indicate that sepsis is associated with enhanced generation of several free radical species (nitric oxide, superoxide, hydrogen peroxide) in skeletal muscle. While studies suggest that free radical generation causes uncoupling of oxidative phosphorylation in sepsis, no previous report has examined the role of free radicals in modulating skeletal muscle oxygen consumption during State 3 respiration or inhibiting the electron transport chain in sepsis. The purpose of the present study was to examine the effects of endotoxin-induced sepsis on State 3 diaphragm mitochondrial oxygen utilization and to determine if inhibitors/scavengers of various free radical species would protect against these effects. We also examined mitochondrial protein electrophoretic patterns to determine if observed endotoxin-related physiological derangements were accompanied by overt alterations in protein composition. Studies were performed on: (a) control animals, (b) endotoxin-treated animals, (c) animals given endotoxin plus PEG-SOD, a superoxide scavenger, (d) animals given endotoxin plus L-NAME, a nitric oxide synthase inhibitor, (e) animals given only PEG-SOD or L-NAME, (f) animals given endotoxin plus D-NAME, and (g) animals given endotoxin plus denatured PEG-SOD. We found: (a) no alteration in maximal State 3 mitochondrial oxygen consumption rate at 24 h after endotoxin administration, but (b) a significant reduction in oxygen consumption rate at 48 h after endotoxin, (c) no effect of endotoxin to induce uncoupling of oxidative phosphorylation, (d) either PEG-SOD or L-NAME (but neither denatured PEG-SOD nor D-NAME) prevented endotoxin-mediated reductions in State 3 respiration rates, (e) some mitochondrial proteins underwent tyrosine nitrosylation at 24 h after endotoxin administration, and (f) SDS-page electrophoresis of mitochondria from endotoxin-treated animals revealed a selective depletion of several proteins at 48 h after endotoxin administration (but not at 24 h); (g) administration of L-NAME or PEG-SOD prevented this protein depletion. These data provide the first evidence that endotoxin-induced reductions in State 3 mitochondrial oxygen consumption are free radical-mediated.  相似文献   

17.
Brief episodes of nonlethal ischemia, commonly known as "ischemic preconditioning" (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (W(max)), oxygen uptake (VO(2max)), and pulmonary ventilation (VE(max)) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HR(max)), stroke volume (SV(max)), and cardiac output (CO(max)). A subgroup of volunteers (n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, W(max), VE(max), and HR(max) with respect to the REF test. In particular, W(max) increased by ~ 4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO(2max), SV(max,) CO(max), and anaerobic capacity(.) It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.  相似文献   

18.
《Free radical research》2013,47(11):1342-1354
Abstract

The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.  相似文献   

19.
20.
Metabolic effects of hyperbaric oxygen in postischemic muscle   总被引:5,自引:0,他引:5  
In traumatic injuries to the extremities, with a circulatory insufficiency, the resultant ischemia leads to decreasing levels of the energy-rich compounds adenosine triphosphate (ATP) and phosphocreatine (PCr) and increasing levels of lactate in muscle. A tourniquet model for temporary ischemia was used to determine if hyperbaric oxygen treatment could enhance the cellular metabolic restitution when the circulation was restored. The circulation of the rat hindlimb was interrupted for 1.5 and 3 hours. After 1.5 hours of ischemia, the levels of adenosine triphosphate, phosphocreatine, and lactate were restored to normal in muscle biopsies taken 5 hours after the ischemia. After 3 hours of ischemia, there were marked reductions of adenosine triphosphate and phosphocreatine and elevated lactate values in the postischemic muscle, indicating severe ischemic damage. Hyperbaric oxygen treatment at 2.5 atm for 45 minutes reduced these changes significantly. A certain number of hyperbaric oxygen treatments were necessary to maintain this effect. It is concluded that repeated hyperbaric oxygen treatments in the postischemic phase stimulate aerobic metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号