首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The pattern of catecholaminergic innervation of the dentate gyrus (DG) of the hippocampus, particularly the relatively dense and selective noradrenergic input, creates favourable conditions for real-time monitoring of noradrenaline (NA) release following stimulation of the locus coeruleus (LC) by in vivo voltammetry. Two electrochemically active species with different temporal characteristics were registered in the DG following electrical stimulation of the LC. Several approaches, including testing of anatomical and pharmacological specificity, coating of microelectrodes with Nafion and use of fast cyclic voltammetry, were used to verify the characteristics of electrochemical responses. The first sharp peak that appeared immediately during stimulation was definitely associated with NA overflow. The second late peak was possibly attributable to ascorbic acid. We examined the characteristics of alpha-2 adrenoceptor regulation of NA release in the DG, and showed for the first time that noradrenergic terminals resemble dopaminergic terminals in their mechanisms of increasing the refilling rate of the readily releasable pool following stimulation repeated at short intervals. Amperometric registration of NA in the DG was complicated by interference with electrical activity of hippocampus. This interference could be used, after appropriate filtration, for simultaneous recording from the same microelectrode of NA release and electrical activity of the hippocampus.  相似文献   

3.
Catecholaminergic metabolism was estimated in A1 and A2 noradrenergic nuclei of the rat medulla oblongata using differential normal pulse voltammetry combined with electrochemically treated carbon fiber microelectrodes. In both areas an oxidation peak appearing at +50 mV was recorded. Electrochemical data and pharmacological experiments indicated that 3,4-dihydroxyphenylacetic acid (DOPAC) synthesized by noradrenergic neurons was the major contributor to this signal. Indeed, alpha-methyl-p-tyrosine, by inhibiting tyrosine hydroxylase, and pargyline, by inhibiting monoamine oxidase, both totally suppressed the peak appearing at +50 mV in A1 and A2 areas. Conversely, FLA-63, an inhibitor of dopamine-beta-hydroxylase, increased it. Moreover, a local and unilateral injection of catecholaminergic neurotoxin (6-hydroxydopamine) in the vicinity of A1 induced a 60% decrease in the peak height. This effect was prevented by pretreatment with desipramine, an inhibitor of noradrenaline reuptake, which is known to protect noradrenergic neurons against the action of 6-hydroxydopamine. Finally, specific drugs acting on alpha-2-noradrenergic receptors (clonidine and piperoxane) modulated the peak height recorded from both structures. Thus, as previously shown in the locus ceruleus, the variations in the extracellular DOPAC levels reflect the metabolic activity of A1 and A2 noradrenergic neurons.  相似文献   

4.
Our previous studies have suggested that dopamine and noradrenaline may be coreleased from noradrenergic nerve terminals in the cerebral cortex. To further clarify this issue, the effect of electrical stimulation of the locus coeruleus on extracellular noradrenaline, dopamine and DOPAC in the medial prefrontal cortex, parietal cortex and caudate nucleus was analysed by microdialysis in freely moving rats. Stimulation of the locus coeruleus for 20 min with evenly spaced pulses at 1 Hz failed to modify cortical catecholamines and DOPAC levels. Stimulation with bursts of pulses at 12 and 24 Hz increased, in a frequency-related manner, not only noradrenaline but also dopamine and DOPAC in the two cortices. In both cortices noradrenaline returned to baseline within 20 min of stimulation, irrespective of the stimulation frequency, whereas dopamine returned to normal within 20 and 60 min in the medial prefrontal cortex and within 60 and 80 min in the parietal cortex after 12 and 24 Hz stimulation, respectively. DOPAC remained elevated throughout the experimental period. Phasic stimulation of the locus coeruleus at 12 Hz increased noradrenaline in the caudate nucleus as in the cerebral cortices but was totally ineffective on dopamine and DOPAC. Tetrodotoxin perfusion into the medial prefrontal cortex dramatically reduced noradrenaline and dopamine levels and suppressed the effect of electrical stimulation. These results indicate that electrical stimulation-induced increase of dopamine is a nerve impulse exocytotic process and suggest that cortical dopamine and noradrenaline may be coreleased from noradrenergic terminals.  相似文献   

5.
1. Various aspects of the noradrenergic system in the brain of the dysmyelinating convulsive mutant mice quaking have been examined. 2. Determination of the endogenous contents of noradrenaline and its metabolite 3-methoxy 4-hydroxyphenyl-ethyleneglycol (MOPEG), as well as measurement of the electrically-evoked release of (3H)-noradrenaline shows an increased noradrenergic activity in the brain of the mutants, when compared to non convulsive controls of the same strain. 3. Ontogenic development of alpha adrenergic receptors indicate that an increased density of alpha-2 sites precedes the appearance of the first convulsions by approximately one week. 4. Anatomical determination of the number of noradrenergic neuronal cell bodies in the locus coeruleus shows a hyperplasia of this nucleus in the mutants. 5. Electrolytic coagulation of the locus coeruleus inhibits the convulsions of the quaking mice. 6. These results suggest that an alteration of the embryonic differentiation of the locus coeruleus, which gives rise to the majority of brain noradrenergic neurons, provokes a hyperactivity of this neuronal system, thereby triggering the convulsions of the quaking mutant mice. 7. The possible involvement of other neurotransmitter systems in the convulsions of these mutants, together with the nature of the relationship between neuronal abnormalities and dysmyelination phenomenon, are discussed.  相似文献   

6.
Abstract: The effect of repeated stress has been studied on noradrenaline release in the hypothalamic paraventricular nucleus and on adrenocorticotropin levels. Rats were stressed by 20-min immobilization once a day for 5 days. On day 6 they were exposed to the same stress or to a different one (ether vapors for 2 min). Immobilization and ether stress increased noradrenaline release in naive rats (271 ± 43 and 197 ± 9%, respectively) and raised adrenocorticotropin levels, showing activation of the hypothalamus-pituitary axis. Repeated daily restraint did not modify basal noradrenaline or adrenocorticotropin levels. The further immobilization session on day 6 did not change noradrenaline levels at any observation time (20–120 min). The adrenocorticotropin response was still present, although significantly reduced. In repeatedly restrained rats, exposure to ether vapors induced a maximal increase in noradrenaline level similar to that observed in naive rats, although prolonged. In these rats the adrenocorticotropin response did not differ from that in acutely stressed rats. These results suggest that habituation may develop to a stressful stimulus leading to suppression of the hypothalamic noradrenergic response and that this phenomenon is stress specific. Moreover, modifications of noradrenaline release in the paraventricular nucleus are not solely responsible for the adrenocorticotropin response during stress, suggesting that other pathways and/or neurotransmitters are involved too.  相似文献   

7.
Female Wistar rats were treated with the serotonin reuptake inhibitor fluoxetine (10 mg/kg/i.p/day), during pregnancy and breast-feeding, for the study of the corresponding newborn rats. At the end of the preweaning period, the 30-day old litters had their vas deferens removed for testing peripheral sympathetic reactivity, through the following experiments in vitro: (a) concentration-contraction curves for serotonin and for the adrenergic agonists noradrenaline, phenylephrine, clonidine and dopamine or for the indirect agonist tyramine (b) contractions induced by electric field stimulation, as an indicator of sympathetic neurotransmission (c) release of endogenous noradrenaline, measured by real-time determinations on HPLC (d) Ca(+2) time-contraction curves, to check for changes on Ca(+2) translocation. Our results showed that the affinity (pD(2)) for serotonin was strikingly decreased by about 1.5 log units. The pD(2) for adrenergic agonists was decreased by about 0.5 log units, except for dopamine and clonidine. The maximum effects and intrinsic activity were decreased only for dopamine. On the other hand, the response to Ca(+2) and the release of noradrenaline from nerve terminals were not modified. In additional experiments, the mother's body weights were measured, showing a decrease during gestation and a recovery during lactation while the offspring's weights were lower than controls. It is concluded that, besides the alterations on body weights, changes on noradrenergic and serotonergic mechanisms were observed and persisted in the newborn, at least one month after parturition.  相似文献   

8.
Abstract: Noradrenaline release from sympathetic nerve terminals was evoked by electrical nerve stimulation of an isolated segment of rat tail artery. This release was recorded by a carbon fiber electrode combined with differential pulse amperometry. The active part of the electrode (one carbon fiber 8 μm in diameter and 50 μm in length) was placed in close contact with the arterial surface. The oxidation current appearing at +120 mV and corresponding to the local noradrenaline concentration at the electrode surface was recorded every 0.5 s. No oxidation current was detected under resting conditions, but electrical stimulation evoked an immediate increase in this current. This response was suppressed when tetrodotoxin was added to the perfusion medium and was enhanced when noradrenaline reuptake was inhibited by cocaine. The amplitude of the response was increased with increasing stimulation frequencies (2–25 Hz) and train lengths (1–16 pulses). Finally, the time resolution of the method (0.5 s) was good enough to show that noradrenaline release precedes the postsynaptic response, i.e., the electrically evoked contraction of the artery.  相似文献   

9.
The spectral-correlation analysis of biopotentials in the cortex and some other brain structures (the anteroventral thalamic nucleus, dorsal hippocampus, lateral geniculate body, mid-brain reticular formation), in chronic experiments on alert rabbits, revealed that during electrical stimulation of thalamic mid-line nuclei within the ranges of 1-3, 4-7 and 8-10 c/s, there occured a rearrangement of the EEG frequencies; a dominant, narrow-band peak at the stimulation frequency, appeared. The coherence of the biopotentials of different cortical areas, of the cortex and subcortical formations increased during the stimulation at the frequency of the stimulation, reaching maximum values between the potentials of the visual and sensorimotor cortical areas.  相似文献   

10.
Summary The cells of origin of afferent and efferent pathways of the lateral forebrain bundle were studied with the aid of the cobalt-filling technique. Ascending afferents originated from the lateral thalamic nucleus, central thalamic nucleus, posterior tuberculum and the cerebellar nucleus. They terminated in the anterior entopeduncular nucleus, amygdala and the striatum. Telencephalic projection neurons, which are related to the lateral forebrain bundle, were located mainly in the ventral striatum and the anterior entopeduncular nucleus, but were not so numerous in the dorsal striatum. Irrespective of their location, most of the neurons projecting axons into the lateral forebrain bundle had piriform or pyramidal perikarya. Long apical dendrites usually arborized in a narrow space, whereas widely arborizing secondary dendrites originated from short dendritic trunks. The other neurons that contributed to the lateral forebrain bundle were fusiform or multipolar cells. Striatal efferents terminated in the pretectal area and in the anterodorsal, anteroventral and posteroventral tegmental nuclei.  相似文献   

11.
Abstract: Present techniques are unable to provide a sensitive and accurate index of noradrenergic activity in the rat preoptic area. In this study, we have examined the brainstem A1 noradrenergic input to the preoptic area using a new technique whereby [3H]noradrenaline is preloaded into the preoptic area and release of radioactivity from this region is measured subsequently using microdialysis in vivo. Electrical stimulation of the ipsilateral A1 area for 20 min at 5, 10, and 15 Hz evoked significant increases in dialysate radioactivity that were repeatable and frequency-dependent. After removal of calcium from the perfusion medium, basal release of radioactivity was markedly reduced and the effect of A1 stimulation abolished. Changing to a 100 mM K+ medium evoked an increase in the release of radioactivity that was sixfold greater than that seen after A1 stimulation. Separation of the dialysate with HPLC showed that 33% of the increase in measured radioactivity after A1 stimulation was directly attributable to [3H]noradrenaline and the remainder to the metabolites vanillylmandelic acid, 3,4-dihydroxymandelic acid, and 3,4-dihydroxyphenylglycol. In contrast, the increase in radioactivity after K+ depolarization was due almost completely to [3H]noradrenaline. Addition of 10 μM clonidine to the perfusion medium markedly reduced basal release of radioactivity, but had no effect on evoked release following A1 stimulation. Conversely, perfusion with 10 μM yohimbine had no effect on basal release, but significantly increased evoked release after A1 stimulation. These results now provide a characterization of noradrenergic activity in the preoptic area and indicate the importance of the A1 noradrenergic input to this region. The technique of measuring radioactivity with microdialysis after preloading with [3H]noradrenaline provides a relatively simple, sensitive index of noradrenergic activity in vivo with good temporal resolution.  相似文献   

12.
Ghrelin, a gastrointestinal peptide, stimulates feeding when administered peripherally. Blockade of the vagal afferent pathway abolishes ghrelin-induced feeding, indicating that the vagal afferent pathway may be a route conveying orexigenic ghrelin signals to the brain. Here, we demonstrate that peripheral ghrelin signaling, which travels to the nucleus tractus solitarius (NTS) at least in part via the vagus nerve, increases noradrenaline (NA) in the arcuate nucleus of the hypothalamus, thereby stimulating feeding at least partially through alpha-1 and beta-2 noradrenergic receptors. In addition, bilateral midbrain transections rostral to the NTS, or toxin-induced loss of neurons in the hindbrain that express dopamine beta hydroxylase (an NA synthetic enzyme), abolished ghrelin-induced feeding. These findings provide new evidence that the noradrenergic system is necessary in the central control of feeding behavior by peripherally administered ghrelin.  相似文献   

13.
We examined the effects of treatments affecting norepinephrine release on the number of norepinephrine reuptake recognition sites as reflected by desipramine binding. To do this, we used manipulations having similar presynaptic but contrasting postsynaptic effects. Presynaptic inhibition by 6-hydroxydopamine lesion or by clonidine, and postsynaptic receptor stimulation by isoproterenol, reduced desipramine binding. Presynaptic stimulation by d-amphetamine and postsynaptic receptor blockade by prazosin increased desipramine binding. Similar effects and binding properties were seen in cerebral cortex, heart, and soleus muscle. After unilateral noradrenergic lesions, reduction in desipramine binding correlated with reduction in norepinephrine uptake. These results show that norepinephrine reuptake appears to be regulated by transmitter release regardless of effects on postsynaptic transmission, and that this regulation is analogous in the central and sympathetic nervous systems.  相似文献   

14.
Post-stimulation dilatation (PSD) of the femoral artery and vein after cessation of postganglionic sympathetic stimulation were related to the frequency and pulse number of the preceding stimulation. It was found that: 1) A minimum number of pulses (MNP) is needed to evoke PSD. MNP is inversely related to the stimulation frequency. A marked PSD develops after stimulation at 1 Hz when only 100 pulses were applied, whereas, if stimulated at 4 Hz or at higher frequencies, even 2,000 pulses fail to induce PSD. 2) The maximum value, the maximum rate and the overall diameter change of PSD (expressed either in absolute values or in relation to the preceding contraction) are a) directly related to the number of pulses at a constant stimulation frequency, b) for a constant number of pulses the above values are inversely related to the stimulation frequency. 3) The relation of PSD values to the stimulation parameters contradict the assumption that PSD is elicited either by a neurogenic transmitter released by the stimulation, or by an extraneuronal transmitter whose release is associated with the release of noradrenaline. PSD is suggested to be due to a decreased noradrenaline level within the synaptic cleft due to persistence of the reuptake after the release of noradrenaline had ceased.  相似文献   

15.
Using models of electrical self-stimulation of the positive emotiogenic zones and stimulation of the negative emotiogenic zones of the hypothalamus in rats, we demonstrated that both these stimulations increase the noradrenaline level in the frontal cortex. This shows a nonspecific nature of activation of the dorsal noradrenergic bundle, resulting from motivational excitation. When the frequency of self-stimulation reaction remained stable, activation of the dorsal noradrenergic bundle was moderate, and at decay of the above reaction it returned to the control level. Behavior connected with activation of the motor functions was characterized by an increase in the dopamine and noradrenaline levels in the caudate nucleus. In theglobus pallidum, the dopamine content changed only under conditions of stimulation of the negative emotiogenic zones: these were an increase in the reaction of active avoidance and a decrease in passive avoidance.  相似文献   

16.
Cell-to-cell communication via gap junctions has been proposed to be involved in the metabolic actions of sympathetic liver nerves in the rat. The effects of hepatic nerve stimulation and noradrenaline-, PGF2 alpha- and glucagon infusion on glucose metabolism and perfusion flow were studied in perfused rat liver in the absence and presence of the gap junctional inhibitors, heptanol, carbenoxolone and (4 beta)phorbol 12-myristate 13-acetate (4 beta PMA). (i) Stimulation of the hepatic nerve plexus increased glucose output, decreased flow and caused an overflow of noradrenaline into the hepatic vein. (ii) Heptanol completely inhibited not only the nerve stimulation-dependent metabolic and hemodynamic alterations but also the noradrenaline overflow. Thus the heptanol-dependent inhibitions were caused primarily by a strong impairment of transmitter release. (iii) Carbenoxolone inhibited the effects of neurostimulation on glucose metabolism partially by about 50%, whereas it left perfusion flow and noradrenaline overflow essentially unaltered. (iv) 4 beta PMA reduced the nerve stimulation-dependent enhancement of glucose release by about 80% but the noradrenaline-dependent increase in glucose output only by about 30%; the increase in glucose release by PGF2 alpha and by glucagon remained essentially unaltered. 4 beta PMA reduced the nerve stimulation-dependent decrease in portal flow by about 35% but did not affect the noradrenaline-and PGF2 alpha-elicited alterations, nor did it alter noradrenaline overflow. The results allow the conclusion that gap junctional communication plays a major role in the regulation of hepatic carbohydrate metabolism by sympathetic liver nerves, but not by circulating noradrenaline, PGF2 alpha or glucagon.  相似文献   

17.
Abstract: The effect of the antidepressant and selective noradrenaline reuptake blocker desipramine (DMI) on noradrenergic transmission was evaluated in vivo by dual-probe microdialysis. DMI (1, 3, and 10 mg/kg, i.p.) dose-dependently increased extracellular levels of noradrenaline (NA) in the locus coeruleus (LC) area. In the cingulate cortex (Cg), DMI (3 and 10 mg/kg, i.p.) also increased NA dialysate, but at the lowest dose (1 mg/kg, i.p.) it decreased NA levels. When the α2-adrenoceptor antagonist RX821002 (1 µ M ) was perfused in the LC, DMI (1 mg/kg, i.p.) no longer decreased but rather increased NA dialysate in the Cg. In electrophysiological experiments, DMI (1 mg/kg, i.p.) inhibited the firing activity of LC neurons by a mechanism reversed by RX821002. Local DMI (0.01–100 µ M ) into the LC increased concentration-dependently NA levels in the LC and simultaneously decreased NA levels in the Cg. This decrease was abolished by local RX821002 administration into the LC. The results demonstrate in vivo that DMI inhibits NA reuptake at somatodendritic and nerve terminal levels of noradrenergic cells. The increased NA dialysate in the LC inhibits noradrenergic activity, which in part counteracts the effects of DMI on the Cg. The modulation of cortical NA release by activity of DMI at the somatodendritic level is mediated through α2-adrenoceptors located in the LC.  相似文献   

18.
Responses of the cingulate gyrus to stimulation of the dorsal hippocampus were studied in unanesthetized cats. Both short and long polysynaptic projections were found to participate in their genesis. It is postulated on the basis of the results of experiments with stimulation of and injury to the limbic nuclei of the thalamus that responses of the posterior zone of the cingulate gyrus to dorsal hippocampal stimulation arise as a result of activation of the anteroventral thalamic nucleus.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 7–13, January–February, 1981.  相似文献   

19.
T Y Lot 《Medical biology》1986,64(4):207-213
The effects of guanethidine, chloroquine and quinacrine on noradrenergic nerves have been compared in vitro using the isolated expansor secundariorum muscle of chicks. The effect of chloroquine on alpha-methyl-noradrenaline uptake by noradrenergic nerve terminals in various tissues were studied. The inhibitory action of guanethidine and quinacrine on noradrenergic nerves appeared to be mediated intraneuronally. The inhibitory action of chloroquine was readily reversible and unaffected by dexamphetamine. Chloroquine caused supersensitivity of the expansor muscle to noradrenaline by blocking its neuronal reuptake since the supersensitivity caused by denervation was not further increased by chloroquine. This was confirmed by the finding that chloroquine inhibited alpha-methylnoradrenaline uptake (Uptake1). Quinacrine did not cause supersensitivity to noradrenaline, possibly due to its direct depressant action on the expansor secundariorum muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号