首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that ceramide induces endothelial dysfunction in small coronary arteries via NADPH oxidase-mediated superoxide and resulting peroxynitrite formation. With the use of dihydroethidium as a superoxide indicator, C(2)-ceramide was found to increase superoxide production in the endothelial cells of small coronary arteries, which was inhibited by the NADPH oxidase inhibitors N-vanillylnonanamide, apocynin, and diphenylene iodonium. NADPH oxidase expression was confirmed in endothelial cells, as indicated by the immunoblotting of its subunits gp91(phox) and p47(phox). C(2)-ceramide increased NADPH oxidase activity by 52%, which was blocked by NADPH oxidase inhibitors but not by inhibitors of NO synthase, xanthine oxidase, and mitochondrial electron transport chain enzymes. By Western blot analysis, ceramide-induced NADPH oxidase activation was found to be associated with the translocation of p47(phox) to the membrane. In isolated and pressurized small coronary arteries, N-vanillylnonanamide, apocynin, or uric acid, a peroxynitrite scavenger, largely restored the inhibitory effects of ceramide on bradykinin- and A-23187-induced vasorelaxation. With the use of nitrotyrosine as a marker, C(2)-ceramide was found to increase peroxynitrite in small coronary arteries, which could be blocked by uric acid. We conclude that NADPH oxidase-mediated superoxide production and subsequent peroxynitrite formation mediate ceramide-induced endothelial dysfunction in small coronary arteries.  相似文献   

2.
The aim of the present study was to investigate the endothelial function in human mesenteric arteries with specific reference to defining the role of endothelium-derived nitric oxide (EDNO) and the endothelium-derived hyperpolarizing factor (EDHF). Isolated segments of small human mesenteric arteries (225-450 microm inner diameter) were mounted in organ baths for recording isometric tension. In arteries precontracted with U46619 (thromboxane A(2) analogue, 10(-7) M), endothelium-dependent relaxations were induced in a concentration-dependent manner by substance P and histamine. In normal Krebs solution the relaxations to substance P (10(-9) M) and histamine (10(-7) M) were not significantly affected by preincubation with N(omega)-nitro-L-arginine (L-NNA, 10(-4) M) or indomethacin (10(-5) M). When the preparations were exposed to a solution containing 60 mM KCl, stable contractions were induced, but relaxations could still be induced by substance P and histamine. When the arteries were further preincubated with L-NNA, the relaxations were almost abolished. A combination of apamin (3 x 10(-7) M) and charybdotoxin (10(-9) M) almost abolished relaxations in normal Krebs solution. It is concluded that isolated human mesenteric arteries respond to substance P and histamine with relaxations that are endothelium-dependent. Synthesis of both EDNO and EDHF seem important for these relaxations, whereas prostaglandins seem to be of minor importance.  相似文献   

3.
Thrombin plays a critical role in haemostasis, inflammation, and cell proliferation, mediated by proteinase-activated receptor 1 (PAR-1; thrombin receptor). The physiological and pathological regulation of PAR-1 by inflammatory mediators has not yet been fully elucidated. The aim of this study is to investigate the effects of inflammatory mediators on mRNA and protein expression of PAR-1 in early passage human vascular endothelial cells. Endothelial cells were activated by inflammatory mediators, such as tumour necrosis factor alpha (TNFalpha), interferon gamma (IFN gamma), and bacterial substance lipopolysaccharide (LPS), and the PAR-1 expression was verified by flow cytometry or RT-PCR. By stimulating endothelial cells with TNFalpha, IFN gamma, and LPS, the PAR-1 expression on the cell surface remained almost unchanged for 48 h. After stimulation with 20-300 U/ml TNFalpha, the total cellular PAR-1 expression (both on cell surface and in the cytoplasm) significantly decreased at 24h and thereafter recovered to the basal level at 48 h. The stimulation with 100 U/ml TNFalpha transiently down-regulated the PAR-1 mRNA expression to approximately 0.3-fold of the basal level at 30 min, but it rebounded 3-fold above the basal level at 6h, and again decreased to 0.5-fold of the basal level at 12h, and finally returned to the basal level at 24h. In contrast, IFN gamma or LPS did not affect the PAR-1 mRNA expression.  相似文献   

4.
Hyperinsulinemia, a primary feature of insulin resistance, is associated with increased endothelin-1 (ET-1) activity. This study determined the vascular response to ET-1 and receptor binding characteristics in small mesenteric arteries of insulin-resistant (IR) rats. Rats were randomized to control (C) (n = 32) or IR (n = 32) groups. The response to ET-1 was assessed (in vitro) in arteries with (Endo+) and without (Endo-) endothelium. In addition, arteries (Endo+) were pretreated with the ET(B) antagonist A-192621 or the ET(A) antagonist A-127722. Finally, binding characteristics of [(125)I]ET-1 were determined. Results showed that in Endo+ arteries the maximal relaxation (E(max)) to ET-1 was similar between C and IR groups; however, the concentration at 50% of maximum relaxation (EC(50)) was decreased in IR arteries. In Endo- arteries, the E(max) to ET-1 was enhanced in both groups. Pretreatment with A-192621 enhanced the E(max) and EC(50) to ET-1 in both groups. In contrast, A-127722 inhibited the ET-1 response in all arteries in a concentration-dependent manner; however, a greater ET-1 response was seen at each concentration in IR arteries. Maximal binding of [(125)I]ET-1 was increased in IR versus C arteries although the dissociation constant values were similar. In conclusion, we found the vasoconstrictor response to ET-1 is enhanced in IR arteries due to an enhanced expression of ET receptors and underlying endothelial dysfunction.  相似文献   

5.
Proteinase-activated receptor 2 (Par2, F2rl1, also designated PAR-2 or PAR2) is prominently expressed in the intestine and has been suggested as a mediator of inflammatory, mitogenic and fibrogenic responses to injury. Mast cell proteinases and pancreatic trypsin, both of which have been shown to affect the intestinal radiation response, are the major biological activators of Par2. Conventional Sprague-Dawley rats, mast cell-deficient rats, and rats in which pancreatic exocrine secretion was blocked pharmacologically by octreotide underwent localized irradiation of a 4-cm loop of small bowel. Radiation injury was assessed 2 weeks after irradiation (early, inflammatory phase) and 26 weeks after irradiation (chronic, fibrotic phase). Par2 expression and activation were assessed by in situ hybridization and immunohistochemistry, using antibodies that distinguished between total (preactivated and activated) Par2 and preactivated Par2. Compared to unirradiated intestine, irradiated intestine exhibited increased Par2 expression, particularly in areas of myofibroblast proliferation and collagen accumulation, after both single-dose and fractionated irradiation. The majority of Par2 expressed in fibrotic areas was activated. Postirradiation Par2 overexpression was greatly attenuated in both mast cell-deficient and octreotide-treated rats. The severity of acute mucosal injury did not affect postirradiation Par2 expression. Mast cells and pancreatic proteinases may exert their fibro-proliferative effects partly through activation of Par2. Par2 may be a potential target for modulating the intestinal radiation response, particularly delayed intestinal wall fibrosis.  相似文献   

6.
Caveolin-1, an integral protein of caveolae, is associated with multiple cardiovascular signalling pathways. Caveolin-1 knockout (KO) mice have a reduced lifespan. As changes in artery structure and function are associated with ageing we have investigated the role of caveolin-1 ablation on age-related changes of small artery contractility and passive mechanical properties. Mesenteric small arteries isolated from 3 and 12-month wild-type (WT) and caveolin-1 KO mice were mounted on a pressure myograph and changes in passive and functional arterial properties were continuously monitored. In WT mice ageing was associated with a reduction in arterial contractility to noradrenaline which was reversed by inhibition of nitric oxide synthase with L-NNA. Similarly, in 3-month-old mice, caveolin-1 KO reduced contractility to noradrenaline by an L-NNA-sensitive mechanism. However, ageing in caveolin-1 KO mice was not associated with any further change in contractility. In WT mice ageing was associated with an increased passive arterial diameter and cross-sectional area (CSA), consistent with outward remodelling of the arterial wall, and a reduced arterial distensibility. Caveolin-1 ablation at 3 months of age resulted in similar changes in passive arterial properties to those observed with ageing in WT animals. However, ageing in caveolin-1 KO mice resulted in a reduced arterial CSA indicating different effects on passive structural characteristics from that observed in WT mice. Thus, caveolin-1 mice show abnormalities of small mesenteric artery function and passive mechanical characteristics indicative of premature vascular ageing. Moreover, caveolin-1 ablation modulates the age-related changes usually observed in mesenteric arteries of WT mice.  相似文献   

7.
We hypothesized that modulation of the effective charge density of the endothelial surface layer (ESL) results in altered arterial barrier properties to transport of anionic solutes. Rat mesenteric small arteries (diameter approximately 190 microm) were isolated, cannulated, perfused, and superfused with MOPS-buffered physiological salt solutions. MOPS-solutions were of normal ionic strength (162 mM, MOPS), low ionic strength (81 mM, LO-MOPS), or high ionic strength (323 mM, HI-MOPS), to modulate ESL charge density (normal, high, or low ESL charge, respectively). Osmolarity of MOPS, LO-MOPS, and HI-MOPS was kept constant at 297 mosmol/l, using additional glucose when necessary. Perfusate solutions were supplemented with 1% BSA. Arteries were cannulated with a double-barreled theta-pipet on the inlet side and a regular pipet on the outlet side. After infusion of FITC-labeled dextran of 50 kDa (FITC-Delta50) and the endothelial membrane dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, the dynamics of arterial dye filling were determined with confocal microscopy. ESL thickness, as determined from the initial exclusion zone for FITC-Delta50 on the luminal endothelial surface, was 6.3 +/- 1.4 microm for LO-MOPS, 2.7 +/- 1.0 microm for MOPS, and 1.1 +/- 1.3 microm for HI-MOPS. At low ionic strength, FITC-Delta50 permeated into the ESL with a total ESL permeation time (tauESL) of 26 min, and at normal ionic strength with a tauESL of 20 min. No apparent exclusion of FITC-Delta50 from the ESL could be observed at high ionic strength. In conclusion, we demonstrate that the modulation of solvent ionic strength influences the thickness and barrier properties of the ESL.  相似文献   

8.
Trypsin and mast cell tryptase cleave proteinase-activated receptor 2 and, by unknown mechanisms, induce widespread inflammation. We found that a large proportion of primary spinal afferent neurons, which express proteinase-activated receptor 2, also contain the proinflammatory neuropeptides calcitonin gene-related peptide and substance P. Trypsin and tryptase directly signal to neurons to stimulate release of these neuropeptides, which mediate inflammatory edema induced by agonists of proteinase-activated receptor 2. This new mechanism of protease-induced neurogenic inflammation may contribute to the proinflammatory effects of mast cells in human disease. Thus, tryptase inhibitors and antagonists of proteinase-activated receptor 2 may be useful anti-inflammatory agents.  相似文献   

9.
Proteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R(183)AR → A(183)AA), mutation of which allowed efficient membrane delivery of PAR(4). Interestingly, co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signaling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease.  相似文献   

10.
Brief, spatially localized Ca(2+) transients occur in the smooth muscle adjacent to perivascular nerves of small arteries during neurogenic contractions. We named these "junctional Ca(2+) transients" (jCaTs) and postulated that they arose from Ca(2+) entering smooth muscle cells through P2X(1) receptors activated by neurally released ATP. Nevertheless, the lack of potent, subtype-selective P2X-receptor antagonists made determining the exact molecular identity of the channels difficult. Here we used small, pressurized mesenteric arteries from P2X(1)-receptor-deficient mice (KO) to test the hypothesis that jCaTs arise from Ca(2+) entering the smooth muscle cell via P2X(1) receptors. In wild-type (WT) arteries, confocal microscopy of fluo-4 fluorescence during electrical field stimulation (EFS) of perivascular sympathetic nerves revealed jCaTs in the smooth muscle cells adjacent to the perivascular nerves, similar to those reported previously in rat arteries, and alpha-latrotoxin (2.5 nM) markedly increased the frequency of "spontaneous" jCaTs. In the KO arteries, however, neither EFS nor alpha-latrotoxin elicited any jCaTs. A potent P2X-receptor agonist, alpha,beta-methylene ATP (10.0 microM), elicited strong contractions and increased intracellular Ca(2+) concentration in WT arteries but elicited neither in KO arteries. A biphasic vasoconstriction in response to EFS was observed in WT arteries. In KO arteries, however, the initial rapid, transient component of the biphasic vasoconstriction was absent. The data support the hypothesis that jCaTs represent Ca(2+) that enters the smooth muscle cells through P2X(1) receptors activated by neurally released ATP and that this Ca(2+) is involved in the initial rapid component of the sympathetic neurogenic contraction.  相似文献   

11.
ATP can be released from endothelial cells, and this release is increased by intraluminal flow in blood vessels. In the present study, the effect of extracellular ATP (1 microM) on flow-induced vasodilatation was investigated in isolated and pressurized rat small mesenteric arteries. In the absence of extracellular ATP, only 46% of arteries developed dilatation in response to flow, and this response was both transient and unstable. In marked contrast, with ATP present, all vessels developed a prolonged and stable dilatation in response to flow. Even in the vessels that failed to respond to flow in the absence of ATP, dilatation could be stimulated once ATP was present. The ability of ATP to facilitate flow-induced vasodilatation was mimicked by UTP (1 microM), a P2Y agonist, or 3'-O-(4-benzoyl)benzoyl ATP (BzATP; 10 microM), an agonist for P2X1, P2X7, and P2Y11 purinoceptors. The involvement of P2X7 purinoceptors was further supported by the inhibitory effect of KN-62 (1 microM), a P2X7 antagonist, on the action of BzATP. P2X1 and P2X3 purinoceptors were not involved because their receptor agonist alpha,beta-methylene ATP had no effect. The facilitating effect of ATP on flow dilatation was also attenuated by the combined application of reactive blue 2 (100 microM), a P2Y antagonist, and suramin (100 microM), a nonselective P2X and P2Y antagonist. Furthermore, flow-induced dilatation obtained in the presence of ATP was reproducible. In contrast, in the additional presence of the ectonucleotidase inhibitor ARL-67156 (10 microM), although the first dilatation was normal, the responses to the second and later exposures to flow were greatly attenuated. The nonhydrolyzable ATP analogs adenosine-5'-(3-thiotriphosphate)trilithium salt (1 microM) and adenosine 5'-(beta,gamma-imido) triphosphate tetralithium salt hydrate (10 microM) had similar effects to those of ARL-67156. These data suggest that ATP acts through both P2X and P2Y purinoceptors to facilitate flow-induced vasodilatation and that ectonucleotidases prevent this effect by degrading ATP on the endothelial cell surface.  相似文献   

12.
The regulation of small artery contractility by vasoconstrictors is important for vascular function, and actin cytoskeleton remodeling is required for contraction. p38 MAPK and tyrosine kinases are implicated in actin polymerization and contraction through heat shock protein 27 (Hsp27) and the cytoskeletal protein paxillin, respectively. We evaluated the roles of downstream targets of p38 MAPK and tyrosine kinases in cytoskeletal reorganization and contraction and whether the two signaling pathways regulate contraction independent of each other. We identified the expression of the paxillin homologue hydrogen peroxide-inducible clone-5 (Hic-5) and showed its activation by norepinephrine (NE) in a Src-dependent manner. Furthermore, we demonstrated a NE-induced interaction of proline-rich tyrosine kinase-2 (PYK2) but not Src or p125 focal adhesion kinase with Hic-5. This interaction was Src dependent, suggesting that Hic-5 was a substrate for PYK2 downstream from Src. The activation of Hic-5 induced its relocalization to the cytosol. The parallel activation of Hsp27 by NE was p38 MAPK dependent and led to its dissociation from actin filaments and translocation from membrane to cytosol and increased actin polymerization. Both Hsp27 and Hic-5 activation resulted in their association within the same time frame as NE-induced contraction, and the inhibition of either p38 MAPK or Src inhibited the interaction between Hsp27 and Hic-5 and the contractile response. Furthermore, combined p38 MAPK and Src inhibition had no greater effect on contraction than individual inhibition, suggesting that the two pathways act through a common mechanism. These data show that NE-induced activation and the association of Hsp27 and Hic-5 are required for the reorganization of the actin cytoskeleton and force development in small arteries.  相似文献   

13.
Synthetic peptides homologous to the extracellular loops of the major vascular connexins represent a novel class of gap junction blockers that have been used to assess the role of direct cellular communication in arteries and veins. However, the specificity of action of such peptides on the coupling between smooth muscle cells (SMCs) has not yet been fully characterized. Isolated third-order rat mesenteric arteries were therefore studied with respect to isometric tension (myography), intracellular Ca2+ concentration ([Ca2+]i) (Ca2+ -sensitive dyes), membrane potential, and input resistance (sharp intracellular glass electrodes). Confocal imaging was used for visualization of [Ca2+]i events in individual SMCs in the arterial wall and membrane currents (patch clamp) measured in individual SMCs isolated from the same arteries. A triple peptide combination (37,43Gap 27 + 40Gap 27 + 43Gap 26) increased intercellular resistance (measured as input resistance) in intact arterial segments without affecting the membrane conductance of individual cells and also interrupted electrical coupling between pairs of rat aortic A7r5 myocytes. In intact arterial segments, the peptides desynchronized [Ca2+]i transients in individual SMCs and abolished vasomotion without suppressing Ca2+ transients in individual cells. They also depolarized SMCs, increased [Ca2+]i, and attenuated acetylcholine-induced, endothelium-dependent smooth muscle hyperpolarization. Experiments with endothelium-denuded arteries suggested that the depolarization produced by the peptides under basal conditions was in part secondary to electrical uncoupling of the endothelium from SMCs with loss of a tonic hyperpolarizing effect of the endothelium. Taken together, the results indicate that connexin-mimetic peptides block electrical signaling in rat mesenteric small arteries without exerting major nonjunctional effects.  相似文献   

14.
This ultrastructural study has investigated the development of the innervation of second order mesenteric arteries from the ileum region of the rat intestine, particularly, the time course of the formation of the plexus of varicose axons around the arteries, and the formation of autonomic neuromuscular junctions. The time points studied were postnatal days-2, -4, -8 and -13. This study has revealed that the formation of neuromuscular junctions with mature structural characteristics occurred at ~2 weeks postnatal. The plexus of varicose axons developed predominantly between day-4 and day-13, which agrees with previous light microscopy studies of catecholamne containing nerves around similar vessels. At day-2 and day-4, the axons lacked varicosities and were mainly contained in large bundles located in the outer region of the adventitia. The medio-adventitial border consisted of a dense layer of extracellular matrix and fibroblasts. By day-8, there were more axons and most were distributed in smaller bundles. Some had grown through the adventitia to lie at the medio-adventitial border and axon varicosities were also observed. Some varicosities had formed rudimentary neuromuscular contacts. By day-13, there were significantly more contacting varicosities compared to day-8. They were structurally more mature, being twice the size with three times the number of synaptic vesicles and consistently contained a mitochondrion. Conversely, the neuromuscular contact areas were similar at both time points. Some organisation of the synaptic vesicles associated with the prejunctional membrane, was evident in varicosities at day-8 but there were no presynaptic membrane specialisations similar to the putative neurotransmitter release sites found at mature skeletal neuromuscular junctions. The aggregation of small vesicles at the prejunctional membrane was more pronounced in neuromuscular junctions at day-13 with some having presynaptic membrane specialisations. Comparison of the structure of developing autonomic neuromuscular junctions with that of skeletal neuromuscular junctions has revealed a number of similarities.  相似文献   

15.
With aging, large arteries become stiffer and systolic blood pressure consequently increases. Less is known, however, about the age-related change in mechanics of small resistance arteries. The aim of this study was to determine whether aging plays a role in the stiffening of the small mesenteric arteries of rats. Intra-arterial systolic, diastolic, mean and pulse pressures were measured in male Wistar rats aged 2, 4, 15 and 26 months. The passive mechanical properties of the wall of isolated perfused and pressurized arterial segments of mesenteric small arteries were also investigated. Intra-arterial systolic, diastolic and mean blood pressures tended to decrease with age and were significantly lower in the oldest rats (26-month-old group). Pulse pressure was significantly higher in the 15- and 26-month-old groups than in the two younger groups. Under isobaric conditions, increasing age is associated with an outward hypertrophic remodeling of the mesenteric arteries. Under relaxed conditions, incremental distensibility in response to increasing intravascular pressure did not change with aging. As a function of strain (under isometric conditions), stress shifted to the left as age increased, indicating an age-related vascular stiffening. Under isobaric conditions or in relation to wall stress, the elastic modulus was greater in the adult 15-month-old rats than in the younger rats. These findings suggest that distensibility seems to be preserved with aging, despite stiffness of the wall components, probably by arterial wall geometric adaptation, which limits the pulse pressure damage. It is interesting to note that elastic modulus in mesenteric arteries from the oldest rats (26-month-old), examined in relation to wall stress and intravascular pressure, did not differ from that of the youngest rats, thus suggesting that elasticity of wall components had been restored.  相似文献   

16.
Segments of isolated intact rat mesenteric small arteries were incubated in physiological bicarbonate buffer in the presence of nano- to millimolar concentrations of ATP. ATP was hydrolysed, and when the vessel was transferred from one incubation to another, the enzyme activity was transferred with the vessel, consistent with the presence of an ecto-ATPase. The substrate, ATP, was shown to induce a modification of the hydrolytic activity which occurred the more rapidly the higher the concentration of ATP. The modified system hydrolysed ATP with a decreased substrate affinity. As the substrate induced a modification of the hydrolytic activity, steady-state velocity measurements for determination of kinetic parameters could not be obtained. Nevertheless, it was possible to compare the modification caused by ATP and UTP, and to compare the hydrolysis rates measured with [32P]ATP, [32P]UTP and [32P]GTP. It was concluded that the hydrolytic activity of the vessels did not distinguish between the nucleoside triphosphates (NTPs). In a histidine buffer, the activity was shown to be activated by micromolar concentrations of either Ca2+ or Mg2+, and not to be influenced by inhibitors of P-type, F-type and V-type ATPases. Functional removal of the endothelium before assay did not reduce the measured NTP hydrolysis. At millimolar concentrations of trinucleotide the hydrolysis rate was 10-15 mumol per min per gram of tissue or 0.11-0.17 mumol per min per 10(6) vascular smooth muscle cells. This value is equivalent to the maximal velocity obtained for the Ca2+ or Mg(2+)-dependent NTPase released to the medium upon 2 s of sonication of the vessels (Plesner, L., Juul, B., Skriver, E. and Aalkjaer, C. (1991) Biochim. Biophys. Acta 1067, 191-200). Comparing the characteristics of the released NTPase to the characteristics of the activity of the intact vessel, they showed a strong resemblance, but the substrate-induced modification of the enzyme was seen only in the intact preparation.  相似文献   

17.
Thrombin, an important mediator of thrombosis and inflammation, may also enhance vascular cytoprotection. Thus thrombin induces expression of the complement-inhibitory protein decay-accelerating factor (DAF) in human umbilical vein endothelial cells (HUVECs), thus increasing protection against complement-mediated injury. Using PKC isozyme-specific peptide antagonists and adenoviral constructs, we have shown in the present study that PKC- is the primary isozyme involved in DAF induction by thrombin. Experiments with proteinase-activated receptor-1 (PAR1) and PAR2 activating peptides (APs) showed that DAF expression induced by PAR1-AP was PKC--dependent; in contrast, PAR2-AP induction of DAF required activation of PKC-. PAR1-AP and PAR2-AP in combination exerted an additive effect on DAF protein expression, which was equivalent to that observed with thrombin alone. These data implied a specific role for PAR2 in DAF induction, which was supported by the observation that upregulation of endothelial cell (EC) PAR2-enhanced DAF induction by thrombin. ERK1/2, p38, and JNK MAPK were also involved in thrombin-induced DAF upregulation, with evidence of interdependence between ERK1/2 and JNK. A role for transactivation of PAR2 by PAR1 was suggested by partial inhibition of thrombin-induced DAF expression by the PAR1 signaling antagonists BMS-200261 and SCH79797, whereas inhibition of thrombin-induced cleavage of PAR1 by specific MAbs or hirudin completely abrogated the response. Together, these data imply that the predominant pathway for thrombin-induced DAF expression involves transactivation of PAR2 by PAR1 and signaling via PKC-/MAPK. This may represent an important, novel pathway for endothelial cytoprotection during inflammation and angiogenesis and suggests that PAR2 may play a central role in some thrombin-induced responses. cytoprotection; proteinase-activated receptor 1  相似文献   

18.
Arteries that have developed myogenic tone (MT) are in a markedly different physiological state compared with those that have not, with higher cytosolic [Ca(2+)] and altered activity of several signal transduction pathways. In this study, we sought to determine whether alpha(1)-adrenoceptor-induced Ca(2+) signaling is different in pressurized arteries that have spontaneously developed MT (the presumptive physiological state) compared with those that have not (a common experimental state). At 32 degrees C and intraluminal pressure of 70 mmHg, cytoplasmic [Ca(2+)] was steady in most smooth muscle cells (SMCs). In a minority of cells (34%), however, at least one propagating Ca(2+) wave occurred. alpha(1)-Adrenoceptor activation (phenylephrine, PE; 0.1-10.0 microM) caused strong vasoconstriction and markedly increased the frequency of Ca(2+) waves (in virtually all cells). However, when cytosolic [Ca(2+)] was elevated experimentally in these arteries ([K(+)] 20 mM), PE failed to elicit Ca(2+) waves, although it did elevate [Ca(2+)] (F/F(0)) further and caused further vasoconstriction. During development of MT, the cytosolic [Ca(2+)] (F/F(0)) in individual SMCs increased, Ca(2+) waves disappeared (from SMCs that had them), and small Ca(2+) ripples (frequency approximately 0.05 Hz) appeared in approximately 13% of cells. PE elicited only spatially uniform increases in [Ca(2+)] and a smaller change in diameter (than in the absence of MT). Nevertheless, when cytosolic [Ca(2+)] and MT were decreased by nifedipine (1 microM), PE did elicit Ca(2+) waves. Thus alpha(1)-adrenoceptor-mediated Ca(2+) signaling is markedly different in arteries with and without MT, perhaps due to the elevated [Ca(2+)], and may have a different molecular basis. alpha(1)-Adrenoceptor-induced vasoconstriction may be supported either by Ca(2+) waves or by steady elevation of cytoplasmic [Ca(2+)], depending on the amount of MT.  相似文献   

19.
A possible role for a metabolite of cytochrome P-450 omega-hydroxylase in the initial and sustained phases of the myogenic response in cannulated rat mesenteric small arteries was studied. With slight preconstriction (norepinephrine and neuropeptide Y), pressure was raised from 60 to 100 mmHg, and both initial (within 2 min) and sustained phases (at 10 min) of the myogenic response were quantified. The myogenic response was fully inhibited by D600 (methoxyverapamil). Ketoconazole and 17-octadecanoic acid did not affect the initial phase but inhibited the sustained phase. In contrast, miconazole did not affect either phase. Charybdotoxin and iberiotoxin potentiated the initial phase but eliminated the sustained phase. Apamin, glibenclamide, 4-aminopyridine, and barium had no effect on either phase. The results demonstrate different mechanisms for the initial and sustained phases of the myogenic response of rat mesenteric small arteries. Only the sustained phase appears mediated through a cytochrome P-450 omega-hydroxylase metabolite and calcium-activated K+ channels. However, both phases of the response are dependent on calcium influx through voltage-dependent calcium channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号