首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of respiratory chain activities in rat liver, rat heart and bovine heart mitochondria by the anthracycline antibiotic adriamycin was measured in order to determine the adriamycin-sensitive sites. It appeared that complex III and IV are efficiently affected such that their activities were reduced to 50% of control values at 175 +/- 25 microM adriamycin. Complex I displayed a minor sensitivity to the drug. Of the complex-I-related activities tested, only duroquinone oxidation appeared sensitive (50% inhibition at approx. 450 microM adriamycin). Electron-transfer activities catalyzed by complex II remained essentially unaltered up to high drug concentrations. Of the activities measured for this complex, only duroquinone oxidation was significantly affected. However, the adriamycin concentration required to reduce this activity to 50% exceeded 1 mM. Mitochondria isolated from rat liver, rat heart and bovine heart behaved essentially identical in their response to adriamycin. These data support the conclusion that, in these three mitochondrial systems, the major drug-sensitive sites lie in complex III and IV. Cytochrome c oxidase and succinate oxidase activity in whole mitochondria exhibited a similar sensitivity towards adriamycin, as inner membrane ghosts, suggesting that the drug has direct access to its inner membrane target sites irrespective of the presence of the outer membrane. By measuring NADH and succinate oxidase activities in the presence of exogenously added cytochrome c, it appeared that adriamycin was less inhibitory under these conditions. This suggests that adriamycin competes with cytochrome c for binding to the same site on the inner membrane, presumably cardiolipin.  相似文献   

2.
Rat hearts were loaded with the fluorescent calcium indicators fura 2, indo 1, rhod 2, or fluo 3 to determine cytosolic calcium levels in the perfused rat heart. With fura 2, however, basal tissue fluorescence increased above anticipated levels, suggesting accumulation of intermediates of fura 2-AM deesterification. To examine this process, we separated the intermediates of the deesterification process using HPLC after incubation of fura 2-AM with tissue homogenates and after loading in the rat heart. Loading of hearts with fura 2-AM resulted in tissue levels of fura 2 free acid that were only 5% of the total heart dye content of all fura 2 species. The parent fura 2-AM form accumulated without accumulation of intermediate products. Similar results were obtained with indo 1-AM. Fluo 3 loaded very poorly in perfused hearts. Unlike other indictors, rhod 2 rapidly loaded in perfused hearts and was completely converted to the free acid form. To determine the subcellular localization of the free acid form of these indictors, mitochondria from indicator-loaded hearts were assayed for the free acid form. Approximately 75% of the total amount of rhod 2 in hearts could be recovered in isolated mitochondria. Subcellular localization of indo 1 and fura 2 was more evenly distributed between mitochondria and nonmitochondrial compartments. We conclude that measurement of calcium in the perfused rat heart using surface fluorescence with either indo 1 or fura 2 is complicated by an inconsistent accumulation of the parent ester and that the resulting signal cannot be easily calibrated using "in situ" methods using the free acid form. Rhod 2 does not display this shortcoming, but like other indicators, it also loads into the mitochondrial matrix.  相似文献   

3.
The isolated, perfused working rat heart was used as a model for investigating the effects of chloramphenicol on mitochondrial amino acid incorporation in an intact organ. The most obvious inhibitory effects of chloramphenicol were extramitochondrial: decreased mechanical performance of the heart and marked reduction in glucose uptake and lactate production. The ATP levels of the perfused heart were significantly increased at high levels of chloramphenicol. Chloramphenicol (50 to 500 μg/ml perfusate) did not inhibit the incorporation into the mitochondria or other subcellular fractions. A specific inhibitory effect on mitochondrial protein synthesis could only be observed when the cytoplasmic protein synthetizing system had been inhibited by cycloheximide. Under these conditions it could be demonstrated that the chloramphenicol sensitivity was greater for the synthesis of the insoluble proteins than for that of the soluble proteins of the mitochondria The chloramphenicol inhibition of mitochondrial protein synthesis which could be obtained in the isolated heart was approx. 70% which was twice as high as could be achieved when isolated mitochondria were incorporating amino acids.  相似文献   

4.
The physiological role of L-carnitine is to determine the transport of acyl-CoA through the mitochondrial membrane. However, some observations may also suggest a direct effect of the molecule per se on the physical properties of the membrane, most probably at the level of the binding site. This possibility has been investigated by studying the influence of adriamycin, a drug that binds to cardiolipin, on the effect of carnitine on isolated rat liver mitochondria. It has been found that adriamycin almost abolishes the activating effect of carnitine on state 2 respiration. The effect and its inhibition is seen by using either the L-form of carnitine or the D-form or both. Cardiolipin removes the effect of adriamycin and restores the activation by carnitine. It is proposed that some effects of carnitine on mitochondrial properties may be the result of interaction of carnitine with cardiolipin at the membrane level.  相似文献   

5.
Mitochondrial calcium overload has been implicated in the irreversible damage of reperfused heart. Accordingly, we studied the effect of an oxygen-bridged dinuclear ruthenium amine complex (Ru360), which is a selective and potent mitochondrial calcium uniporter blocker, on mitochondrial dysfunction and on the matrix free-calcium concentration in mitochondria isolated from reperfused rat hearts. The perfusion of Ru360 maintained oxidative phosphorylation and prevented opening of the mitochondrial permeability transition pore in mitochondria isolated from reperfused hearts. We found that Ru360 perfusion only partially inhibited the mitochondrial calcium uniporter, maintaining the mitochondrial matrix free-calcium concentration at basal levels, despite high concentrations of cytosolic calcium. Additionally, we observed that perfused Ru360 neither inhibited Ca2+ cycling in the sarcoplasmic reticulum nor blocked ryanodine receptors, implying that the inhibition of ryanodine receptors cannot explain the protective effect of Ru360 in isolated hearts. We conclude that the maintenance of postischemic myocardial function correlates with an incomplete inhibition of the mitochondrial calcium uniporter. Thus, the chemical inhibition by this molecule could be an approach used to prevent heart injury during reperfusion.  相似文献   

6.
Treatment of rat heart mitochondria with phosphate or mersalyl releases a number of proteins, including the mitochondrial creatine kinase (mt-CK). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the released proteins showed that phosphate is more selective than mersalyl in releasing mt-CK. The rebinding of mt-CK to mitochondria was selectively inhibited by adriamycin, which complexes membrane-bound cardiolipin. mt-CK activity and binding experiments have shown that intact mitochondria are able to bind approximately twice the amount of mt-CK they originally contain. Liver mitochondria bound heart mitochondria mt-CK to the same extent as creatine kinase-depleted heart mitochondria. mt-CK was bound by liposomes but only if they contained cardiolipin. The binding of mt-CK to cardiolipin-containing liposomes was inhibited by adriamycin. Phosphatidylcholine liposomes reconstituted with the purified ADP/ATP translocator failed to bind mt-CK.  相似文献   

7.
Mitochondrial function requires maintaining metabolite fluxes across the mitochondrial outer membrane, which is mediated primarily by the voltage dependent anion channel (VDAC). We applied fluorescence correlation spectroscopy (FCS) to study regulation of the VDAC functional state by monitoring distribution of fluorescently labeled ATP (BODIPY-FL-ATP) in isolated intact rat liver and heart mitochondria. Addition of mitochondria to BODIPY-FL-ATP solution resulted in accumulation of the fluorescent probe in these organelles. The addition of hexokinase II (HKII) isolated from rat heart led to a decrease in the BODIPY-FL-ATP accumulation, while a 15-residue peptide corresponding to the N-terminal domain of hexokinase did not produce this effect. Therefore, the hexokinase-induced inhibition of the ATP flow mediated by VDAC was revealed in isolated mitochondria.  相似文献   

8.
The binding of adriamycin and its two analogues 4'-epidoxorubicin and 4'-deoxydoxorubicin to synthetic and mitochondrial membranes was investigated by using resonance energy transfer between these drugs and two fluorescent probes, diphenylhexatriene (DPH) and tryptophan. The fluorescence of the lipid probe DPH in both types of membranes and tryptophan in mitochondria was quenched by the anthracyclines in a dose-dependent manner. In sonicated, fluid-phase dimyristoyl-L-alpha-phosphatidylcholine (DMPC) vesicles, the half-quenching concentration (K50) of adriamycin was 17 +/- 1 microM, whereas in bilayers containing a 1:1 molar ratio of DMPC to cardiolipin (CL), the value was 8 +/- 1 microM. In liver and heart mitochondria, the K50 values were 8 +/- 2 and 11 +/- 3 microM, respectively. Similar results were obtained for the other two drugs. Replacing a nonionic with an ionic medium or decreasing the pH from pH 7.7 to pH 6.9 increased the K50 value of adriamycin for DPH in DMPC/CL (1:1 molar) liposomes and in mitochondria. Higher concentrations of anthracycline were needed to quench the fluorescence of tryptophan. The results suggest that these drugs interact with both phospholipids and proteins and that the cardiotoxicity of adriamycin is unlikely to be related to the amount of drug bound to heart mitochondria.  相似文献   

9.
In perfused rat hearts alterations of aortic flow and mitochondrial membrane potential resulting from uncoupling of oxidative phosphorylation, hypoxia and treatment with a cardioprotective drug (2-mercaptopropionylglycine (MPG) have been studied. Mitochondrial membrane potential was followed by surface fluorimetry on DASPMI stained hearts. This fluorochrome specifically stains mitochondria in living cells; fluorescence intensity is related to the electrochemical gradient. Aortic flow turned out to be a much more sensitive indicator of heart function than ventricular pressure or mitochondrial membrane potential. No direct relationship exists between mitochondrial membrane potential and ATP production under the different metabolic conditions. Two phases of hypoxic mitochondrial damage have been deduced: the first results in derangement of ATP synthases while membrane potential is maintained, the second in irreversible damage of mitochondrial membranes with loss of membrane potential.  相似文献   

10.
Study of soluble lipoprotein in rat liver mitochondria   总被引:2,自引:1,他引:1  
1. A water-soluble lipoprotein was isolated and purified from osmotically shocked preparations of rat liver mitochondria by using a technique of Sephadex-sandwich disc electrophoresis. 2. The purified lipoprotein migrates as a distinct sharp zone in high-resolution electrophoretic systems, indicating high degree of purity. 3. The lipoprotein resembles mitochondrial membranes with respect to lipid composition and lipid/protein ratio. 4. The lipoprotein and its apoprotein fraction obtained by delipidization at -18 degrees C to -20 degrees C have common properties with respect to their fluorescence spectra, instability to storage and electrophoretic mobility. 5. The purified lipoprotein has an excitation maximum at 325nm and a fluorescence maximum at 418nm. 6. Storage at 4 degrees C for 4 days or repeated freezing and thawing results in 15-30% decrease in electrophoretic mobility. 7. The patterns of incorporation in vitro of [1-(14)C]leucine into proteins of the soluble lipoprotein and of mitochondrial membrane of isolated rat liver mitochondria suggest a probable precursor role for the apoprotein in the formation of mitochondrial membrane protein. 8. Lipoprotein preparations isolated from mitochondrial fractions of rat kidney, brain and heart and of chicken and mouse liver resemble closely that obtained from rat liver mitochondria, suggesting that the soluble lipoprotein could be a distinct entity of mitochondrial origin.  相似文献   

11.
P M Sokolove 《FEBS letters》1988,234(1):199-202
Induction of Ca2+ release from isolated, preloaded rat heart mitochondria by low concentrations (less than 5 micrM) of adriamycin aglycones, has recently been reported [(1988) Biochem. Pharmacol. 37, 803]. Ca2+ release occurs via a generalized, Ca2+-dependent increase in the permeability of the inner mitochondrial membrane to small molecules. The process is antagonized by dithiothreitol, suggesting thiol involvement. This communication demonstrates modification of mitochondrial sulfhydryl groups, detected as decreased 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) reactivity, by adriamycin aglycones. Ca2+ release and sulfhydryl modification are shown to depend similarly on aglycone concentration and on the C-7 substituent of the anthracycline ring. In addition, DTNB elicits Ca2+ release. It can therefore be proposed that adriamycin aglycones alter mitochondrial membrane permeability by altering mitochondrial thiol status.  相似文献   

12.
Sviriaeva IV  Ruuge EK  Shumaev KB 《Biofizika》2007,52(6):1054-1059
The effect of adriamycin (doxorubicin) on superoxide radical formation in isolated rat heart mitochondria was studied by the spin trapping technique. The samples were placed into the cavity of EPR spectrometer in thin - wall gas - permeable capillary tubes, which allowed keeping the mitochondria of suspension in aerobic conditions. TIRON was used as a spin trap. We demonstrated that the rate of superoxide generation by isolated mitochondria depended radically on the presence of 1-150 microM adriamycin in incubation medium and was considerably higher than in control. The effect of adriamycin could be observed in the presence of both complex I (succinate) or complex II (glutamate and malate) substrates. The results obtained let to conclude that isolated cardiac mitochondria modified by adriamycin have a higher rate of production of superoxide radicals, which can react with spin traps not penetrating through the internal membrane.  相似文献   

13.
The physiological role of mitochondrial uncoupling proteins (UCPs) in heart and skeletal muscle is unknown, as is whether mitochondrial uncoupling of oxidative phosphorylation by fatty acids occurs in vivo. In this study, we found that UCP2 and UCP3 protein content, determined using Western blotting, was increased by 32 and 48%, respectively, in hyperthyroid rat heart mitochondria. Oligomycin-insensitive respiration rate, a measure of mitochondrial uncoupling, was increased in all mitochondria in the presence of palmitate: 36% in controls and 71 and 100% with 0.8 and 0.9 mM palmitate, respectively, in hyperthyroid rat heart mitochondria. In the isolated working heart, 0.4 mM palmitate significantly lowered cardiac output by 36% and cardiac efficiency by 38% in the hyperthyroid rat heart. Thus increased mitochondrial UCPs in the hyperthyroid rat heart were associated with increased uncoupling and decreased myocardial efficiency in the presence of palmitate. In conclusion, a physiological effect of UCPs on fatty acid oxidation has been found in heart at the mitochondrial and whole organ level.  相似文献   

14.
It was found that salvianolic acid A (Sai A) has potent antioxidant activity. The effects of Sai A on adriamycin-induced heart mitochondrial toxicity of rats in vitro and on adriamycin antitumor activity are investigated in this article. Malondialdehyde (MDA) formation and membrane rigidification of rat heart mitochondria intoxicated with adriamycin were significantly reduced by Sai A. In the electron spin resonance (ESR) studies, Sai A has no significant effect on the formation of adriamycin semiquinone radicals (AQ.), while hydroxyl radicals generated by electron transfer from AQ. to H2O2 were scavenged by Sai A dose-dependently. On the other hand, Sai A was shown to have no effects on the antitumor activity of adriamycin in cultured L1210 ascitic tumor cells and in mice with P388 ascite tumor. These results indicate that Sai A protects against adriamycin induced heart mitochondrial toxicity of rats, while Sai A has no antagonizing effect on the antitumor activity of adriamycin.  相似文献   

15.
The interaction of adriamycin with cardiolipin in model membranes and in various membrane preparations derived from rat liver mitochondria was studied and the results are analyzed in the light of a possible specific interaction between adriamycin and cardiolipin. It was found that adriamycin binds to cardiolipin-containing model membranes with a fixed stoichiometry of two drug molecules per cardiolipin. Furthermore, the extent of drug complexation by mitochondria and mitoplasts (inner membrane plus matrix) is in reasonable agreement with their cardiolipin content. In contrast, adriamycin-binding curves of inner membrane ghosts and submitochondrial particles reveal considerable association to an additional site, presumably RNA. The evidence for the potential importance of RNA as a target comes from experiments on outer membranes and microsomes which both appear to bind substantial amounts of adriamycin. Removal of the major part of the RNA associated with these fractions by EDTA treatment is accompanied by a dramatic reduction of binding capacity. We propose that endogenous RNA present in mitochondria and mitoplasts is not accessible for adriamycin at low concentrations of the drug due to the presence of an intact lipid barrier. This potential site comes to expression in ghosts and submitochondrial particles, due to the absence of an intact lipid bilayer and due to the inside-out orientation of the limiting membrane, respectively. Electron microscopical studies show that adriamycin induces dramatic changes in mitochondrial morphology, similar to the uncoupler-induced effects described by Knoll and Brdiczka (Biochim. Biophys. Acta 733, 102-110 (1983). Adriamycin has an uncoupling effect on mitochondrial respiration and oxidative phosphorylation. The concentration dependence of this effect correlates with the adriamycin-binding curve for mitochondria which implies that only bound adriamycin actively inhibits respiration.  相似文献   

16.
The inhibition of succinate oxidation in both heart and liver mitochondria by the cardiotoxic anticancer antibiotic adriamycin in vitro was reversed to a large extent by exogenous ubiquinone-45. Inhibition of the oxidation of NAD+-linked substrates in heart and liver mitochondria responded differently to ubiquinone, the inhibition being reversed only in liver organelles. Administration of adriamycin inhibited oxidative phosphorylation in rat heart, kidney and liver mitochondria, the inhibition being highest in the heart organelles (about 50% for both NAD+-linked substrates and succinate). Exogenous addition of ubiquinone to mitochondria isolated from drug-treated animals did not reverse the inhibition. Administration of ubiquinone along with adriamycin did not change effectively the pattern of drug-mediated decrease in oxidative activity of the organelles, particularly in the heart.  相似文献   

17.
Acidic phospholipids such as cardiolipin partially unfold an artificial precursor protein which consists of a mitochondrial presequence fused to mouse dihydrofolate reductase (Endo, T., and Schatz, G. (1988) EMBO J. 7, 1153-1158). We now show that import of this precursor protein into isolated yeast mitochondria is blocked by adriamycin, a drug binding to cardiolipin and other acidic phospholipids. This inhibition is lessened if the precursor's dihydrofolate reductase moiety is labilized by point mutations; inhibition is abolished altogether if the "wild-type" precursor is presented to mitochondria in a urea-denatured state. These and other observations suggest that adriamycin interferes with the generation of a translocation-competent, loose structure of the precursor protein. They imply that acidic phospholipids such as cardiolipin participate, directly or indirectly, in the translocation of this fusion protein into isolated mitochondria.  相似文献   

18.
Summary Mitochondria isolated from heart tissue after a 1-min perfusion with Hanks medium were found to have significantly lower rates of State-3 respiration and respiratory control ratios compared to mitochondria isolated from non-perfused hearts. Examination of the mitochondrial preparations by electron microscopy revealed that a large proportion of the mitochondria isolated from perfused heart tissue were swollen and broken compared to mitochondria from non-perfused hearts.  相似文献   

19.
The effect of methylglyoxal on the oxygen consumption of mitochondria of heart and of several other organs of normal animals of different species has been tested. The results indicate that methylglyoxal (3.5 mM) strongly inhibits ADP-stimulated -oxoglutarate and malate plus pyruvate-dependent respiration of exclusively heart mitochondria of normal animals of different species. Whereas, with the same substrates, but at a higher concentration of methylglyoxal (7.5 mM), the respiration of mitochondria of other organs of normal animals is not inhibited. Methylglyoxal also inhibits the respiration of slices of rat and toad hearts. But this inhibition is less pronounced. However, methylglyoxal (15 mM) fails to have any effect on perfused toad heart. Using rat heart mitochondria as a model, the effect of methylglyoxal on the oxygen consumption was also tested with different respiratory substrates, electron donors at different segments of the mitochondrial respiratory chain and site-spe inhibitors to identify the specific respiratory complex which might be involved in the inhibitory effect of methylglyoxal. The results strongly suggest that methylglyoxal inhibits the electron flow through complex I of rat heart mitochondrial respiratory chain. Moreover, lactaldehyde (0.6 mM), a catabolite of methylglyoxal, can exert a protective effect on the inhibition of rat heart mitochondrial respiration by methylglyoxal (2.5 mM). The effect of methylglyoxal on heart mitochondria as described in the present paper is strikingly similar to the results of our previous work with mitochondria of Ehrlich ascites carcinoma cells and leukemic leukocytes. We have recently proposed a new hypothesis on cancer which suggests that excessive ATP formation in cells may lead to malignancy. The above mentioned similarity apparently provides a solid experimental foundation for the proposed hypothesis which has been discussed.  相似文献   

20.
The distribution of glutamate and aspartate and the mitochondrial membrane potential (Δψ) were studied in isolated rat heart mitochondria and in the intact perfused rat heart. The diffusion potential imposed by the glutamate-aspartate exchange through mediation of the electrogenic glutamate-aspartate translocator attained a value close to the mitochondrial Δψ measured from the distribution of triphenylmethylphosphonium ion (TPMP+) both in isolated mitochondria and in intact myocardium. Distributions of the Δψ probe and metabolites were determined by subcellular fractionation of the heart muscle in a non-aqueous medium. The results indicate that the glutamate-aspartate translocator is in near equilibrium in the myocardium. The diffusion potential of the glutamate-aspartate exchange, and the mitochondrial/cytosolic difference in the redox potentials of the free NAD+/NADH pools are equal allowing for experimental error. These data obtained from intact tissue can therefore be interpreted as supporting the notion of the transmembrane uphill transport of reducing equivalent from the cytosolic free NAD+/NADH pool being driven by the malate-aspartate cycle energized by the mitochondrial Δψ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号