首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to estimate the effects of cholecystokinin (CCK), somatostatin (SS) pancreatic polypeptide (PP) and their interaction with each other, given them in single doses, on pancreatic secretion and pancreatic growth after long-term treatment in rats. The acute secretory effects of the above mentioned peptides were studied on conscious rats supplied with pancreatic, gastric and jugular vein cannulae. The pancreatic growth was characterized by measurements of pancreatic weight, desoxyribonucleic acid (DNA), protein, trypsin and amylase content after 5 days treatment. Amylase output was increased by caerulein alone, and given it in combination with somatostatin (SS), while its value decreased by SS alone. After 5 days treatment, the pancreatic weight, trypsin and amylase activity (hypertrophy) was increased by caerulein, and these values were not altered by S alone. In combinative administration of caerulein with somatostatin, the stimulatory effect by caerulein was decreased. PP given alone or in combination with caerulein decreased both the basal and stimulated amylase output. PP given for 5 days decreased pancreatic trypsin and amylase contents and counteracted the stimulatory effect by caerulein to these enzymes' contents. It has been concluded that: 1. caerulein stimulates both pancreatic enzyme secretion and pancreatic growth; 2. somatostatin inhibits the pancreatic secretion and caerulein induced pancreatic growth, but it does not affect the spontaneous growth of pancreas; 3. pancreatic polypeptide inhibits the pancreatic secretion and decreases pancreatic trypsin and amylase contents.  相似文献   

2.
《Regulatory peptides》1987,17(5):269-276
The 27-amino acid peptide gastrin releasing peptide (GRP-(1–27)) was infused at 4 dose levels (0.01, 0.1, 1.0, and 10 nM) into the arterial line of the isolated perfused porcine pancreas. Infusions were performed at 3 different perfusate glucose levels (3.5, 5.0, and 8.0 mM) and at two levels of amino acids (5 and 15 mM). GRP-(1–27) stimulated insulin and pancreatic polypeptide secretion and inhibited somatostatin secretion in a dose-dependent manner. Glucagon secretion was unaffected by infusion of GRP under all circumstances. The effect of GRP-(1–27) on insulin secretion was enhanced with increasing perfusate glucose levels, whereas the effects upon somatostatin and pancreatic polypeptide secretion were independent of perfusate glucose levels. The responses to GRP were unaffected by elevation of the concentration of amino acids in the perfusate. The effects of GRP were unaffected by atropine at 10−6 M. The localization of GRP within the porcine pancreas, its release during electrical stimulation of the vagus nerve, and its potent effects upon pancreatic endocrine secretion make it conceiveable that the peptide participates in parasympathetic regulation of pancreatic endocrine secretion.  相似文献   

3.
Summary We have investigated the short-term effects of hydrocortisone (60 mg/kg per day) and placebo on basal and stimulated pancreatic secretion in the conscious rat. Volume and enzyme secretion were determined; fine structural changes were examined simultaneously.The pancreatic and bile ducts were cannulated separately; pancreatic juice was drained via an isolated fistula, and bile was recirculated into the duodenum. The application of hydrocortisone led to an almost complete inhibition of the secretory response of the exocrine pancreas when stimulated with 0.25 U secretin in combination with 5 × 10-8 g caerulein per h. It strongly affected the secretion rates of volume, protein, lipase, chymotrypsin, trypsin and carboxypeptidase, whereas the secretion rate of alpha-amylase continued to show a slight increase after stimulation.After stimulation with secretin and caerulein, the hydrocortisone-treated animals showed a higher density of zymogen granules in the acinar cell and an increase in the number of autophagic vacuoles in comparison to the equally stimulated placebo-treated rats.It is concluded that the short-term inhibition of pancreatic secretion by hydrocortisone occurs largely as a result of an inhibition of cellular enzyme discharge.Supported by the Deutsche Forschungsgemeinschaft, Ga 279  相似文献   

4.
Since nonparallel secretion of enzymes by the exocrine pancreas has been demonstrated with several experimental models, we were interested in verifying a recent claim that enzyme secretion remained strictly proportional (parallel) upon stimulation of the in vivo rabbit pancreas. Pancreatic juice was collected by extraduodenal cannulation of the pancreatic duct, in two different protocols. In the first protocol the administration of pentobarbital induces a mild anesthesia. Under this condition, amylase and chymotrypsin secretion remained parallel after cholecystokinin stimulation. In a second protocol, a deeper and constant anesthesia was attained with Fluothane resulting in a lower basal protein output than in the first protocol. Pancreatic secretion was collected under intravenous secretin perfusion (4.5 clinical units X kg-1 X h-1). After stabilization and basal collection periods, pancreatic secretion was stimulated with an i.v. bolus injection of either cholecystokinin (2 Ivy dog units/kg), caerulein (0.1 micrograms/kg), or carbachol (6 micrograms/kg). Upon stimulation of the pancreas, protein output increased an average of 30-fold and there was a concomitant 20-25% decrease in the ratio of the specific activities of amylase to chymotrypsin which resulted from a greater increase in the specific activity of chymotrypsin in pancreatic juice after stimulation of secretion. Thus, under appropriate conditions, nonparallel secretion of enzymes by the exocrine pancreas can be demonstrated in yet another experimental model. Furthermore, the proportion of amylase and chymotrypsin activities in pancreatic juice are once more shown to be dependent, up to a threshold, upon the rate of protein output by this exocrine gland.  相似文献   

5.
A rat islet amyloid polypeptide (amylin), 37-residue peptide amide was synthesized by the Fmoc-based solid phase method and the biological activity of synthetic rat amylin on exocrine pancreas was evaluated for the first time in conscious rat. Amylin (1, 10 nmol/kg/h) stimulated pancreatic exocrine secretion and plasma gastrin concentration. CR-1409, a CCK receptor antagonist, did not change amylin-stimulated pancreatic secretion. However, omeprazole (proton pump inhibitor) and atropine inhibited amylin-stimulated pancreatic secretion. This study suggests that amylin may play a role in biological action in the exocrine pancreas possibly mediated by gastric acid hypersecretion.  相似文献   

6.
Role of leptin in the control of postprandial pancreatic enzyme secretion.   总被引:3,自引:0,他引:3  
Leptin released by adipocytes has been implicated in the control of food intake but recent detection of specific leptin receptors in the pancreas suggests that this peptide may also play some role in the modulation of pancreatic function. This study was undertaken to examine the effect of exogenous leptin on pancreatic enzyme secretion in vitro using isolated pancreatic acini, or in vivo in conscious rats with chronic pancreatic fistulae. Leptin plasma level was measured by radioimmunoassay following leptin administration to the animals. Intraperitoneal (i.p.) administration of leptin (0.1, 1, 5, 10, 20 or 50 microg/kg), failed to affect significantly basal secretion of pancreatic protein, but markedly reduced that stimulated by feeding. The strongest inhibition has been observed at dose of 10 microg/kg of leptin. Under basal conditions plasma leptin level averaged about 0.15 +/- 0.04 ng/ml and was increased by feeding up to 1.8 +/- 0.4 ng/ml. Administration of leptin dose-dependently augmented this plasma leptin level, reaching about 0.65 +/- 0.04 ng/ml at dose of 10 microg/kg of leptin. This dose of leptin completely abolished increase of pancreatic protein output produced by ordinary feeding, sham feeding or by diversion of pancreatic juice to the exterior. Leptin (10(-10)-10(-7) M) also dose-dependently attenuated caerulein-induced amylase release from isolated pancreatic acini, whereas basal enzyme secretion was unaffected. We conclude that leptin could take a part in the inhibition of postprandial pancreatic secretion and this effect could be related, at least in part, to the direct action of this peptide on pancreatic acini.  相似文献   

7.
FMRF-NH2-like immunoreactivity was localized in the pancreatic polypeptide containing cells of the rat islet. FMRF-NH2 was investigated with regard to its effect on insulin, somatostatin and glucagon secretion from the isolated perfused rat pancreas. FMRF-NH2 (1 microM) significantly inhibited glucose stimulated (300 mg/dl) insulin release (p less than 0.005) and somatostatin release (p less than 0.01) from the isolated perfused pancreas. FMRF-NH2 (1 and 10 microM) was without effect on glucagon secretion, either in low glucose (50 mg/dl), high glucose (300 mg/dl), or during arginine stimulation (5 mM). These findings indicate that these FMRF-NH2 antisera recognize a substance in the pancreatic polypeptide cells of the islet which may be capable of modulating islet beta and D cell activity.  相似文献   

8.
Glucagon secretion from the endocrine pancreas is known to be enhanced by cholinergic stimulation. It has previously been described that vasoactive intestinal polypeptide (VIP) is a potent potentiator of this cholinergically induced glucagon secretion. In the present study, the effects of several gastro-entero-pancreatic polypeptides and glucose on glucagon secretion induced by the cholinergic agonist carbachol were investigated in vivo in the mouse. Carbachol was injected i.v. and it stimulated glucagon secretion. The polypeptides neurotensin and gastric inhibitory polypeptide (GIP) were both found to potentiate the carbachol-induced glucagon secretion, whereas substance P, pancreatic polypeptide, and two different molecular variants of cholecystokinin, CCK-8 and CCK-39, were without effect on cholinergically induced glucagon secretion. Neither of these polypeptides had any influence on basal glucagon secretion when tested over a wide dose range. Somatostatin and glucose both markedly inhibited carbachol-induced glucagon secretion. In conclusion: carbachol is a potent stimulator of glucagon secretion. This cholinergically induced glucagon secretion can be modified by several gastro-entero-pancreatic hormones influencing the release process both in potentiating and inhibiting direction. The physiological relevance of these interactions remains to be further investigated.  相似文献   

9.
We had demonstrated that a peptic hydrolysate of guanidinated casein that is made from casein by the conversion of lysine to homoarginine stimulated pancreatic exocrine secretion in rats with chronic bile-pancreatic juice (BPJ) diversion from the proximal small intestine. This modified protein also stimulated cholecystokinin (CCK) release from dispersed rat intestinal cells. In this study, we found that guanidinated casein hydrolysate stimulates CCK release in chronic BPJ-diverted rats with cholinergic control blocked by atropine. Intraduodenal guanidinated casein hydrolysate increased portal plasma CCK concentration and pancreatic secretion in atropine-treated BPJ-diverted rats. In contrast, the portal plasma CCK concentration was not increased by intact casein hydrolysate. We conclude that guanidinated casein hydrolysate directly stimulates CCK release from the intestine via some cholinergic-independent mechanism, and an increase of the pancreatic exocrine secretion is regulated by CCK released by guanidinated casein hydrolysate. A guanidyl residue is likely to be involved in this control.  相似文献   

10.
Enkephalins have been detected in vagal nerves and myenteric plexus neurons but no study has been performed to determine their action on vagally stimulated gastric and pancreatic secretion. In this study we infused IV methionine-enkephalin (Met-enk) alone, naloxone (a pure opiate antagonist) alone, or their combination before, during and after vagal stimulation in 4 dogs with esophageal, gastric and pancreatic fistulas. For the comparison, atropine was given before, during and after vagal stimulation in the same animals. Vagal stimulation was obtained by 15 min sham-feeding, which produced an increase in gastric H+ output to a peak of about 75% of the maximal response to pentagastrin and pancreatic protein secretion amounting to about 71% of the maximal response to caerulein. It was accompanied by a significant rise in serum gastrin and pancreatic polypeptide (PP) levels. Met-enk inhibited significantly both gastric H+ and pancreatic protein secretion and reduced plasma PP but not gastrin levels. Similar effects were obtained after the administration of atropine. The effects of Met-enk were partly reversed by the addition of naloxone. We conclude that (1) enkephalin suppresses vagally stimulated gastric and pancreatic secretion and plasma PP release; (2) these secretory effects of enkephalin seem to be mediated by opiate receptors and could be explained by its inhibitory action on acetylcholine release (“anticholinergic” action) in the stomach and the pancreas.  相似文献   

11.
Earlier studies indicate that binding sites of type II angiotensin (AT2) receptors are detected all over the pancreas, as well as in the pancreatic exocrine cell line AR4-2J. However, lack of corresponding functional AT2 receptor responses can be detected in the exocrine pancreas. The aim of present study is to determine the protein expression of AT2 receptors in the pancreas by probing with an AT2 receptor-specific antibody, and to examine the role of AT2 receptors in the regulation of pancreatic endocrine hormone release. In Western protein analysis of adult rat tissues, expression of AT2 receptor-immunoreactive bands of 56, 68, and 78 kDa was detected in the adrenal, kidney, liver, salivary glands, and pancreas. In adult rat pancreas, strong immunoreactivity was detected on cells that were located at the outer region of Langerhans islets. Immunohistochemical studies indicated that AT2 receptors colocalized with somatostatin-producing cells in the endocrine pancreas. Consistent with the findings in adult pancreas, abundant expression of AT2 receptors was also detected in immortalized rat pancreatic endocrinal cells lines RIN-m and RIN-14B. To examine the role of AT2 receptors on somatostatin secretion in the pancreas, angiotensin-stimulated somatostatin release from pancreatic RIN-14B cells was studied by an enzyme immunoassay in the absence or presence of various subtype-selective angiotensin analogues. There was a basal release of somatostatin from RIN-14B cells at a rate of 8.72 +/- 4.21 ng/10(6) cells (n = 7). Angiotensin II (1 nM-10 microM) stimulated a biphasic somatostatin release in a dose-dependent manner with an apparent EC50 value of 49.3 +/- 25.9 nM (n = 5), and reached maximal release at 1 microM angiotensin II (982 +/- 147.34% over basal secretion; n = 5). Moreover, the AT2 receptor-selective angiotensin analogue, CGP42112, was 1000 times more potent than the AT1 receptor-selective angiotensin analogue, losartan, in inhibiting angiotensin II-stimulated somatostatin release. These results suggest that angiotensin may modulate pancreatic hormone release via regulation of somatostatin secretion.  相似文献   

12.
The potent inhibitory effect of galanin on basal and pentagastrin-stimulated gastric acid secretion in vivo, and the presence of galanin-containing nerves in gastrointestinal tract and pancreas, suggested that this peptide may regulate the exocrine secretion of the GI system. Male rats were anesthetized with pentobarbital and the dose-dependent inhibitory effects of galanin on basal and stimulated pancreatic protein and amylase secretions were investigated in separate experiments. Galanin was administered intravenously in the following doses: 3, 6, 10, 15 and 20 micrograms/kg/h (0.93, 1.86, 3.1, 4.65 and 6.2 nmol/kg/h), and pancreatic secretions measured. The maximal effective dose of galanin (3.1 nmol/kg/h) on basal pancreatic secretions was found, and was used for evaluating the inhibitory effect of galanin on pancreatic protein and amylase secretions stimulated by bombesin, secretin and cholecystokinin. Galanin potently inhibited basal, bombesin-, secretin- and cholecystokinin-stimulated pancreatic protein and amylase secretion. Inhibitory effect of galanin was dose-dependent and biphasic.  相似文献   

13.
The role of prostaglandins in exocrine pancreatic enzyme secretion was studied. The effects of three inhibitors of prostaglandin and thromboxane syntheses, were evaluated on release of amylase from dispersed rat pancreatic acinar cells. Mepacrine inhibited, while indomethacin and imidazole had no effect on basal or carbachol or cholecystokinin stimulated enzyme release. Exogenous arachidonic acid or various prostaglandins (E1, E2, F, I2), also did not affect the secretory process. Acinar cells actively incorporated radioactive arachidonic acid, principally into phospholipids (especially phosphatidylcholine), however release of the free fatty acid and subsequent synthesis of radioactive endogenous prostaglandins was not stimulated by the presence of different pancreatic stimulants. Pancreatic microsomes were found to be lacking in cyclo-oxygenase, an enzyme involved in endegenous synthesis of prostaglandins. The data suggest that prostaglandins are not involved directly in excitation-secretion coupling in the exocrine pancreas.  相似文献   

14.
The effect of human pancreatic polypeptide (HPP) on rat pancreatic acini has been studied. It was found that HPP stimulated amylase and lipase release from the acini. The secretory response of acini to HPP was dose-dependent in a sigmoidal fashion. Between 10(-9) M and 10(-8) M concentration of HPP there was a slow increase of enzyme release to about 40-60% over basal release. At concentrations of HPP above 10(-8) M there was a rapid increase of enzyme release, amounting to 4-6 times over basal release at 10(-6) M concentration of HPP. The potency of HPP compared to other secretagogues at 10(-7) M concentration was 45% of CCK, 60% of carbachol and 75% of secretin. HPP did not inhibit the effect of CCK, secretin and carbachol on amylase release. The amylase release stimulated by HPP was accompanied by an increase in 45Ca2+ efflux. Atropine or dibutyryl cyclic GMP did not influence the effect of HPP. It is concluded that HPP stimulates the release of enzymes from rat pancreatic acini and that Ca2+ may be a mediator for this secretion.  相似文献   

15.
Porcine pancreastatin (1.19 nmol) was administered into the peripheral vein (i.v.) or the third cerebral ventricle (i.t.v.) of dogs and its effect on the secretion of insulin and pancreatic polypeptide (PP) studied. Neither means of administration had any effect on basal and glucose-induced insulin or PP secretion. However, i.v. pancreastatin did inhibit the i.v. CCK-8-induced insulin but not PP release. Pancreastatin may thus play a role in the regulation of insulin secretion in the canine pancreas.  相似文献   

16.
Since the gastrointestinal peptide neurotensin has a stimulatory effect on the secretion of the exocrine pancreas and an inhibitory effect on secretion and motility of the stomach, we investigated whether chronic parenteral administration of neurotensin would affect pancreatic and gastric growth. We therefore infused synthetic neurotensin subcutaneously (dose, 43 and 282 pmol X kg-1 X min-1) in 20 Wistar rats for 2 weeks using Alzet osmotic minipumps and compared pancreatic weight, DNA, RNA, protein, lipase, amylase, pancreatic polypeptide and insulin with these parameters in 10 control rats from the same litter with subcutaneously implanted plastic cylinders approximately the size of the minipumps. In another experiment, synthetic neurotensin (836 pmol X kg-1) was injected intraperitoneally three times a day for 3 days in 12 rats. Thereafter, we measured pancreatic DNA and in vitro incorporation of [3H]thymidine into pancreatic DNA. These effects were compared with the actions of caerulein and normal saline. Long term infusion of the high neurotensin dose induced an increase of pancreatic weight (control: 0.87 g, neurotensin: 1.02 g) and of DNA (control: 2.5 micrograms; neurotensin: 3.5 micrograms) and pancreatic polypeptide (control: 2.4 ng; neurotensin: 7.4 ng) contents, whereas pancreatic protein, RNA, amylase and lipase contents were not stimulated. In relation to DNA, these parameters even were significantly depressed. Insulin remained unchanged. Intraperitoneal injection of neurotensin induced an increase of pancreatic DNA content and stimulated [3H]thymidine incorporation into DNA (control: 11 000 dpm/g; neurotensin: 15 800 dpm/g pancreas). Moreover, long-term neurotensin infusion with the high dose led to a rise in protein concentration and an increase in the thickness of the gastric antrum; antral DNA concentration was insignificantly stimulated. Parenteral neurotensin in the doses and at the times administered, led therefore, to hyperplasia of the pancreas and induced growth of the gastric antrum. It is concluded that neurotensin can act as a trophic factor on pancreas and gastric antrum of the rat. It remains to be determined whether this represents a physiological effect of neurotensin.  相似文献   

17.
Ghrelin, a 28 amino acids polypeptide was recognized as an endogenous ligand for the growth hormone secretagogue receptor. It turned out that the entire sequence of ghrelin is not necessary for performing the above-mentioned functions. It was suggested that 5 residues (Gly-Ser-Ser(n-octanoyl)-Phe, pentaghrelin) constituted functionally active part of the full-length polypeptide. Ghrelin-28 was found to inhibit pancreatic enzyme output in rats, though the effect of pentaghrelin was not studied so far. The study aimed to determine the involvement of pentaghrelin in pancreatic juice secretion in anaesthetized rats. Male Wistar rats (220 +/- 20 g body weight, b. wt.) were anesthetized, the external jugular vein and common biliary-pancreatic duct were cannulated. Pentaghrelin boluses (i.v., 1.2, 12, and 50 nmol kg(-1) b. wt.) were injected every 30 min with or without CCK-8 infusion, duodenal mucosal CCK(1) receptor blockade with tarazepide, vagotomy and capsaicin pretreatment. Pentaghrelin boluses reduced the volume of pancreatic-biliary juice, protein and trypsin outputs both under basal and CCK-8-stimulated conditions in a dose-dependent manner. However, exogenous pentaghrelin failed to affect the pancreatic secretion in rats subjected to vagotomy, capsaicin deactivation of afferents or pretreatment with Tarazepide. In conclusion, pentaghrelin may control exocrine pancreas secretion by affecting duodenal neurohormonal mechanism(s) involving CCK and vagal nerves in rats.  相似文献   

18.
Pancreatic exocrine secretion in the conscious rat is regulated by proteases secreted by the pancreas, and cholecystokinin (CCK) is known to be involved in its mechanism. It has also been reported that the absence of either pancreatic juice or bile in the duodenum could stimulate pancreatic secretion. Therefore, differences in CCK release responding to the exclusion of bile, pancreatic juice (PJ), or both bile and pancreatic juice (BPJ) from the intestine were examined by using a bioassay for cholecystokinin. Plasma CCK levels were increased by all three treatments compared with the basal value, the order of their effects being BPJ greater than PJ greater than bile diversion, and CCK concentrations produced by BPJ diversion were much greater than can be explained as simply summed effect of exclusions of bile and PJ. Pancreatic exocrine secretions were significantly increased by PJ and BPJ diversions, but the effect of bile diversion on the pancreas was not statistically significant. An additional infusion of CR-1409 (0.1 mg/rat), one of CCK receptor antagonists, inhibited exocrine function stimulated by BPJ diversion. We conclude (i) BPJ diversion is the strongest endogenous stimulant on CCK release; (ii) the potentiation between bile and PJ diversions is induced on CCK release; (iii) pancreatic protein secretion during BPJ diversion is mainly modulated by CCK.  相似文献   

19.
The effects of ammonia on pancreatic enzyme secretion in vivo and in vitro.   总被引:2,自引:0,他引:2  
BACKGROUND: Recent studies clearly demonstrate that Helicobacter pylori (H. pylori) infection of the stomach causes persistent elevation of ammonia (NH3) in gastric juice leading to hypergastrinemia and enhanced pancreatic enzyme secretion. METHODS: The aim of this study is to evaluate the influence of NH4OH on plasma gastrin level and exocrine pancreatic secretion in vivo in conscious dogs equipped with chronic pancreatic fistulas and on secretory activity of in vitro isolated acini obtained from the rat pancreas by collagenase digestion. The effects of NH4OH on amylase release from pancreatic acini were compared with those produced by simple alkalization of these acini with NaOH. RESULTS: NH4OH given intraduodenally (i.d.) in increasing concentrations (0.5, 1.0, 2.0, 4.0, or 8.0 mM/L) resulted in an increase of pancreatic protein output, reaching respectively 9%, 10%, 19%, 16% and 17% of caerulein maximum in these animals and in a marked increase in plasma gastrin level. NH4OH (8 x 0 mM/L, i.d.) given during intravenous (i.v.) infusion of secretin (50 pmol/kg-h) and cholecystokinin (50 pmol/kg-h) reduced the HCO3 and protein outputs by 35% and 37% respectively, as compared to control obtained with infusion of secretin plus cholecystokinin alone. When pancreatic secretion was stimulated by ordinary feeding the same amount of NH4OH administered i.d. decreased the HCO3- and protein responses by 78% and 47% respectively, and had no significant effect on postprandial plasma gastrin. In isolated pancreatic acini, increasing concentrations of NH4OH (10(-7)-10(-4) M) produced a concentration-dependent stimulation of amylase release, reaching about 43% of caerulein-induced maximum. When various concentrations of NH4OH were added to submaximal concentration of caerulein (10(-12) M) or urecholine (10(-5) M), the enzyme secretion was reduced at a dose 10(-5) M of NH4OH by 38% or 40%, respectively. Simple alkalization with NaOH of the incubation medium up to pH 8.5 markedly stimulated basal amylase secretion from isolated pancreatic acini, whereas the secretory response of these acini to pancreatic secretagogues was significantly diminished by about 30%. LDH release into the incubation medium was not significantly changed in all tests indicating that NH4OH did not produce any apparent damage of pancreatic acini and this was confirmed by histological examination of these acini. CONCLUSIONS: 1. NH4OH affects basal and stimulated pancreatic secretion. 2. The excessive release of gastrin may be responsible for the stimulation of basal pancreatic enzyme secretion in conscious animals, and 3. The inhibitory effects of NH4OH on stimulated secretion might be mediated, at least in part, by its direct action on the isolated pancreatic acini possibly due to the alkalization of these acini.  相似文献   

20.
Peptide YY. Structure of the precursor and expression in exocrine pancreas   总被引:4,自引:0,他引:4  
Peptide YY is a 36-residue gastrointestinal hormone which inhibits both pancreatic and gastric secretion. We have isolated a cDNA encoding the peptide YY precursor by screening a rat intestinal lambda gt11 cDNA library with an antiserum directed against the porcine hormone. The nucleotide sequence of the cDNA encodes a 98-residue protein (molecular weight, 11, 121) which has an amino acid sequence identical to that of porcine peptide YY. Rat peptide YY is preceded immediately by a signal sequence and followed by a cleavage-amidation sequence Gly-Lys-Arg plus 31 additional amino acids. Thus the peptide YY precursor is similar in structure to that of two related peptides, pancreatic polypeptide and neuropeptide Y. RNA blot hybridizations reveal that the peptide YY gene is much more actively expressed in pancreas than previously realized. In situ hybridizations localized peptide YY cells exclusively to the exocrine pancreas. The abundance of peptide YY in one of its target organs, the pancreas, suggests a paracrine mechanism for peptide YY in regulating pancreatic enzyme secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号