首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stem cell regulation by lysophospholipids   总被引:1,自引:0,他引:1  
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) regulate a diverse range of mammalian cell processes, largely through engaging multiple G protein-coupled receptors specific for these lysophospholipids. LPA and S1P have been clearly identified to have widespread physiological and pathophysiological actions, controlling events within the reproductive, gastrointestinal, vascular, nervous and immune systems, and also having a prominent role in cancer. Here we review the recent literature showing the additional emerging role for LPA and S1P in the regulation of stem cells and their progenitors. We discuss the role of these lysophospholipids in regulating the proliferation, survival, differentiation and migration of a range of adult and embryonic stem cells and progenitors, and thus are likely to play a substantial role in the maintenance, generation, mobilisation and homing of stem cell and progenitor populations in the body.  相似文献   

2.
3.
4.
Genome regulation by polycomb and trithorax proteins   总被引:21,自引:0,他引:21  
Polycomb group (PcG) and trithorax group (trxG) proteins are critical regulators of numerous developmental genes. To silence or activate gene expression, respectively, PcG and trxG proteins bind to specific regions of DNA and direct the posttranslational modification of histones. Recent work suggests that PcG proteins regulate the nuclear organization of their target genes and that PcG-mediated gene silencing involves noncoding RNAs and the RNAi machinery.  相似文献   

5.
A key event in the initiation of the dimethyl sulfoxide (DMSO)-induced program of murine erythroleukemia (MEL) cell differentiation is a rise in the level of cytoplasmic calcium ions. Our interest in the present study is whether other inducers of the terminal erythroid differentiation program also act via a calcium-dependent pathway. Inhibition of calcium transport has been found to prevent the induction of MEL cell commitment by DMSO, butyric acid (BA), or hypoxanthine (HX). Enhancement of the calcium flux rate with A23187 or elevation of cytoplasmic calcium levels with FCCP stimulates the kinetics of commitment in response to all three inducers. These results suggest that of the inducers we have tested (DMSO, BA, and HX), all three act to initiate commitment via a common mechanism which involves modulation of cytoplasmic calcium levels.  相似文献   

6.
7.
8.
9.
10.
Stem cells have become one of the "buzz" topics in the last decade or so. One of the best systems to study adult stem cells in vivo is in the model organism, Drosophila melanogaster. One hundred years of genetic analysis, a sequenced and highly annotated genome and genomics makes this a difficult organism to avoid. The JAK/STAT pathway has been shown to regulate stem cells during haematopoiesis and gametogenesis in Drosophila. In this review we cover the current literature and contrast each group of stem cells with respect to JAK/STAT signaling.  相似文献   

11.
12.
13.
Stem cells and cancer; the polycomb connection   总被引:38,自引:0,他引:38  
Proteins from the Polycomb group (PcG) are epigenetic chromatin modifiers involved in cancer development and also in the maintenance of embryonic and adult stem cells. The therapeutic potential of stem cells and the growing conviction that tumors contain stem cells highlights the importance of understanding the extrinsic and intrinsic circuitry controlling stem cell fate and their connections to cancer.  相似文献   

14.
Density-arrested human fibroblasts were stimulated to traverse G0/G1 and initiate DNA synthesis by the addition of medium containing either serum or a combination of platelet-derived growth factor and platelet-poor plasma. Medium containing a combination of epidermal growth factor and high concentrations of insulin also stimulated DNA synthesis in platelet factor-treated quiescent cells. Platelet factor was required only to initiate proliferation. Epidermal growth factor and insulin then allowed G1 traverse and commitment to DNA synthesis. Cells could complete S, G2, and M in unsupplemented medium lacking peptide growth factors.  相似文献   

15.
16.
Stem cell-based cardiac regeneration requires a detailed understanding of the factors that induce cardiac lineage commitment. In this issue of Cell Stem Cell, Lindsley et al. (2008) and Bondue et al. (2008) use embryonic stem cells to identify a key role for Mesp1 in this process.  相似文献   

17.
18.
19.
Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) were originally discovered as growth factors for hematopoietic stem cells (HSCs). It has been well defined that SCF and G-CSF contribute to regulation of lineage commitment for HSCs. However, little is known about whether SCF and G-CSF play roles in the determination and differentiation of neural stem cells (NSCs). Here we demonstrate the novel function of SCF and G-CSF in controlling cell cycle and cell fate determination of NSCs. We also observe that SCF and G-CSF promote neuronal differentiation and inhibit astroglial differentiation at the early stage of differentiation. In addition, our research data reveal that SCF in combination with G-CSF has a dual function in promoting cell cycle exit and directing neuronal fate commitment at the stage of NSC dividing. This coordination effect of SCF+G-CSF on cell cycle arrest and neuronal differentiation is through enhancing neurogenin 1 (Ngn1) activity. These findings extend current knowledge regarding the role of SCF and G-CSF in the regulation of neurogenesis and provide insights into the contribution of hematopoietic growth factors to brain development and remodeling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号