首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations were performed on the effects of acetylcholine (ACh), norepinephrine (NE), 5-hydroxytryptamine (5-HT), and -aminobutyric acid (GABA) on the background firing of the three following groups of field CA3 neurons in guinea pig hippocampal slices: nonpyramidal neurons of the stratum radiatum moleculare (NSR), stratum pyramidale cells with single spike discharges (SD units), and those with complex discharge patterns (CD units) within the same layer. The action of ACh and NE on presumed interneurons of the pyramidal layer (IPL) was also investigated; CD units were found to differ from the remaining groups, which reacted similarly to the transmitters tested. It was shown that NE, 5-HT, and GABA inhibited the activity of CD cells, while ACh produced inhibitory-activating response in 50% of these units. Both NE and ACh exerted a monophasic activating effect on NSR, ISP, and SD, however, while 5-HT and GABA induced activation in a proportion of NSR and SD cells, as well as inhibitory response. The excitatory effects produced by ACh, NE, and 5-HT on NSR persisted during blockade of synaptic transmission, indicating that associated afferent fibers may be acting directly on these cells.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 64–74, January–February, 1988.  相似文献   

2.
3.
4.
Sodium channels in the somata and dendrites of hippocampal CA1 pyramidal neurons undergo a form of long-lasting, cumulative inactivation that is involved in regulating back-propagating action potential amplitude and can influence dendritic excitation. Using cell-attached patch-pipette recordings in the somata and apical dendrites of CA1 pyramidal neurons, we determined the properties of slow inactivation on response to trains of brief depolarizations. We find that the amount of slow inactivation gradually increases as a function of distance from the soma. Slow inactivation is also frequency and voltage dependent. Higher frequency depolarizations increase both the amount of slow inactivation and its rate of recovery. Hyperpolarized resting potentials and larger command potentials accelerate recovery from slow inactivation. We compare this form of slow inactivation to that reported in other cell types, using longer depolarizations, and construct a simplified biophysical model to examine the possible gating mechanisms underlying slow inactivation. Our results suggest that sodium channels can enter slow inactivation rapidly from the open state during brief depolarizations or slowly from a fast inactivation state during longer depolarizations. Because of these properties of slow inactivation, sodium channels will modulate neuronal excitability in a way that depends in a complicated manner on the resting potential and previous history of action potential firing.  相似文献   

5.
Zhang J  Chen ZH  Chen PX 《生理学报》1998,50(5):581-586
用膜片箝技术的细胞贴附式和内面向外式,研究17β-雌二醇(E2)对大鼠海马神经元延迟整流型K 通道的影响。结果表明,1.0和10.0nmol/LE2可分别使42pSK 通道开放概率由(67.4t18.2)%下降到(41.22±12.5)%和由(56.3±15.8)%下降到(13,2±12.6)%,通道开放频率由(43.40±6.7)Hz下降到(27.68±9.1)Hz和由(38.19±10.1)Hz下降到(15.79±3.5)Hz,通道平均开放时间缩短,平均关闭时间延长,但通道电流幅度无显著改变,提示E2对海马神经元42pSK 通道的活动具有抑制作用,这种作用可能是激素直接作用于细胞膜的结果。  相似文献   

6.
Zhou H  Zheng Y  Tang YH 《生理学报》2004,56(3):341-346
本研究采用离体海马脑片电生理研究技术,细胞外记录海马锥体细胞群体锋电位(population spike,PS),观察羟基马桑毒素(tutin)对大鼠海马脑片CA1区锥体细胞电活动的影响,探讨tutin是否具有致痛作用及其致痫机制。结果如下:(1)用40、30和20μg/ml浓度的tutin灌流海马脑片,可显著增高由顺向刺激Schaffer侧支所诱发的PS的幅度,灌流tutin 30min时,PS第一个波的幅度分别为对照的(388.7±20.1)%、(317.2±19.1)%和(180.9±11.6)%(各组n=5,P<0.05)。(2)伴随PS波幅的增高,可出现成串痫样放电波,波数4~11个不等。(3)灌流tutin后的部分脑片(n=9/34),在未刺激Schaffer侧支时也出现自发的成串、高幅痫样放电。(4)灌流CNQX阻断非NMDA受体后,再灌流tutin,PS幅度和放电波数均无显著性变化,即CNQX可完全抑制tutin所致的痫样放电;灌流AP-5阻断NMDA受体后,tutin仍可使PS幅度增高但放电波数无显著性增加,即AP-5可部分抑制tutin所致的痫样放电。上述结果表明,tutin可使海马脑片锥体细胞兴奋活动增强,具有致痫作用;兴奋性谷氨酸受体尤其是非NMDA受体可能介导tutin的致痫作用。  相似文献   

7.
Several studies have indicated that weak, extremely-low-frequency (ELF; 1–100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7–15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 μT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 μT, with an angle of -66° from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 μT, but not at 5.6 μT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space, was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. © 1996 Wiley-Liss, Inc.  相似文献   

8.
We have combined electrophysiology and immunohistochemistry to study the somatostatin (SS) innervation of neurons in the rat hippocampal slice. After recording the intracellular response of a pyramidal CA1 neuron in vitro to SS, Lucifer Yellow was injected into the cell and the slice fixed and processed for immunohistochemical localization of SS in the vicinity of the recorded neuron. Most pyramidal neurons (70%) responded to SS with a hyperpolarization associated with marked slowing of spontaneous discharge and reduced input resistance. SS-containing elements either crossed, ran parallel or seemingly terminated on the Lucifer Yellow-filled SS-responsive cell. These occurrences of close proximity of apparent pre- and postsynaptic elements were observed in all layers of the CA1 region and may represent synaptic terminations of SS elements on a pyramidal neuron that are likely to elicit membrane hyperpolarizations.  相似文献   

9.
Li S  Sun CK  Ji XC  Zhang J 《中国应用生理学杂志》2007,23(3):305-308,I0003
目的:观察不同制型的银杏叶提取物(GBE)对N-甲基-D-天门冬氨酸(NMDA)受体激活电流的影响,并比较其作用。方法:应用全细胞膜片钳记录技术记录急性分离大鼠海马神经NMDA激活电流,比较加药前后电流幅度的变化。结果:大部分受检细胞(81.8%,90/110)对外加NMDA敏感,引起一去敏感的内向电流(INMDA)。此电流可被NMDA受体特异阻断剂(MK-801)所阻断。预加不同制型的GBE均能明显抑制NMDA激活电流(P<0.01),但制型不同抑制效应不一,GBE纳米制剂(nGBE)对INMDA的抑制作用明显优于微米型(mGBE组),抑制率分别为64%±15%,40%±17%(n=8),两组比较差异具有统计学意义(P<0.05)。结论:预加GBE能抑制NM-DA-激活电流,从而对抗海马神经元兴奋毒性脑损伤,起神经保护作用。nGBE对NMDA受体的调控作用优于mGBE制剂。  相似文献   

10.
In research on -aminobutyric acid (GABA) used at different concentrations on the amplitude of EPSP within populations (PEPSP), as recorded from dentrites in isolated hippocampal slices, GABA induced a dose-dependent reversible reduction in PEPSP amplitude with no noticeable signs of desensitization. Highest sensitivity to GABA was shown by PEPSP in hippocampal zone CA1 (threshold concentration: 3×10–5–2×10–4 M; (concentration at which the effect equal to 1/2 of maximum occurs) IC50: 5×10–4–1×10–3 M). The effects of GABA on PEPSP were not blocked by bicuculline, picrotoxin, or penicillin. Action of GABA on dendritic antidromic population spike (DAPS — postynaptic effects) were slightly diminished by these blockers. Baclofen inhibited PEPSP more powerfully than GABA (threshold concentration: 1×10–6 M: IC50: 3×10–6 M), although it only produced a minor reduction in DAPS amplitude even at high concentrations. It is concluded that the inhibitory effect of GABA on PEPSP in hippocampal zone CA1 may be put down mainly to its presynaptic action mediated by GABAB receptors on axonal terminals of Schaffer collaterals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 627–633, September–October, 1990.  相似文献   

11.
The responses of freshly isolated hippocampal pyramidal neurons to rapid, elevations of the external potassium concentration ([K+] out ) were investigated using the whole-cell variation of a patch-clamp technique. An elevation of [K+] out induced a two-phase inward current at the membrane potentials more negative than the reversal potential for K ions. This current consisted of a leakage, current and a time-dependent current (τ=40–50 msec at 21°C), the latter designated below asI ΔK. It displayed first-order activation kinetics that showed neither voltage, nor concentration dependence. The amplitude of this current was determined by the external K+ concentration and increased with hyperpolarization. Voltage dependence ofI ΔK measured within the range from −20 to −120 mV was similar to that for inward rectifier. Activation ofI ΔK was utterly dependent on Na+; substitution of extracellular Na+ with choline chloride almost completely depressedI ΔK.I ΔK was absent in the cells freshly dissociated from the nodosal and dorsal root ganglia. This suggests that this earlier unrecognized current is instrumental in preserving densely packed hippocampal pyramidal neurons from sudden increases in [K+] out and following spontaneous over-excitation. It prevents the neurons from responding to K+-induced depolarizations by slowing down potassium influx.  相似文献   

12.
Summary Rat cortical and hippocampal pyramidal cells were immunocytochemically investigated using the TU-01 monoclonal antibody recognizing α-tubulin. The isotypic specificity of this antibody is distinct from that of other available α-tubulin antibodies; therefore, an intracellular heterogeneity among neuronal microtubules could be revealed by observing intensely immunostained apical dendritic microtubules in the complete absence of staining of the microtubules in the basal dendrites and perikarya of the same pyramidal cells.  相似文献   

13.
Dexamethasone (DEX) at physiologically elevated (stress) concentration (1 µM) decreased K+-evoked glutamate release from rat hippocampal slices under superfusion in the presence of Ca2+. On the contrary 10 µM DEX increased this K+-evoked glutamate release while 0.1 µM DEX had no effect. The glucocorticoid antagonist for the classic receptor, RU 486, completely reversed the effect of 1 µM DEX. Actinomycin D had no effect. Dexamethasone at 1 µM had no effect on the Ca2+-independent (10 µM Mg2+ replacing 1 mM Ca2+) K+-evoked glutamate release. Dexamethasone at 1 µM or 10 µM had no effect on the phosphate-activated glutaminase—the key enzyme for the biosynthesis of neurotransmitter glutamate. These results suggest that the effect of DEX on K+-evoked glutamate release: (i) depends on its concentration; (ii) is exerted on the Ca2+-dependent (neurotransmitter release), at least at physiological stress concentrations; and (iii) is exerted via the classical receptor but is nongenomic.  相似文献   

14.
焦亚硫酸钠对大鼠海马CA1区神经元钾电流的影响   总被引:2,自引:0,他引:2  
目的:探讨焦亚硫酸钠(SMB)、二氧化硫(SO2)及其体内衍生物(亚硫酸盐和亚硫酸氢盐)对中枢神经元钾通道的影响及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)及谷胱甘肽过氧化物酶(GPx)相应的保护作用.方法:采用全细胞膜片钳技术研究了SMB对大鼠海马CA1区神经元瞬间外向钾电流(IA)和延迟整流钾电流(IK)的影响.结果:①焦亚硫酸钠可增大全细胞IA和IK,且具剂量依赖性和电压依赖性,使IA和IK增大50%的剂量分别为15.8 μmol/L和11.5μmol/L;②10 μmol/L的SMB均可显著影响IA和IK的激活过程,给药前后IA的半数激活电压分别为(-12.6±1.6)mV和(-7.0±1.3)mV(n=8,P<0.01),IK的半数激活电压分别为(10.8±0.9)mV和(21.6±0.7)mV(n=8,P<0.01),但不改变其斜率因子;③10μmol/L的SMB还非常显著地影响IA的失活过程,给药前后其半数失活电压分别为(-97.0±1.1)mV和(-84.4±3.3)mV(n=8,P<0.01),但也不改变其斜率因子;④抗氧化酶SOD(1×106U/L)、CAT(2×106U/L)及GPx(105U/L)均可使SMB(10μmol/L)增大的IA和IK部分恢复.结论:SMB可显著增大IA和IK,抑制IA和IK的激活过程及IA的失活过程,从而导致胞内K 的外流增加,使胞内K 浓度降低,从而对中枢神经元功能产生不利影响.  相似文献   

15.
Using whole cell patch-clamp recordings from pyramidal cells acutely dissociated from rat hippocampal slices, Ro-15 1788 (flumazenil, FLU) was shown to enhance the GABAA-receptor mediated currents evoked by application of -aminobutyric acid (GABA) and to antagonize the enhancing effect of the benzodiazepine agonist flurazepam (FZP) on the GABAA response. Both FLU and FZP increased the peak and the steady-state components of the responses and accelerated the current decay. This suggests that both agents act via a common mechanism on GABA transmission. It is concluded that FLU possesses high affinity for the binding site, but low efficacy on the GABAA-benzodiazepine receptor. This suggests that FLU acts as a partial agonist on GABAA receptors.  相似文献   

16.
To determine the alterations in cellular function which may contribute to the chronic predisposition of neuronal tissue to epileptiform activity, the membrane properties and inhibitory processes of hippocampal CA1 pyramidal cells were investigated using in vitro slices prepared from commissural-kindled rats. No changes were observed in resting membrane potential, input resistance, spike amplitude, and membrane time constant of kindled CA1 pyramidal neurons when compared with controls. There were also no differences between control and kindled preparations in the amplitude of recurrent inhibitory postsynaptic potentials (IPSP) and in the duration of inhibition produced by either alvear (Alv) or stratum radiatum (SR) stimulation. Irrespective of group, repetitive stimulation of the Alv reduced the amplitude of the recurrent IPSP but failed to induce seizurelike activity. On the other hand, repetitive stimulation of SR frequently produced a neuronal burst discharge even though the duration and to some extent the amplitude of orthodromic inhibition was increased. On the basis of these data, it may be suggested that chronic changes in CA1 pyramidal cell membrane properties and transient reductions of inhibitory processes do not underlie the enhanced sensitivity of these neurons to seizure activity associated with kindling.  相似文献   

17.
During experiments on isolated slices slices of rat hippocampus the inhibitory action of -aminobutyric acid (GABA) was investigated on the excitation of field CA, pyramidal neurons, together with the effects of bicuculline, penicillin and thiopentone on this process. It was found that GABA effectively and reversibly reduced the amplitude of the antrodomic population spike in the area of both the somata and the dendrites of these cells. The sensitivity of apical dendrites to GABA exceeded that of the somata by one order, increasing in a proximal-distal direction. The somata of pyramidal neurons were marked by pronounced desensitization to GABA. Bicuculline and penicillin acted as GABA antagonists at all the levels of CA, pyramidal cells investigated. Bicuculline blocked the effects of GABA on somata and dendrites in almost equal measure. The antagonistic effects of penicillin were 10 times greater in the pyramidal layer than in the dendritic region. Thiopentone reinforced the inhibitory effects of GABA. The potentiating effects of thiopentone were exerted most strongly on the dendrites. It is postulated that the membrane of field CA, neurons contain two types of bicuculline-sensitive GABA receptors, differing in their location (mainly on the cell body or dendrite), their pharmacology, and degree of desensitization to GABA.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 737–746, November–December, 1985.  相似文献   

18.
19.
目的:观察缺糖缺氧诱导的培养海马神经元损伤。方法:取培养12d的海马神经元,在缺糖缺氧条件下分别培养0.5~4h后取出,换原神经元培养液在常氧条件下继续培养24h。用0.4%台盼蓝染色,检测神经元坏死,并用TUNEL法检测神经元凋亡,计算存活、坏死和凋亡神经元所占百分率。同时用图像分析仪测定存活、坏死和凋亡神经元的胞体面积、周长和等园直径。结果:培养的海马神经元急性缺糖缺氧后0.5~4h,随缺糖缺氧时间的延长,坏死神经元逐渐增多,缺糖缺氧后0.5~2h再恢复糖和氧供应后24h,凋亡神经元明显增多。图像分析的结果表明,坏死神经元的胞体面积、周长和等园直径均明显大于凋亡神经元。结论:缺糖缺氧可引起海马神经元严重损伤,在急性缺糖缺氧后0.5~4h引起的神经元死亡以坏死为多见,但在缺糖缺氧后0.5~2h再恢复糖和氧供应后24,神经元死亡则以凋亡为多见。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号