首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
About 1800 sequences of gene promoters, enhancers and other types of regulatory elements (REG) have been statistically analysed for investigation of a role for enzymatic DNA methylation in prokaryotes, yeasts, plants, invertebrates, animal viruses, vertebrates and human. The frequencies and localizations of CG and CNG methylated sites and also the number of CG-->TG+CA transitions in different series of REGs have been studied. It was showed that the pro- and eukaryotic REGs with the exception of yeast and drosophila ones have higher CpG-suppression values than the main genome in the same species. About 40% of all the point substitutions in pro- and eukaryotic REGs were found in the CG and CNG methylated sites, that are "hot spots" for C-->T transitions. More than 30% of all analysed REGs have neither sites CG nor CNG and so they are not capable of methylation in vivo. The methylated sites have not been localized in any specific regions of promoters and other types of REGs nor in the flanking sequences of the same genes. Only part of the homological REG's sequences have CG and CNG methylated sites. Therefore the methylation of cytosine residues in any REGs may be not an obligatory condition for normal regulation of the REG activity in cells. Two main REG's families of different length were unexpectedly found in the study. The length of the first one is 9-12 n. and the second is 17-20 n. The families are about 60-80% of other REGs. The essential deficiency of cytosine residues and also triplets of CGG, CCG, CTG and CAG has been showed in the "sense" chain of the REGs. The chain has some abundance of TTG, CCA and CAA triplets. The REG's chains have a strong asymmetry in purine and pyrimidine contents and also in duplets TG and CA frequencies. It may be the result of different reparation effectivity of G-T pairs produced by 5-meC residues deamination in DNA complementary chains. Therefore cytosine methylation in REGs may strongly destabilize the structure, accelerate its divergence in evolution, and disturb the REGs binding with protein factors regulating activity of the genes. The results showed that a function of DNA enzymatic methylation may be hardly realized through the modification of gene regulatory elements.  相似文献   

2.
T F Kagawa  D Stoddard  G W Zhou  P S Ho 《Biochemistry》1989,28(16):6642-6651
Solvent structure and its interactions have been suggested to play a critical role in defining the conformation of polynucleotides and other macromolecules. In this work, we attempt to quantitate solvent effects on the well-studied conformational transition between right-handed B- and left-handed Z-DNA. The solvent-accessible surfaces of the hexamer sequences d(m5CG)3, d(CG)3, d(CA)3, and d(TA)3 were calculated in their B- and Z-DNA conformations. The difference in hydration free energies between the Z and the B conformations (delta delta GH(Z-B] was determined from these surfaces to be -0.494 kcal/mol for C-5 methylated d(CG), 0.228 kcal/mol for unmethylated d(CG), 0.756 kcal/mol for d(CA)-d(TG), and 0.896 kcal/mol for d(TA) dinucleotides. These delta delta GH(Z-B) values were compared to the experimental B- to Z-DNA transition energies of -0.56 kcal/mol that we measured for C-5 methylated d(CG), 0.69-1.30 kcal/mol reported for unmethylated d(CG), 1.32-1.48 kcal/mol reported for d(CA)-d(TG), and 2.3-2.4 kcal/mol for d(TA) dinucleotides. From this comparison, we found that the calculated delta delta GH(Z-B) of these dinucleotides could account for the previous observation that the dinucleotides were ordered as d(m5CG) greater than d(CG) greater than d(CA)-d(TG) greater than d(TA) in stability as Z-DNA. Furthermore, we predicted that one of the primary reasons for the inability of d(TA) sequences to form Z-DNA results from a decrease in exposed hydrophilic surfaces of adjacent base pairs due to the C-5 methyl group of thymine; thus, d(UA) dinucleotides should be more stable as Z-DNA than the analogous d(TA) dinucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Persistence length and torsional rigidity for different B-DNA sequences have been calculated by analysing crystal structure database. The values of these parameters for mixed sequence DNA are in good agreement with those estimated by others. Persistence lengths for the homopolymeric sequences, namely poly(dA).poly(dT) and poly(dG).poly(dC), are significantly large compared to those of others as expected from the inability of these sequences to form nucleosome under normal conditions. The heteropolymeric sequences poly(dA-dC).poly(dG-dT) and poly(dG-dC).poly(dG-dC), on the other hand, have smaller persistence lengths. This implies larger flexibility of the d(AC).d(GT), d(CA).d(TG), d(GC).d(GC) and d(CG).d(CG) doublets, some of which constitute the genetic disease forming triplet repeats d(CTG).d(CAG) and d(CGG).d(CCG). Thus it is expected that these triplet repeat sequences are also flexible and wrap around the histone octamer efficiently. Persistence length calculations also indicate larger flexibility for these triplet repeat sequences. Furthermore, our computations reveal that the rigidity of a given DNA sequence is controlled by its ability to form cross-strand bifurcated hydrogen bonds between the successive base pairs. Molecular orbital calculations suggest that these hydrogen bonds are generally extended with bond lengths around 3A.  相似文献   

4.
Palindromes in DNA consist of nucleotides sequences that read the same from the 5'-end to the 3'-end, and its double helix is related by twofold axis. They occur in genomes of all organisms and have various functions. For example, restriction enzymes often recognize palindromic sequences of DNA. Palindromes in telomeres are crucial for initiation of replication. One can ask the questions, Do palindromes occur in protein, and if so, what function they play? We have searched the protein SWISSPROT database for palindromic sequences. A great number (26%) of different protein palindromes were found. One example of such protein is systemin, an 18-amino-acid-long peptide. It contains palindrome in its beta-sheet domain that interacts with palindromic fragment of DNA. The other palindrome containing protein is cellular human tumor suppressor p53. Oligonucleotide LTI-ITL has been observed in the crystal structure and is located close to a DNA recognizing domain. As the number of possible palindromic sequences of a given length is far much greater for proteins (20N) than for nucleic acids (4N), the study on their role seems to be an exciting challenge. Our results have clearly showed that palindromes are frequently occurring motives in proteins. Moreover, even very few examples that we have examined so far indicate the importance of further studies on protein palindromes.  相似文献   

5.
Palindromes in DNA consist of nucleotides sequences that read the same from the 5′-end to the 3′-end, and its double helix is related by twofold axis. They occur in genomes of all organisms and have various functions. For example, restriction enzymes often recognize palindromic sequences of DNA. Palindromes in telomeres are crucial for initiation of replication. One can ask the questions, Do palindromes occur in protein, and if so, what function they play? We have searched the protein SWISSPROT database for palindromic sequences. A great number (26%) of different protein palindromes were found. One example of such protein is systemin, an 18-amino-acid-long peptide. It contains palindrome in its β-sheet domain that interacts with palindromic fragment of DNA. The other palindrome containing protein is cellular human tumor suppressor p53. Oligonucleotide LTIITL has been observed in the crystal structure and is located close to a DNA recognizing domain. As the number of possible palindromic sequences of a given length is far much greater for proteins (20N) than for nucleic acids (4N), the study on their role seems to be an exciting challenge. Our results have clearly showed that palindromes are frequently occurring motives in proteins. Moreover, even very few examples that we have examined so far indicate the importance of further studies on protein palindromes.  相似文献   

6.
We studied DNA dodecamers (CAG)4, (CCG)4, (CGG)4 and (CTG)4by CD spectroscopy and polyacrylamide gel electrophoresis. Each dodecamer adopted several ordered conformers which denatured in a cooperative way. Stability of the conformers depended on the dodecamer concentration, ionic strength, temperature and pH. The dodecamers, having a pyrimidine base in the triplet center, generated foldbacks at low ionic strength whose stem conformations were governed by the GC pairs. At high salt, (CCG)4 isomerized into a peculiar association of two strands. The association was also promoted by high oligonucleotide concentrations. No similar behavior was exhibited by (CTG)4. At low salt, (CGG)4 coexisted in two bimolecular conformers whose populations were strongly dependent on the ionic strength. In addition, (CGG)4 associated into a tetraplex at acidic pH. A tetraplex was even observed at neutral pH if the (CGG)4 concentration was sufficiently high. (CAG)4 was very stable in a monomolecular conformer similar to the known extremely stable foldback of the (GCGAAGC) heptamer. Nevertheless, even this very stable conformer disappeared if (CTG)4 was added to the solution of (CAG)4. Association of the complementary strands was also strongly preferred to the particular strand conformations by the other couple, (CCG)4 and (CGG)4.  相似文献   

7.
Figueroa AA  Cattie D  Delaney S 《Biochemistry》2011,50(21):4441-4450
Expansion of trinucleotide repeats (TNR) has been implicated in the emergence of neurodegenerative diseases. Formation of non-B conformations such as hairpins by these repeat sequences during DNA replication and/or repair has been proposed as a contributing factor to expansion. In this work we employed a combination of fluorescence, chemical probing, optical melting, and gel shift assays to characterize the structure of a series of (CTG)(n) sequences and the kinetic parameters describing their interaction with a complementary sequence. Our structure-based experiments using chemical probing reveal that sequences containing an even or odd number of CTG repeats adopt stem-loop hairpins that differ from one another by the absence or presence of a stem overhang. Furthermore, we find that this structural difference dictates the rate at which the TNR hairpins convert to duplex with a complementary CAG sequence. Indeed, the rate constant describing conversion to (CAG)(10)/(CTG)(n) duplex is slower for sequences containing an even number of CTG repeats than for sequences containing an odd number of repeats. Thus, when both the CAG and CTG hairpins have an even number of the repeats, they display a longer lifetime relative to when the CTG hairpin has an odd number of repeats. The difference in lifetimes observed for these TNR hairpins has implications toward their persistence during DNA replication or repair events and could influence their predisposition toward expansion. Taken together, these results contribute to our understanding of trinucleotide repeats and the factors that regulate persistence of hairpins in these repetitive sequences and conversion to canonical duplex.  相似文献   

8.
The disease-associated expansion of (CTG)·(CAG) repeats is likely to involve slipped-strand DNAs. There are two types of slipped DNAs (S-DNAs): slipped homoduplex S-DNAs are formed between two strands having the same number of repeats; and heteroduplex slipped intermediates (SI-DNAs) are formed between two strands having different numbers of repeats. We present the first characterization of S-DNAs formed by disease-relevant lengths of (CTG)·(CAG) repeats which contained all predicted components including slipped-out repeats and slip-out junctions, where two arms of the three-way junction were composed of complementary paired repeats. In S-DNAs multiple short slip-outs of CTG or CAG repeats occurred throughout the repeat tract. Strikingly, in SI-DNAs most of the excess repeats slipped-out at preferred locations along the fully base-paired Watson–Crick duplex, forming defined three-way slip-out junctions. Unexpectedly, slipped-out CAG and slipped-out CTG repeats were predominantly in the random-coil and hairpin conformations, respectively. Both the junctions and the slip-outs could be recognized by DNA metabolizing proteins: only the strand with the excess repeats was hypersensitive to cleavage by the junction-specific T7 endonuclease I, while slipped-out CAG was preferentially bound by single-strand binding protein. An excellent correlation was observed for the size of the slip-outs in S-DNAs and SI-DNAs with the size of the tract length changes observed in quiescent and proliferating tissues of affected patients—suggesting that S-DNAs and SI-DNAs are mutagenic intermediates in those tissues, occurring during error-prone DNA metabolism and replication fork errors.  相似文献   

9.
Pure autosomal dominant spastic paraplegia (SPG) is a genetically heterogeneous neurodegenerative disorder of the central nervous system clinically characterized by progressive spasticity mainly affecting the lower limbs. Three distinct loci have been mapped to chromosomes 14q (SPG3), 2p (SPG4) and 15q (SPG6). In particular, SPG4 families show striking intrafamilial variability suggestive of anticipation and evidence has been provided that CAG/CTG repeat expansions may be involved. To isolate CAG/CTG repeat containing sequences from within the SPG4 candidate region, a novel approach was developed. Fragmentation vectors were assembled allowing direct fragmentation of yeast artificial chromosomes (YACs) with a short (> or = 21 bp) CAG/CTG sequence as the target site for homologous recombination. We used the CAG/CTG YAC fragmentation vectors to isolate CAG/CTG containing sequences from four YACs spanning the SPG4 candidate region between D2S400 and D2S367. A total of four CAG/CTG containing sequences were isolated of which three were novel. However, none of the four CAG/CTG repeats showed expanded alleles in two Belgian SPG4 families. In addition, we showed that the CAG/CTG alleles detected by the repeat expansion detection (RED) method could be fully explained by two polymorphic nonpathogenic CAG/CTG repeats on chromosomes 17 and 18, respectively. Also, the RED expansions in six SPG families could not be explained by amplification of the CAG/CTG repeats at the SPG4 locus. Together, our data do not support the hypothesis of a CAG/CTG repeat expansion as the molecular mechanism underlying SPG4 pathology.  相似文献   

10.
Previous studies have shown that homologous recombination is a powerful mechanism for generation of massive instabilities of the myotonic dystrophy CTG.CAG sequences. However, the frequency of recombination between the CTG.CAG tracts has not been studied. Here we performed a systematic study on the frequency of recombination between these sequences using a genetic assay based on an intramolecular plasmid system in Escherichia coli. The rate of intramolecular recombination between long CTG.CAG tracts oriented as direct repeats was extraordinarily high; recombinants were found with a frequency exceeding 12%. Recombination occurred in both RecA(+) and RecA(-) cells but was approximately 2-11 times higher in the recombination proficient strain. Long CTG.CAG tracts recombined approximately 10 times more efficiently than non-repeating control sequences of similar length. The recombination frequency was 60-fold higher for a pair of (CTG.CAG)(165) tracts compared with a pair of (CTG.CAG)(17) sequences. The CTG.CAG sequences in orientation II (CTG repeats present on a lagging strand template) recombine approximately 2-4 times more efficiently than tracts of identical length in the opposite orientation relative to the origin of replication. This orientation effect implies the involvement of DNA replication in the intramolecular recombination between CTG.CAG sequences. Thus, long CTG.CAG tracts are hot spots for genetic recombination.  相似文献   

11.
The effect of DNA replication mutations on CAG tract stability in yeast.   总被引:3,自引:0,他引:3  
CAG repeat tracts are unstable in yeast, leading to frequent contractions and infrequent expansions in repeat tract length. To compare CAG repeats to other simple repeats and palindromic sequences, we examined the effect of DNA replication mutations, including alleles of pol alpha, pol delta, pol epsilon, and PCNA (proliferating cell nuclear antigen), on tract stability. Among the polymerase mutations, the pol delta mutation (pol3-14) destabilizes tracts with either CAG or CTG as the lagging strand template. One pol alpha mutation, pol1-1, destabilizes the orientation with CAG as the lagging strand template, but it has little effect on the CTG orientation. In contrast, the pol1-17 mutation has no effect on either orientation. Similarly, mutations in the proofreading functions of pol delta and pol epsilon, as well as a temperature-sensitive pol epsilon mutation, pol2-18, have no effect on tract stability. Three PCNA mutations, pol30-52, pol30-79, and pol30-90, all have drastic effects on tract stability. Of the three, pol30-52 is unique in yielding small tract changes that are indicative of an impairment in mismatch repair. These results show that while CAG repeats are destabilized by many of the same mutations that destabilize other simple repeats, they also have some behaviors that are suggestive of their potential to form hairpin structures.  相似文献   

12.
F Sor  H Fukuhara 《Cell》1983,32(2):391-396
In the rho- mutants of yeast, the mitochondrial genome is made up of a small segment excised from the wild-type mitochondrial DNA. The segment is repeated either in tandem or in palindrome to form a series of multimeric DNAs. We have asked how the palindromic organization arises. From several palindromic rho- mitochondrial DNAs, we have isolated the restriction fragments that contained the head-to-head or tail-to-tail junction of the repeating units, and have determined their nucleotide sequences. We found that the palindromes were not symmetrical right up to the junction points: at the junction, there was always an asymmetrical sequence of variable length. At both ends of this junction sequence, we found inverted oligonucleotide sequences that were variable in each mutant and that were present in the wild-type DNA. At the moment of excision, a single-strand cut seems to occur at each of these short inverted repeats, in such a way that the two complementary strands of the genome are cut unequally and the single-stranded overhangs become the junction sequences between the palindromic repeating units. This scheme may account for the complex structures of many rho- mitochondrial DNAs.  相似文献   

13.
Repetitions of CAG or CTG triplets in DNA can form intrastrand hairpin loops with combinations of normal and mismatched base pairs that easily rearrange. Such loops may promote primer-template slippage in DNA replication or repair to give triplet-repeat expansions like those associated with neurodegenerative diseases. Using self-priming sequences (e.g. (CAG)(16)(CTG)(4)), we resolve all hairpin loops formed and measure their slippage and expansion rates with DNA polymerase at 37 degrees C. Comparing CAG/CTG loop structures with GAC/GTC structures, having similar hydrogen bonding but different base stacking, we find that CAG, CTG, and GTC triplets predominantly form even-membered loops that slip in steps of two triplets, whereas GAC triplets favor odd-numbered loops. Slippage rates decline as hairpin stability increases, supporting the idea that slippage initiates more easily in less stable regions. Loop stabilities (in low salt) increase in the order GTC < CAG < GAC < CTG, while slippage rates decrease in the order GTC > CAG approximately GAC > CTG. Loops of GTC compared with CTG melt 9 degrees C lower and slip 6-fold faster. We interpret results in terms of base stacking, by relating melting temperature to standard enthalpy changes for doublets of base pairs and mispairs, considering enthalpy-entropy compensation.  相似文献   

14.
Streptomyces sp. linear plasmids and linear chromosomes usually contain conserved terminal palindromic sequences bound by the conserved telomeric proteins Tap and Tp, encoded by the tap and tpg genes, respectively, as well as plasmid loci required for DNA replication in circular mode when the telomeres are deleted. These consist of iterons and an adjacent rep gene. By using PCR, we found that 8 of 17 newly detected linear plasmids in Streptomyces strains lack typical telomeric tap and tpg sequences. Instead, two novel telomeres in plasmids pRL1 and pRL2 from the eight strains and one conserved telomere in pFRL1 from the other strains were identified, while multiple short palindromes were also found in the plasmids. The complete nucleotide sequence of pRL2 revealed a gene encoding a protein containing two domains, resembling Tap of Streptomyces and a helicase of Thiobacillus, and an adjacent gene encoding a protein similar to Tpg of Streptomyces and a portion of the telomere terminal protein pTP of adenoviruses. No typical iterons-rep loci were found in the three plasmids. These results indicate an unexpected diversity of telomere palindromic sequences and replication genes among Streptomyces linear plasmids.  相似文献   

15.
Homologous recombination was shown to enable the expansion of CTG.CAG repeat sequences. Other prior investigations revealed the involvement of replication and DNA repair in these genetic instabilities. Here we used a genetic assay to measure the frequency of homologous intermolecular recombination between two CTG.CAG tracts. When compared with non-repeating sequences of similar lengths, long (CTG.CAG)(n) repeats apparently recombine with an approximately 60-fold higher frequency. Sequence polymorphisms that interrupt the homogeneity of the CTG.CAG repeat tracts reduce the apparent recombination frequency as compared with the pure uninterrupted repeats. The orientation of the repeats relative to the origin of replication strongly influenced the apparent frequency of recombination. This suggests the involvement of DNA replication in the recombination process of triplet repeats. We propose that DNA polymerases stall within the CTG.CAG repeat tracts causing nicks or double-strand breaks that stimulate homologous recombination. The recombination process is RecA-dependent.  相似文献   

16.
G K Smith  J Jie  G E Fox    X Gao 《Nucleic acids research》1995,23(21):4303-4311
DNA triplet repeats, 5'-d(CTG)n and 5'-d(CAG)n, are present in genes which have been implicated in several neurodegenerative disorders. To investigate possible stable structures formed by these repeating sequences, we have examined d(CTG)n, d(CAG)n and d(CTG).d(CAG)n (n = 2 and 3) using NMR and UV optical spectroscopy. These studies reveal that single stranded (CTG)n (n > 2) forms stable, antiparallel helical duplexes, while the single stranded (CAG)n requires at least three repeating units to form a duplex. NMR and UV melting experiments show that the Tm increases in the order of [(CAG)3]2 < [(CTG)3]2 << (CAG)3.(CTG)3. The (CTG)3 duplex is stable and exhibits similar NMR spectra in solutions containing 0.1-4 M NaCl and at a pH range from 4.6 to 8.8. The (CTG)3 duplex, which contains multiple-T.T mismatches, displays many NMR spectral characteristics similar to those of B-form DNA. However, unique NOE and 1H-31P coupling patterns associated with the repetitive T.T mismatches in the CTG repeats are discerned. These results, in conjunction with recent in vitro studies suggest that longer CTG repeats may form hairpin structures, which can potentially cause interruption in replication, leading to dynamic expansion or deletion of triplet repeats.  相似文献   

17.
In neurological diseases such as fragile X syndrome, spinal and bulbar muscular atrophy, myotonic dystrophy, and Huntington’s disease, the molecular basis of pathogenicity is the presence of an expanded trinucleotide repeat (TNR) tract (Ashley & Warren, 1995). TNRs implicated in many of these diseases are composed of CAG/CTG repeats. For example, in healthy individuals 5–35, CAG/CTG TNR repeats are present in the huntingtin gene. However, individuals with 40 or greater repeats will develop Huntington’s disease (Andrew et al., 1993). We are particularly interested in how these TNR sequences are packaged in chromatin. Recent evaluations of CAG/CTG TNR sequences in our laboratory have demonstrated that the repeats increase the propensity for the DNA sequences to incorporate into nucleosomes, where nucleosomes represent the minimal unit of packaging in chromatin (Volle & Delaney, 2012). In this work, we are interested in determining the minimum number of CAG/CTG repeats required to confer a significant increase in nucleosome incorporation relative to sequences that lack the TNR sequence. By defining the changes imposed on these fundamental interactions by the presence of a CAG/CTG repeat tract, we will gain insight into the possible interactions that allow for the expansion of these TNR tracts.  相似文献   

18.
19.

Background  

The CG dinucleotides are known to be deficient in the human genome, due to a high mutation rate from 5-methylated CG to TG and its complementary pair CA. Meanwhile, many cellular functions rely on these CG dinucleotides, such as gene expression controlled by cytosine methylation status. Thus, CG dinucleotides that provide essential functional substrates should be retained in genomes. How these two conflicting processes regarding the fate of CG dinucleotides - i.e., high mutation rate destroying CG dinucleotides, vs. functional processes that require their preservation remains an unsolved question.  相似文献   

20.
Expansion of trinucleotide repeat sequences is the cause of multiple inherited human genetic diseases including Huntington’s disease and myotonic dystrophy. CTG and CAG repeats have been shown to form stable secondary structures that can impair Okazaki fragment processing and may impede replication fork progression. We recently showed that mutation of DNA damage checkpoint proteins results in increased chromosome breaks at expanded CAG/CTG repeats and in increased repeat instability (expansions and contractions).1 Here we report that long CAG~155 tracts are especially sensitive to absence of Mrc1 (Claspin) checkpoint function, implicating the S-phase checkpoint in maintenance of trinucleotide repeats and other secondary-structure forming sequences. Based on all of our results, we propose a model for the detection of different types of structures by different checkpoint signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号