首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

To measure changes in intraocular pressure (IOP) in association with yoga exercises with a head-down position.

Methods

The single Center, prospective, observational study included 10 subjects with primary open-angle glaucoma and 10 normal individuals, who performed the yoga exercises of Adho Mukha Svanasana, Uttanasana, Halasana and Viparita Karani for two minutes each. IOP was measured by pneumatonometry at baseline and during and after the exercises.

Results

All yoga poses were associated with a significant (P<0.01) rise in IOP within one minute after assuming the yoga position. The highest IOP increase (P<0.01) was measured in the Adho Mukha Svanasana position (IOP increase from 17±3.2 mmHg to 28±3.8 mmHg in glaucoma patients; from 17±2.8 mmHg to 29±3.9 mmHg in normal individuals), followed by the Uttanasana position (17±3.9 mmHg to 27±3.4 mmHg (glaucoma patients) and from 18±2.5 mmHg to 26±3.6 mmHg normal individuals)), the Halasana position (18±2.8 mmHg to 24±3.5 mmHg (glaucoma patients); 18±2.7 mmHg to 22±3.4 mmHg (normal individuals)), and finally the Viparita Kirani position (17±4 mmHg to 21±3.6 mmHg (glaucoma patients); 17±2.8 to 21±2.4 mmHg (normal individuals)). IOP dropped back to baseline values within two minutes after returning to a sitting position. Overall, IOP rise was not significantly different between glaucoma and normal subjects (P = 0.813), all though glaucoma eyes tended to have measurements 2 mm Hg higher on average.

Conclusions

Yoga exercises with head-down positions were associated with a rapid rise in IOP in glaucoma and healthy eyes. IOP returned to baseline values within 2 minutes. Future studies are warranted addressing whether yoga exercise associated IOP changes are associated with similar changes in cerebrospinal fluid pressure and whether they increase the risk of glaucoma progression.

Trial Registration

ClinicalTrials.gov #NCT01915680  相似文献   

2.
3.
4.
5.

Purpose

To explore whether alterations in intraocular pressure (IOP) affect vein pulsation properties using ophthalmodynamometric measures of vein pulsation pressure.

Patients and Methods

Glaucoma patients had two retinal vein pulsation pressure (VPP) measurements from upper and lower hemiveins performed by ophthalmodynamometry at least 3 months apart. All subjects had VPP and IOP recorded at two visits, with standard automated perimetry, central corneal thickness (CCT) recorded at the initial visit. Where venous pulsation was spontaneous ophthalmodynamometry could not be performed and VPP was considered equal to IOP. Change in VPP was calculated and binarized with reduction in pressure scored 1 and no change or increase scored as 0. Data analysis used a mixed logistic regression model with change in VPP as response variable and change in IOP, visual field loss (mean deviation), CCT and time interval as explanatory variables.

Results

31 subjects (20 females) with mean age 60 years (sd 11) were examined with change in VPP being significantly associated with change in IOP (odds ratio 1.6/mmHg, 95% CI 1.2 to 2.1 in the glaucoma patients but not suspect patients (p = 0.0005).

Conclusion

Change in VPP is strongly associated with change in IOP such that a reduced intraocular pressure is associated with a subsequent reduction in VPP. This indicates that reduced IOP alters some retinal vein properties however the nature and time course of these changes is not known.  相似文献   

6.

Purpose

To determine whether hyperglycemic levels as determined from high hemoglobin A1c (HbA1c) levels influence intraocular pressure (IOP) in patients with non-proliferative diabetic retinopathy (NPDR).

Methods

A retrospective chart review was performed on subjects with a diagnosis of NPDR and a corresponding HbA1c level measured within 90 days before or after an IOP measurement over a two-year period. Exclusion criteria included a diagnosis of glaucoma or treatment with IOP lowering medications or oral or topical steroids.

Results

Using 14.5mmHg as a baseline mean value for IOP, 42 subjects had an IOP < 14.5mmHg and mean HbA1c of 8.1±1.1, while 72 subjects had an IOP ≥ 14.5mmHg and a mean HbA1c of 9.0±2.1. Although there was an overlap in the confidence intervals, a significant difference (P = 0.01) in the mean HbA1c level was observed in regression analysis between the two groups. Importantly, diabetic subjects with elevated HbA1c levels rarely (<1%) exhibited reduced IOP levels.

Conclusions

Diabetic subjects with elevated HbA1c levels exhibited significantly higher IOPs compared to those with lower HbA1c levels. Findings from this study indicate an association between hyperglycemia and elevated IOP and that poor glycemic control may contribute to increased IOP levels in long-term diabetic patients.  相似文献   

7.
8.
9.

Purpose

To develop and characterize a mouse model with intraocular pressure (IOP) elevation after laser photocoagulation on the trabecular meshwork (TM), which may serve as a model to investigate the potential of stem cell-based therapies for glaucoma.

Methods

IOP was measured in 281 adult C57BL/6 mice to determine normal IOP range. IOP elevation was induced unilaterally in 50 adult mice, by targeting the TM through the limbus with a 532-nm diode laser. IOP was measured up to 24 weeks post-treatment. The optic nerve damage was detected by electroretinography and assessed by semiautomatic counting of optic nerve axons. Effects of laser treatment on the TM were evaluated by histology, immunofluorescence staining, optical coherence tomography (OCT) and transmission electron microscopy (TEM).

Results

The average IOP of C57BL/6 mice was 14.5±2.6 mmHg (Mean ±SD). After laser treatment, IOP averaged above 20 mmHg throughout the follow-up period of 24 weeks. At 24 weeks, 57% of treated eyes had elevated IOP with the mean IOP of 22.5±2.5 mmHg (Mean ±SED). The difference of average axon count (59.0%) between laser treated and untreated eyes was statistically significant. Photopic negative response (PhNR) by electroretinography was significantly decreased. CD45+ inflammatory cells invaded the TM within 1 week. The expression of SPARC was increased in the TM from 1 to 12 weeks. Histology showed the anterior chamber angle open after laser treatment. OCT indicated that most of the eyes with laser treatment had no synechia in the anterior chamber angles. TEM demonstrated disorganized and compacted extracellular matrix in the TM.

Conclusions

An experimental murine ocular hypertension model with an open angle and optic nerve axon loss was produced with laser photocoagulation, which could be used to investigate stem cell-based therapies for restoration of the outflow pathway integrity for ocular hypertension or glaucoma.  相似文献   

10.

Purpose

To examine a potential association between intraocular pressure (IOP) and cerebrospinal fluid pressure (CSFP) in a population-based setting.

Methods

The population-based Beijing Eye Study 2011 included 3468 individuals with a mean age of 64.6±9.8 years (range: 50–93 years). A detailed ophthalmic examination was performed. Based on a previous study with lumbar cerebrospinal fluid pressure (CSFP) measurements, CSFP was calculated as CSFP [mm Hg] = 0.44×Body Mass Index [kg/m2]+0.16×Diastolic Blood Pressure [mm Hg]–0.18×Age [Years].

Results

In multivariate analysis, IOP was associated with higher estimated CSFP (P<0.001; standardized correlation coefficient beta: 0.27; regression coefficient B: 0.20; 95% confidence interval (CI): 0.16, 0.24), after adjusting for thinner central corneal thickness (P<0.001; beta: 0.45; B: 0.04;95%CI: 0.04,0.04), smaller corneal curvature radius (P<0.001; beta:−0.11; B:−1.13;95%CI:−1.61,−0.64), shallower anterior chamber depth (P = 0.01; beta:−0.05; B:−0.33;95%CI:−0.59,−0.08) and longer axial length (P = 0.002; beta: 0.08; B: 0.20;95%CI: 0.08,0.32)), and after adjusting for the systemic parameters of higher pulse rate (P<0.001; beta: 0.08; B: 0.02;95%CI: 0.01,0.03), higher prevalence of arterial hypertension (P = 0.002; beta: 0.06; B: 0.32;95%CI: 0.12,0.53)), frequency of drinking alcohol (P = 0.02; beta: 0.04; B: 0.09;95%CI: 0.01,0.17), higher blood concentration of triglycerides (P = 0.001; beta: 0.06; B: 0.06;95%CI: 0.02,0.10) and cholesterol (P = 0.049; beta: 0.04; B: 0.08;95%CI: 0.00,0.17), and body mass index (P<0.001; beta:−0.13; B:−0.09;95%CI:−0.13,−0.06). In a parallel manner, estimated CSFP (mean: 10.8±3.7 mm Hg) was significantly associated with higher IOP (P<0.001; beta: 0.13; B: 0.18;95%CI: 0.13,0.23) after adjusting for rural region of habitation (P<0.001; beta:−0.37; B:−2.78;95%CI:−3.07,−2.48), higher systolic blood pressure (P<0.001; beta: 0.34; B: 0.06;95%CI: 0.05,0.07), higher pulse rate (P = 0.003; beta: 0.05; B: 0.02;95%CI: 0.01,0.03), taller body height (P<0.001; beta: 0.11; B: 0.05;95%CI: 0.03,0.07), higher blood concentration of cholesterol (P = 0.003; beta: 0.05; B: 0.17;95%CI: 0.06,0.28) and higher level of education (P = 0.003; beta: 0.09; B: 0.30;95%CI: 0.16,0.45).

Conclusions

IOP was positively associated with estimated CSFP after adjusting for other ocular and systemic parameters. As a corollary, higher estimated CSFP was significantly associated with higher IOP in multivariate analysis. It fits with the notion that the arterial blood pressure, estimated CSFP and IOP are physiologically correlated with each other.  相似文献   

11.
The present study was undertaken to investigate the existence of intraocular pressure (IOP) rhythms in athletic thoroughbred horses maintained under a 24 h cycle of light and darkness (LD) or under constant light (LL) or constant dark (DD) conditions. We identified an IOP circadian rhythm that is entrained to the 24 h LD cycle. IOP was low during the dark phase and high during the light phase, with a peak at the end of the light phase (ZT10). The circadian rhythm of IOP persisted in DD (with a peak at CT9.5), demonstrating an endogenous component in IOP rhythm. As previously shown in other mammalian species, horse IOP circadian rhythmicity was abolished in LL. Because tonometry is performed in horses for the diagnosis of ophthalmologic diseases, such as glaucoma or anterior uveitis, the daily variation in IOP must be taken into account in clinical practice to properly time tests and to interpret clinical findings.  相似文献   

12.
Glaucoma is a leading cause of visual impairment and blindness worldwide. The main risk factor for glaucoma is an elevated intraocular pressure (IOP), which is also the only currently treatable risk factor. Despite its importance, our understanding of IOP is incomplete and our ability to measure IOP is limited. IOP is known to undergo both random fluctuations as well as variations following a circadian pattern. In humans, IOP is highest at night and lower during the daytime, largely due to changes in body position, although other factors appear to contribute. In rabbits, IOP is also highest at night and lower during the day, likely due to circadian variations in sympathetic nervous system activity. Random and circadian IOP variations may be important to glaucoma pathogenesis, independent of the diurnal IOP level. However, due to limitations with current IOP measurement technology, clinical practice typically involves only a few IOP measurements per year. As well, current technology does not allow 24-hour monitoring of pressure without the use of sleep laboratories or hospital admission. Two strategies for automating IOP measurement are temporary (non-invasive) monitoring and permanent (implantable) monitoring. Efforts at developing devices to allow continuous IOP monitoring have occurred for over 40 years without producing a clinical device. Current technological progress would seem to suggest that such devices are possible at this time, and a review of previous attempts provides guidelines for their development.  相似文献   

13.
14.
目的:通过巩膜外静脉烧烙术建立慢性高眼压模型,研究小鼠慢性高眼压状态下视网膜神经节细胞的凋亡情况.方法:取C57BL/6J小鼠30只.3只作为空白对照组,其余27只右眼为实验眼,左眼为对照眼.术前用iCare眼压计测量眼压,按巩膜外静脉烧烙法建立慢性高眼压模型,术后用iCare眼压计每日监测眼压.分剐取空白对照组6眼,术后1w、4 w造模成功的小鼠各8只16眼眼球,石蜡切片行Tunel法,荧光显微镜下采集图像.小鼠眼压的组间比较采用t检验.结果:给予巩膜外静脉烧烙术后1d、1w、4w小鼠慢性高眼压眼眼压(11.15±0.98、10.65±0.95、10.35±1.05)与对照眼(6.40±0.95、6.35±1.05、6.50±1.15)相比,差异有统计学意义(t=10.77~18.08,P<0.001).Tunel法结果显示,正常小鼠空白对照组未见明显凋亡的视网膜神经节细胞.慢性高眼压组术后1w、4w可见Tunel阳性表达.而对照组术后1w及4w均未见Tunel阳性表达.结论:巩膜外静脉烧灼法能诱导出持续的肯定的小鼠慢性高眼压模型,慢性高眼压状态下小鼠视网膜神经节细胞发生凋亡,细胞凋亡是小鼠慢性高眼压状态下视网膜神经节细胞损伤的主要方式.  相似文献   

15.
Based on reports of an association between elevated intraocular pressure (IOP) and metabolic syndrome (MetS), and the major role of insulin resistance (IR) in MetS pathogenesis, a positive association between IOP and IR has been hypothesized. Although Asian populations tend to have lower body mass indices (BMIs) than Western populations, they tend to have a higher risk of developing MetS. This study examined the hypothesis that the association between IOP and IR differs by obesity status in an Asian population, by examining a nationally representative sample of South Korean adults. Data collected from 4,621 South Korean adults regarding demographic, lifestyle, and laboratory parameters by the 2010 Korea National Health and Nutrition Examination Survey were subjected to linear regression analysis to evaluate the relationship between IOP and metabolic profiles. After adjusting for confounding factors, the data were subjected to multiple linear regression analysis to examine the association between IR, as measured by the homeostasis model assessment of insulin resistance (HOMA-IR), and IOP. Obesity was defined as BMI≥27.5 kg/m2, and the subjects were divided into obese vs. non-obese groups for investigation of the association between IR and IOP according to obesity status. IOP was found to correlate with fasting blood sugar, total cholesterol, insulin, and HOMA-IR values in non-obese men; and with BMI, waist circumference, triglycerides, total cholesterol, HOMA-IR, and low-density lipoprotein cholesterol values in non-obese women, whereas no association between IOP and IR was found in obese men or women. IOP was significantly associated with IR in non-obese men and women after adjusting for age, and in non-obese men after adjusting for age, BMI, and lifestyle and demographic factors. These findings indicate that a positive and independent relationship exists between IOP and IR in non-obese individuals only, suggesting that other factors likely contribute to IOP elevation in obese individuals.  相似文献   

16.

Purpose

To assess the intraocular pressure (IOP) and its association in children in a population living in an oasis in the Gobi Desert.

Methods

The cross-sectional school-based study included all schools in the Ejina region. The children underwent an ophthalmic examination, non-contact tonometry and measurement of blood pressure and body height and weight.

Results

Out of eligible 1911 children, 1565 (81.9%) children with a mean age of 11.9±3.5 years (range: 6–21 years) participated. Mean spherical refractive error was −1.58±2.00 diopters. In multivariate analysis, higher IOP (right eye) was associated with younger age (P<0.001; standardized coefficient beta: −0.13; regression coefficient B: −0.13; 95% Confidence interval (CI):−0.18, −0.07), higher diastolic blood pressure (P<0.001;beta:0.13;B:0.05;95%CI:0.03,0.07), higher corneal refractive power (P<0.001;beta:0.11;B:0.23;95%CI:0.12,0.34), more myopic refractive error (P = 0.035;beta: −0.06;B: −0.10;95%CI: −0.19, −0.001), and Han Chinese ethnicity of the father (P = 0.03;beta:0.06;B:0.42;95%CI:0.04,0.89). If age and diastolic blood pressure were dropped, higher IOP was associated with higher estimated cerebrospinal fluid pressure (CSFP) (P<0.001;beta:0.09; B:0.13;95%CI:0.06,0.21) after adjusting for higher corneal refractive power (P<0.001) and Han Chinese ethnicity of the father (P = 0.04). Correspondingly, higher IOP of the left eye was associated with younger age (P<0.001;beta: −0.15;B: −0.16;95%CI: −0.21, −0.10), female gender (P<0.001;beta:0.09;B:0.65;95%CI:0.30,1.01), higher corneal refractive power (P<0.001;beta:0.08;B:0.19;95%CI:0.06,0.32), more myopic refractive error (P = 0.03;beta: −0.06;B: −0.12;95%CI: −0.22, −0.01), and higher estimated CSFP (P<0.001;beta:0.11;B:0.17;95%CI:0.09,0.24).

Conclusions

In school children, higher IOP was associated with steeper corneal curvature and with younger age and higher blood pressure, or alternatively, with higher estimated CSFP. Corneal curvature radius should be included in the correction of IOP measurements. The potential association between IOP and CSFP as also assumed in adults may warrant further research.  相似文献   

17.
18.
Age-stiffening of ocular tissues is statistically linked to glaucoma in the elderly. In this study, the effects of age-stiffening on the lamina cribrosa, the primary site of glaucomatous nerve damages, were modeled using computational finite element analysis. We showed that glaucomatous nerve damages and peripheral vision loss behavior can be phenomenologically modeled by shear-based damage criterion. Using this damage criterion, the potential vision loss for 30 years old with mild hypertension of 25mmHg intraocular pressure (IOP) was estimated to be 4%. When the IOP was elevated to 35mmHg, the potential vision loss rose to 45%; and age-stiffening from 35 to 60 years old increased the potential vision loss to 52%. These results showed that while IOP plays a central role in glaucomatous damages, age-stiffening facilitates glaucomatous damages and may be the principal factor that resulted in a higher rate of glaucoma in the elderly than the general population.  相似文献   

19.
Inter-individual differences in corneal properties are ignored in existing methods for measuring intraocular pressure IOP, a primary parameter used in screening and monitoring of glaucoma. The differences in the corneal stiffness between individuals can be more than double and this difference would lead to IOP measurement errors up to 10 mmHg. In this study, an instrumented partial-contact indentation measurement and analysis method that can account for inter-individual corneal difference in stiffness is developed. The method was tested on 12 porcine eyes ex vivo and 7 rabbit eyes in vivo, and the results were compared to the controlled IOPs to determine the method's validity. Analyses showed that without corneal stiffness correction, up to 10 mmHg of measurement error was found between the existing approach and the controlled IOP. With the instrumented indentation and analysis method, less than 2 mmHg of differences were founded between the measured IOP and the controlled IOP. These results showed that instrumented partial-contact indentation can effectively account for inter-individual corneal variations in IOP measurement.  相似文献   

20.
目的:检测急性眼高压后大鼠视网膜GLT-1的表达变化。方法:成年大鼠左眼眼压升高至闪光视网膜电图b波消失的临界眼压且维持缺血60min。实验动物分别存活1、3、7或14d后通过免疫组织化学检测大鼠视网膜GLT-1的表达变化,尼氏染色检测节细胞的变化。结果:急性眼高压后视网膜随着再灌时间的延长,内层视网膜厚度逐渐变薄,节细胞层细胞数目进行性下降。GLT-1阳性产物主要表达于OPL和IPL。急性HIOP后再灌1天时,与正常组相比,此时GLT-1表达增加(P<0.05)。再灌3天时, GLT-1表达量继续增加。第7天时GLT-1表达开始下调,至14天时,GLT-1表达明显低于3天组,但仍高于正常组(P<0.05)。结论:急性眼高压可导致视网膜GLT-1表达增加,其机制可能与其自身的保护反应有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号