首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study, designed to survey forest elephants ( Loxodonta africana cyclotis ) at Kakum Conservation Area, Ghana, is the first to apply acoustic methods to elephant abundance estimation and to compare results with independent survey estimates. Nine acoustic sensors gathered sound continuously for 38 days. Low-frequency calling rates have been established as useful elephant abundance indices at a Namibian watering hole and a central African forest clearing. In this study, we estimated elephant population size by applying an abundance index model and detection function developed in central Africa to data from simultaneous sampling periods on Kakum sensors. The sensor array recorded an average of 1.81 calls per 20-min sampling period from an effective detection area averaging 10.27 km2. The resulting estimate of 294 elephants (95% CI: 259–329) falls within confidence bounds of recent dung-based surveys. An extended acoustic model, estimating the frequency with which elephants are silent when present, yields an estimate of 350 elephants (95% CI: 315–384). Acoustic survey confidence intervals are at least half as wide as those from dung-based surveys. This study demonstrates that acoustic surveying is a valuable tool for estimating elephant abundance, as well as for detecting other vocal species and anthropogenic noises that may be associated with poaching.  相似文献   

2.
The pooling robustness property of distance sampling results in unbiased abundance estimation even when sources of variation in detection probability are not modeled. However, this property cannot be relied upon to produce unbiased subpopulation abundance estimates when using a single pooled detection function that ignores subpopulations. We investigate by simulation the effect of differences in subpopulation detectability upon bias in subpopulation abundance estimates. We contrast subpopulation abundance estimates using a pooled detection function with estimates derived using a detection function model employing a subpopulation covariate. Using point transect survey data from a multispecies songbird study, species-specific abundance estimates are compared using pooled detection functions with and without a small number of adjustment terms, and a detection function with species as a covariate. With simulation, we demonstrate the bias of subpopulation abundance estimates when a pooled detection function is employed. The magnitude of the bias is positively related to the magnitude of disparity between the subpopulation detection functions. However, the abundance estimate for the entire population remains unbiased except when there is extreme heterogeneity in detection functions. Inclusion of a detection function model with a subpopulation covariate essentially removes the bias of the subpopulation abundance estimates. The analysis of the songbird point count surveys shows some bias in species-specific abundance estimates when a pooled detection function is used. Pooling robustness is a unique property of distance sampling, producing unbiased abundance estimates at the level of the study area even in the presence of large differences in detectability between subpopulations. In situations where subpopulation abundance estimates are required for data-poor subpopulations and where the subpopulations can be identified, we recommend the use of subpopulation as a covariate to reduce bias induced in subpopulation abundance estimates.  相似文献   

3.
ABSTRACT Point counts are the most frequently used technique for sampling bird populations and communities, but have well‐known limitations such as inter‐ and intraobserver errors and limited availability of expert field observers. The use of acoustic recordings to survey birds offers solutions to these limitations. We designed a Soundscape Recording System (SRS) that combines a four‐channel, discrete microphone system with a quadraphonic playback system for surveying bird communities. We compared the effectiveness of SRS and point counts for estimating species abundance, richness, and composition of riparian breeding birds in California by comparing data collected simultaneously using both methods. We used the temporal‐removal method to estimate individual bird detection probabilities and species abundances using the program MARK. Akaike's Information Criterion provided strong evidence that detection probabilities differed between the two survey methods and among the 10 most common species. The probability of detecting birds was higher when listening to SRS recordings in the laboratory than during the field survey. Additionally, SRS data demonstrated a better fit to the temporal‐removal model assumptions and yielded more reliable estimates of detection probability and abundance than point‐count data. Our results demonstrate how the perceptual constraints of observers can affect temporal detection patterns during point counts and thus influence abundance estimates derived from time‐of‐detection approaches. We used a closed‐population capture–recapture approach to calculate jackknife estimates of species richness and average species detection probabilities for SRS and point counts using the program CAPTURE. SRS and point counts had similar species richness and detection probabilities. However, the methods differed in the composition of species detected based on Jaccard's similarity index. Most individuals (83%) detected during point counts vocalized at least once during the survey period and were available for detection using a purely acoustic technique, such as SRS. SRS provides an effective method for surveying bird communities, particularly when most species are detected by sound. SRS can eliminate or minimize observer biases, produce permanent records of surveys, and resolve problems associated with the limited availability of expert field observers.  相似文献   

4.
We propose an approximate maximum likelihood method for estimating animal density and abundance from binary passive acoustic transects, when both the probability of detection and the range of detection are unknown. The transect survey is purposely designed so that successive data points are dependent, and this dependence is exploited to simultaneously estimate density, range of detection, and probability of detection. The data are assumed to follow a homogeneous Poisson process in space, and a second-order Markov approximation to the likelihood is used. Simulations show that this method has small bias under the assumptions used to derive the likelihood, although it performs better when the probability of detection is close to 1. The effects of violations of these assumptions are also investigated, and the approach is found to be sensitive to spatial trends in density and clustering. The method is illustrated using real acoustic data from a survey of sperm and humpback whales.  相似文献   

5.
Abstract: We compared the time-of-detection and logistic regression methods of estimating probability of detection for northern bobwhite (Colinus virginianus) coveys. Both methods are unusual in that they allow estimation of the total probability of detection (i.e., the product of the probability that a covey is available for detection [i.e., that a covey vocalizes] and detection given availability). The logistic regression method produced an average detection probability of 0.596 (SE = 0.020) and the time-of-detection method produced a detection probability estimate of 0.540 (SE = 0.086), and the 2 estimates were not significantly different. This is the first evaluation of the time-of-detection method with empirical field data. Although the time-of-detection and logistic regression method each have advantages, both can be used under appropriate conditions to improve estimates of bobwhite abundance by allowing for the estimation of detection probabilities. Improved estimates of bobwhite abundance will allow land managers to make more informed management decisions.  相似文献   

6.
Researchers usually estimate benchmark dose (BMD) for dichotomous experimental data using a binomial model with a single response function. Several forms of response function have been proposed to fit dose–response models to estimate the BMD and the corresponding benchmark dose lower bound (BMDL). However, if the assumed response function is not correct, then the estimated BMD and BMDL from the fitted model may not be accurate. To account for model uncertainty, model averaging (MA) methods are proposed to estimate BMD averaging over a model space containing a finite number of standard models. Usual model averaging focuses on a pre-specified list of parametric models leading to pitfalls when none of the models in the list is the correct model. Here, an alternative which augments an initial list of parametric models with an infinite number of additional models having varying response functions has been proposed to estimate BMD for dichotomous response data. In addition, different methods for estimating BMDL based on the family of response functions are derived. The proposed approach is compared with MA in a simulation study and applied to a real dataset. Simulation studies are also conducted to compare the four methods of estimating BMDL.  相似文献   

7.
If animals are independently detected during surveys, many methods exist for estimating animal abundance despite detection probabilities <1. Common estimators include double‐observer models, distance sampling models and combined double‐observer and distance sampling models (known as mark‐recapture‐distance‐sampling models; MRDS). When animals reside in groups, however, the assumption of independent detection is violated. In this case, the standard approach is to account for imperfect detection of groups, while assuming that individuals within groups are detected perfectly. However, this assumption is often unsupported. We introduce an abundance estimator for grouped animals when detection of groups is imperfect and group size may be under‐counted, but not over‐counted. The estimator combines an MRDS model with an N‐mixture model to account for imperfect detection of individuals. The new MRDS‐Nmix model requires the same data as an MRDS model (independent detection histories, an estimate of distance to transect, and an estimate of group size), plus a second estimate of group size provided by the second observer. We extend the model to situations in which detection of individuals within groups declines with distance. We simulated 12 data sets and used Bayesian methods to compare the performance of the new MRDS‐Nmix model to an MRDS model. Abundance estimates generated by the MRDS‐Nmix model exhibited minimal bias and nominal coverage levels. In contrast, MRDS abundance estimates were biased low and exhibited poor coverage. Many species of conservation interest reside in groups and could benefit from an estimator that better accounts for imperfect detection. Furthermore, the ability to relax the assumption of perfect detection of individuals within detected groups may allow surveyors to re‐allocate resources toward detection of new groups instead of extensive surveys of known groups. We believe the proposed estimator is feasible because the only additional field data required are a second estimate of group size.  相似文献   

8.
Aim Site occupancy probabilities of target species are commonly used in various ecological studies, e.g. to monitor current status and trends in biodiversity. Detection error introduces bias in the estimators of site occupancy. Existing methods for estimating occupancy probability in the presence of detection error use replicate surveys. These methods assume population closure, i.e. the site occupancy status remains constant across surveys, and independence between surveys. We present an approach for estimating site occupancy probability in the presence of detection error that requires only a single survey and does not require assumption of population closure or independence. In place of the closure assumption, this method requires covariates that affect detection and occupancy.Methods Penalized maximum-likelihood method was used to estimate the parameters. Estimability of the parameters was checked using data cloning. Parametric boostrapping method was used for computing confidence intervals.Important findings The single-survey approach facilitates analysis of historical datasets where replicate surveys are unavailable, situations where replicate surveys are expensive to conduct and when the assumptions of closure or independence are not met. This method saves significant amounts of time, energy and money in ecological surveys without sacrificing statistical validity. Further, we show that occupancy and habitat suitability are not synonymous and suggest a method to estimate habitat suitability using single-survey data.  相似文献   

9.
Precise measures of population abundance and trend are needed for species conservation; these are most difficult to obtain for rare and rapidly changing populations. We compare uncertainty in densities estimated from spatio–temporal models with that from standard design-based methods. Spatio–temporal models allow us to target priority areas where, and at times when, a population may most benefit. Generalised additive models were fitted to a 31-year time series of point-transect surveys of an endangered Hawaiian forest bird, the Hawai‘i ‘ākepa Loxops coccineus. This allowed us to estimate bird densities over space and time. We used two methods to quantify uncertainty in density estimates from the spatio–temporal model: the delta method (which assumes independence between detection and distribution parameters) and a variance propagation method. With the delta method we observed a 52% decrease in the width of the design-based 95% confidence interval (CI), while we observed a 37% decrease in CI width when propagating the variance. We mapped bird densities as they changed across space and time, allowing managers to evaluate management actions. Integrating detection function modelling with spatio–temporal modelling exploits survey data more efficiently by producing finer-grained abundance estimates than are possible with design-based methods as well as producing more precise abundance estimates. Model-based approaches require switching from making assumptions about the survey design to assumptions about bird distribution. Such a switch warrants consideration. In this case the model-based approach benefits conservation planning through improved management efficiency and reduced costs by taking into account both spatial shifts and temporal changes in population abundance and distribution.  相似文献   

10.
  1. Reliable estimates of abundance are critical in effectively managing threatened species, but the feasibility of integrating data from wildlife surveys completed using advanced technologies such as remotely piloted aircraft systems (RPAS) and machine learning into abundance estimation methods such as N‐mixture modeling is largely unknown due to the unique sources of detection errors associated with these technologies.
  2. We evaluated two modeling approaches for estimating the abundance of koalas detected automatically in RPAS imagery: (a) a generalized N‐mixture model and (b) a modified Horvitz–Thompson (H‐T) estimator method combining generalized linear models and generalized additive models for overall probability of detection, false detection, and duplicate detection. The final estimates from each model were compared to the true number of koalas present as determined by telemetry‐assisted ground surveys.
  3. The modified H‐T estimator approach performed best, with the true count of koalas captured within the 95% confidence intervals around the abundance estimates in all 4 surveys in the testing dataset (n = 138 detected objects), a particularly strong result given the difficulty in attaining accuracy found with previous methods.
  4. The results suggested that N‐mixture models in their current form may not be the most appropriate approach to estimating the abundance of wildlife detected in RPAS surveys with automated detection, and accurate estimates could be made with approaches that account for spurious detections.
  相似文献   

11.
物种相对多度指数在红外相机数据分析中的应用及局限   总被引:1,自引:0,他引:1  
多度是衡量物种种群数量的参数之一, 多度的动态及其影响因素是种群生态学研究的经典问题。物种相对多度指数(relative abundance index, RAI)作为一种简单、便利的指标, 广泛应用于动物本底清查中。但RAI易受物种自身特征、探测率和环境因素的影响, 需要结合其他物种数量分析方法, 以验证其与种群大小的相关性。随着红外相机技术在野生动物调查中的广泛应用, 用红外相机数据估计动物种群数量的研究越来越多。目前, 基于红外相机数据计算RAI的方法有多种, 不同计算方法和应用范围存在差异, 亟需对现有方法和应用进行梳理。本文综述了根据红外相机数据计算物种相对多度的4种主要方法: (1)拍摄一张有效照片所需要的天数; (2)基于单位调查强度的物种拍摄率; (3)每个位点每天的物种拍摄率; (4)某一物种的照片数占所有物种的比例。总结了我国野生动物监测调查中采用红外相机方法计算RAI的应用现状。国内的研究主要采用第2种和第4种计算方法, 其中约72.5%的研究论文应用第2种计算方法, 而第4种方法一般适用于群落中的物种组成比较。我们建议根据红外相机数据计算RAI时尽量使用第2种计算方法, 这有助于研究或管理人员对不同研究中的物种RAI进行比较分析。  相似文献   

12.
ABSTRACT Numerous techniques have been proposed to estimate carnivore abundance and density, but few have been validated against populations of known size. We used a density estimate established by intensive monitoring of a population of radiotagged leopards (Panthera pardus) with a detection probability of 1.0 to evaluate efficacy of track counts and camera-trap surveys as population estimators. We calculated densities from track counts using 2 methods and compared performance of 10 methods for calculating the effectively sampled area for camera-trapping data. Compared to our reference density (7.33 ± 0.44 leopards/100 km2), camera-trapping generally produced more accurate but less precise estimates than did track counts. The most accurate result (6.97 ± 1.88 leopards/100 km2) came from camera-trap data with a sampled area buffered by a boundary strip representing the mean maximum distance moved by leopards outside the survey area (MMDMOSA) established by telemetry. However, contrary to recent suggestions, the traditional method of using half the mean maximum distance moved from photographic recaptures did not result in gross overestimates of population density (6.56 ± 1.92 leopards/100 km2) but rather displayed the next best performance after MMDMOSA. The only track-count method comparable to reference density employed a capture-recapture framework applied to data when individuals were identified from their tracks (6.45 ± 1.43 leopards/100 km2) but the underlying assumptions of this technique limit more widespread application. Our results demonstrate that if applied correctly, camera-trap surveys represent the best balance of rigor and cost-effectiveness for estimating abundance and density of cryptic carnivore species that can be identified individually.  相似文献   

13.
Abstract: The use of bird counts as indices has come under increasing scrutiny because assumptions concerning detection probabilities may not be met, but there also seems to be some resistance to use of model-based approaches to estimating abundance. We used data from the United States Forest Service, Southern Region bird monitoring program to compare several common approaches for estimating annual abundance or indices and population trends from point-count data. We compared indices of abundance estimated as annual means of counts and from a mixed-Poisson model to abundance estimates from a count-removal model with 3 time intervals and a distance model with 3 distance bands. We compared trend estimates calculated from an autoregressive, exponential model fit to annual abundance estimates from the above methods and also by estimating trend directly by treating year as a continuous covariate in the mixed-Poisson model. We produced estimates for 6 forest songbirds based on an average of 621 and 459 points in 2 physiographic areas from 1997 to 2004. There was strong evidence that detection probabilities varied among species and years. Nevertheless, there was good overall agreement across trend estimates from the 5 methods for 9 of 12 comparisons. In 3 of 12 comparisons, however, patterns in detection probabilities potentially confounded interpretation of uncorrected counts. Estimates of detection probabilities differed greatly between removal and distance models, likely because the methods estimated different components of detection probability and the data collection was not optimally designed for either method. Given that detection probabilities often vary among species, years, and observers investigators should address detection probability in their surveys, whether it be by estimation of probability of detection and abundance, estimation of effects of key covariates when modeling count as an index of abundance, or through design-based methods to standardize these effects.  相似文献   

14.
Line transect sampling is one of the most widely used methods for estimating the size of wild animal populations. An assumption in standard line transect sampling is that all the animals on the trackline are detected without fail. This assumption tends to be violated for marine mammals with surfacing/diving behaviors. The detection probability on the trackline is estimated using duplicate sightings from double-platform line transect methods. The double-platform methods, however, are insufficient to estimate the abundance of long-diving animals because these animals can be completely missed while the observers pass. We developed a more flexible hazard probability model that incorporates information on surfacing/diving patterns obtained from telemetry data. The model is based on a stochastic point process and is statistically tractable. A simulation study showed that the new model provides near-unbiased abundance estimates, whereas the traditional hazard rate and hazard probability models produce considerably biased estimates. As an illustration, we applied the model to data on the Baird's beaked whale (Berardius bairdii) in the western North Pacific.  相似文献   

15.
Accurate estimates of demographic parameters are critical to the management of wildlife populations, including management programs focused on controlling the spread of zoonotic diseases. Rabies managers in the United States Department of Agriculture (USDA) have applied a simple raccoon (Procyon lotor) abundance index (RAI) based on cumulative catch of unique raccoons per unit area to determine vaccine-bait distribution densities. This approach was designed to allow for both the collection of biological samples and to index raccoon abundance to determine bait densities for oral rabies programs. However, post-baiting surveillance data indicate that, on average, only 30% of raccoons sampled have vaccine induced rabies antibody titers, suggesting that bait densities may not be well calibrated to raccoon densities. We trapped raccoons using both capture-mark-recapture (CMR) and the standard RAI to evaluate the accuracy of the current index-based methodology for estimating raccoon density. We then developed a resource selection function from spatial data collected from radio-collared raccoons to standardize trap placement within the existing RAI protocol, and evaluated the performance of this modified RAI approach relative to CMR for estimating raccoon population size. Both abundance and density estimates derived using the RAI consistently underestimated raccoon population sizes compared with CMR methods. Similarly, although the use of resource selection models to inform trap placement appeared to improve the accuracy of the RAI, the effectiveness of this method was inconsistent because of an inability to account for variance in detection probabilities. Despite the logistical advantages of using indices to estimate population parameters to determine vaccine bait distribution densities, our results suggest that adjustments may be necessary to more accurately quantify raccoon abundance, which should improve the effectiveness of rabies management in the United States. In particular, estimates of detection probabilities are needed to more precisely quantify abundance estimates and ensure appropriate vaccine coverage rates. © 2012 The Wildlife Society.  相似文献   

16.
17.
A phenomenon of transience in the humpback whale population breeding in New Caledonia has been highlighted in recent analyses. We used these data to illustrate the risk of flawed inference when transience is not properly accounted for in abundance estimation of resident populations. Transients are commonly defined as individuals that pass through the sampling area once, i.e., have a null probability of being caught again, and therefore induce heterogeneity in the detection process. The presence of transients can lead to severe bias in the estimation of abundance and we demonstrate how to correct for this feature when estimating abundance of resident populations. In New Caledonia, very different conclusions about the number of resident whales in the southern lagoon between 1999 and 2005 are obtained when the abundance estimate accounts for the transient whales. Without correction, the estimates of the abundance were up to twice as high across all years compared to the estimates of the resident population when a correction for transients had been incorporated. Having reliable population estimates when assessing the status of endangered species is essential in documenting recovery and monitoring of population trends. Therefore, we encourage researchers to account for transients when reporting abundances of resident populations.  相似文献   

18.
Automated cameras have become increasingly common for monitoring wildlife populations and estimating abundance. Most analytical methods, however, fail to account for incomplete and variable detection probabilities, which biases abundance estimates. Methods which do account for detection have not been thoroughly tested, and those that have been tested were compared to other methods of abundance estimation. The goal of this study was to evaluate the accuracy and effectiveness of the N-mixture method, which explicitly incorporates detection probability, to monitor white-tailed deer (Odocoileus virginianus) by using camera surveys and a known, marked population to collect data and estimate abundance. Motion-triggered camera surveys were conducted at Auburn University’s deer research facility in 2010. Abundance estimates were generated using N-mixture models and compared to the known number of marked deer in the population. We compared abundance estimates generated from a decreasing number of survey days used in analysis and by time periods (DAY, NIGHT, SUNRISE, SUNSET, CREPUSCULAR, ALL TIMES). Accurate abundance estimates were generated using 24 h of data and nighttime only data. Accuracy of abundance estimates increased with increasing number of survey days until day 5, and there was no improvement with additional data. This suggests that, for our system, 5-day camera surveys conducted at night were adequate for abundance estimation and population monitoring. Further, our study demonstrates that camera surveys and N-mixture models may be a highly effective method for estimation and monitoring of ungulate populations.  相似文献   

19.
ABSTRACT Conventional distance sampling, the most-used method of estimating animal density and abundance, requires ranges to detected individuals, which are not easily measured for vocalizations. However, in some circumstances the sequential pattern of detection of vocalizations along a transect line gives information about the range of detection. Thus, from a one-dimensional acoustic point-transect survey (i.e., records of vocalizations detected or not detected at regularly spaced listening stations) it is possible to obtain a useful estimate of density or abundance. I developed equations for estimation of density for one-dimensional surveys. Using simulations I found that for the method to have little bias when both range of detection and rate of vocalization need to be estimated, stations needed to be spaced at 30–80% of the range of detection and the rate of vocalization should be >0.7. If either the range of detection or rate of vocalization is known, conditions are relaxed, and when both parameters are known the method works well almost universally. In favorable conditions for one-dimensional methods, estimated abundances have overall errors not much larger than those from conventional line-transect distance sampling. The methods appeared useful when applied to real acoustic data from whale surveys. The techniques may also be useful in surveys with nonacoustic detection of animals.  相似文献   

20.
Conservation and management agencies require accurate and precise estimates of abundance when considering the status of a species and the need for directed actions. Due to the proliferation of remote sampling cameras, there has been an increase in capture–recapture studies that estimate the abundance of rare and/or elusive species using closed capture–recapture estimators (C–R). However, data from these studies often do not meet necessary statistical assumptions. Common attributes of these data are (1) infrequent detections, (2) a small number of individuals detected, (3) long survey durations, and (4) variability in detection among individuals. We believe there is a need for guidance when analyzing this type of sparse data. We highlight statistical limitations of closed C–R estimators when data are sparse and suggest an alternative approach over the conventional use of the Jackknife estimator. Our approach aims to maximize the probability individuals are detected at least once over the entire sampling period, thus making the modeling of variability in the detection process irrelevant, estimating abundance accurately and precisely. We use simulations to demonstrate when using the unconditional-likelihood M 0 (constant detection probability) closed C–R estimator with profile-likelihood confidence intervals provides reliable results even when detection varies by individual. If each individual in the population is detected on average of at least 2.5 times, abundance estimates are accurate and precise. When studies sample the same species at multiple areas or at the same area over time, we suggest sharing detection information across datasets to increase precision when estimating abundance. The approach suggested here should be useful for monitoring small populations of species that are difficult to detect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号