首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progression through mitosis requires activation of cyclin B/Cdk1 and its downstream targets, including Polo-like kinase and the anaphase-promoting complex (APC), the ubiquitin ligase directing degradation of cyclins A and B. Recent evidence shows that APC activation requires destruction of the APC inhibitor Emi1. In prophase, phosphorylation of Emi1 generates a D-pS-G-X-X-pS degron to recruit the SCF(betaTrCP) ubiquitin ligase, causing Emi1 destruction and allowing progression beyond prometaphase, but the kinases directing this phosphorylation remain undefined. We show here that the polo-like kinase Plk1 is strictly required for Emi1 destruction and that overexpression of Plk1 is sufficient to trigger Emi1 destruction. Plk1 stimulates Emi1 phosphorylation, betaTrCP binding, and ubiquitination in vitro and cyclin B/Cdk1 enhances these effects. Plk1 binds to Emi1 in mitosis and the two proteins colocalize on the mitotic spindle poles, suggesting that Plk1 may spatially control Emi1 destruction. These data support the hypothesis that Plk1 activates the APC by directing the SCF-dependent destruction of Emi1 in prophase.  相似文献   

2.
The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated at prometaphase by mitotic phosphorylation and binding of its activator, Cdc20. This initiates cyclin A degradation, whereas cyclin B1 is stabilized by the spindle checkpoint. Upon checkpoint release, the RXXL destruction box (D box) was proposed to direct cyclin B1 to core APC/C or Cdc20. In this study, we report that endogenous cyclin B1–Cdk1 is recruited to checkpoint-inhibited, phosphorylated APC/C in prometaphase independently of Cdc20 or the cyclin B1 D box. Like cyclin A, cyclin B1 binds the APC/C by the Cdk cofactor Cks and the APC3 subunit. Prior binding to APC/CCdc20 makes cyclin B1 a better APC/C substrate in metaphase, driving mitotic exit and cytokinesis. We conclude that in prometaphase, the phosphorylated APC/C can recruit both cyclin A and cyclin B1 in a Cks-dependent manner. This suggests that the spindle checkpoint blocks D box recognition of APC/C-bound cyclin B1, whereas distinctive complexes between the N terminus of cyclin A and Cdc20 evade checkpoint control.  相似文献   

3.
The anaphase‐promoting complex/cyclosome (APC/C), a multi‐subunit ubiquitin ligase essential for cell cycle control, is regulated by reversible phosphorylation. APC/C phosphorylation by cyclin‐dependent kinase 1 (Cdk1) promotes Cdc20 co‐activator loading in mitosis to form active APC/C‐Cdc20. However, detailed phospho‐regulation of APC/C dynamics through other kinases and phosphatases is still poorly understood. Here, we show that an interplay between polo‐like kinase (Plx1) and PP2A‐B56 phosphatase on a flexible loop domain of the subunit Apc1 (Apc1‐loop500) controls APC/C activity and mitotic progression. Plx1 directly binds to the Apc1‐loop500 in a phosphorylation‐dependent manner and promotes the formation of APC/C‐Cdc20 via Apc3 phosphorylation. Upon phosphorylation of loop residue T532, PP2A‐B56 is recruited to the Apc1‐loop500 and differentially promotes dissociation of Plx1 and PP2A‐B56 through dephosphorylation of Plx1‐binding sites. Stable Plx1 binding, which prevents PP2A‐B56 recruitment, prematurely activates the APC/C and delays APC/C dephosphorylation during mitotic exit. Furthermore, the phosphorylation status of the Apc1‐loop500 is controlled by distant Apc3‐loop phosphorylation. Our study suggests that phosphorylation‐dependent feedback regulation through flexible loop domains within a macromolecular complex coordinates the activity and dynamics of the APC/C during the cell cycle.  相似文献   

4.
BACKGROUND: The mitotic kinases, Cdk1, Aurora A/B, and Polo-like kinase 1 (Plk1) have been characterized extensively to further understanding of mitotic mechanisms and as potential targets for cancer therapy. Cdk1 and Aurora kinase studies have been facilitated by small-molecule inhibitors, but few if any potent Plk1 inhibitors have been identified. RESULTS: We describe the cellular effects of a novel compound, BI 2536, a potent and selective inhibitor of Plk1. The fact that BI 2536 blocks Plk1 activity fully and instantaneously enabled us to study controversial and unknown functions of Plk1. Cells treated with BI 2536 are delayed in prophase but eventually import Cdk1-cyclin B into the nucleus, enter prometaphase, and degrade cyclin A, although BI 2536 prevents degradation of the APC/C inhibitor Emi1. BI 2536-treated cells lack prophase microtubule asters and thus polymerize mitotic microtubules only after nuclear-envelope breakdown and form monopolar spindles that do not stably attach to kinetochores. Mad2 accumulates at kinetochores, and cells arrest with an activated spindle-assembly checkpoint. BI 2536 prevents Plk1's enrichment at kinetochores and centrosomes, and when added to metaphase cells, it induces detachment of microtubules from kinetochores and leads to spindle collapse. CONCLUSIONS: Our results suggest that Plk1's accumulation at centrosomes and kinetochores depends on its own activity and that this activity is required for maintaining centrosome and kinetochore function. Our data also show that Plk1 is not required for prophase entry, but delays transition to prometaphase, and that Emi1 destruction in prometaphase is not essential for APC/C-mediated cyclin A degradation.  相似文献   

5.
The degradation of the cyclin B subunit of protein kinase Cdk1/cyclin B is required for inactivation of the kinase and exit from mitosis. Cyclin B is degraded by the ubiquitin pathway, a system involved in most selective protein degradation in eukaryotic cells. In this pathway, proteins are targeted for degradation by ligation to ubiquitin, a process carried out by the sequential action of three enzymes: the ubiquitin-activating enzyme E1, a ubiquitin-carrier protein E2 and a ubiquitin-protein ligase E3. In the system responsible for cyclin B degradation, the E3-like function is carried out by a large complex called cyclosome or anaphase-promoting complex (APC). In the early embryonic cell cycles, the cyclosome is inactive in the interphase, but becomes active at the end of mitosis. Activation requires phosphorylation of the cyclosome/APC by protein kinase Cdk1/cyclin B. The lag kinetics of cyclosome activation may be explained by Suc1-assisted multiple phosphorylations of partly phosphorylated complex. The presence of a Fizzy/Cdc20-like protein is necessary for maximal activity of the mitotic form of cyclosome/APC in cyclin-ubiquitin ligation.  相似文献   

6.
Progression through mitosis occurs because cyclin B/Cdc2 activation induces the anaphase promoting complex (APC) to cause cyclin B destruction and mitotic exit. To ensure that cyclin B/Cdc2 does not prematurely activate the APC in early mitosis, there must be a mechanism delaying APC activation. Emi1 is a protein capable of inhibiting the APC in S and G2. We show here that Emi1 is phosphorylated by Cdc2, and on a DSGxxS consensus site, is subsequently recognized by the SCF(betaTrCP/Slimb) ubiquitin ligase and destroyed, thus providing a delay for APC activation. Failure of betaTrCP-dependent Emi1 destruction stabilizes APC substrates and results in mitotic catastrophe including centrosome overduplication, potentially explaining mitotic deficiencies in Drosophila Slimb/betaTrCP mutants. We hypothesize that Emi1 destruction relieves a late prophase checkpoint for APC activation.  相似文献   

7.
Cellular transition to anaphase and mitotic exit has been linked to the loss of cyclin-dependent kinase 1 (Cdk1) kinase activity as a result of anaphase-promoting complex/cyclosome (APC/C)–dependent specific degradation of its cyclin B1 subunit. Cdk1 inhibition by roscovitine is known to induce premature mitotic exit, whereas inhibition of the APC/C-dependent degradation of cyclin B1 by MG132 induces mitotic arrest. In this study, we find that combining both drugs causes prolonged mitotic arrest in the absence of Cdk1 activity. Different Cdk1 and proteasome inhibitors produce similar results, indicating that the effect is not drug specific. We verify mitotic status by the retention of mitosis-specific markers and Cdk1 phosphorylation substrates, although cells can undergo late mitotic furrowing while still in mitosis. Overall, we conclude that continuous Cdk1 activity is not essential to maintain the mitotic state and that phosphatase activity directed at Cdk1 substrates is largely quiescent during mitosis. Furthermore, the degradation of a protein other than cyclin B1 is essential to activate a phosphatase that, in turn, enables mitotic exit.  相似文献   

8.
The coordination of mitotic spindle formation and chromatin condensation is an essential prerequisite for successful mitosis. Both events are thought to be initiated by cyclin B/Cdk1, whose initial activation occurs in late prophase at the centrosomes. Recently, we have shown that Chk1 localizes to interphase centrosomes and thereby negatively regulates entry into mitosis by preventing premature activation of cyclin B/Cdk1. Here, we demonstrate that inhibition of Chk1 kinase induces mitotic entry with regular spindle assembly but aberrant and mislocalized chromatin. This effect, which we have termed the ‘paraspindle’ phenotype, was reverted by downregulation of Cdc25B phosphatase using siRNA, which restored normal mitosis with regular chromatin. Analogous to Chk1 inhibition, the ‘paraspindle’ phenotype was induced by overexpression of Cdc25B but not Cdc25A. Our results suggest that Chk1 functions to coordinate mitotic events through regulation of Cdc25B.  相似文献   

9.
The accurate division of duplicated DNA is essential for maintenance of genomic stability in proliferating eukaryotic cells. Errors in DNA replication and chromosomal segregation may lead to cell death or genomic mutations that lead to oncogenic properties. Thus, tight regulation of DNA replication and mitosis is essential for maintaining genomic integrity. Cell division cycle 6 (Cdc6) is an essential factor for initiating DNA replication. Recent work shows that phosphorylation of Cdc6 by pololike kinase 1 (Plk1), one of the essential mitotic kinases, regulates mitotic exit mediated by Cdk1 and separase. Here we discuss how pre-replicative complex factors are connected with Plk1 and affect mitotic exit.Key words: Plk1, Cdc6, DNA replication, mitotic exit, chromosomal segregation  相似文献   

10.
Activation of cyclin B1–cyclin-dependent kinase 1 (Cdk1), triggered by a positive feedback loop at the end of G2, is the key event that initiates mitotic entry. In metaphase, anaphase-promoting complex/cyclosome–dependent destruction of cyclin B1 inactivates Cdk1 again, allowing mitotic exit and cell division. Several models describe Cdk1 activation kinetics in mitosis, but experimental data on how the activation proceeds in mitotic cells have largely been lacking. We use a novel approach to determine the temporal development of cyclin B1–Cdk1 activity in single cells. By quantifying both dephosphorylation of Cdk1 and phosphorylation of the Cdk1 target anaphase-promoting complex/cyclosome 3, we disclose how cyclin B1–Cdk1 continues to be activated after centrosome separation. Importantly, we discovered that cytoplasmic cyclin B1–Cdk1 activity can be maintained even when cyclin B1 translocates to the nucleus in prophase. These experimental data are fitted into a model describing cyclin B1–Cdk1 activation in human cells, revealing a striking resemblance to a bistable circuit. In line with the observed kinetics, cyclin B1–Cdk1 levels required to enter mitosis are lower than the amount of cyclin B1–Cdk1 needed for mitotic progression. We propose that gradually increasing cyclin B1–Cdk1 activity after centrosome separation is critical to coordinate mitotic progression.  相似文献   

11.
Tight regulation of the APC/C-Cdc20 ubiquitin ligase that targets cyclin B1 for degradation is important for mitotic fidelity. The spindle assembly checkpoint (SAC) inhibits Cdc20 through the mitotic checkpoint complex (MCC). In addition, phosphorylation of Cdc20 by cyclin B1–Cdk1 independently inhibits APC/C–Cdc20 activation. This creates a conundrum for how Cdc20 is activated before cyclin B1 degradation. Here, we show that the MCC component BubR1 harbors both Cdc20 inhibition and activation activities, allowing for cross-talk between the two Cdc20 inhibition pathways. Specifically, BubR1 acts as a substrate specifier for PP2A-B56 to enable efficient Cdc20 dephosphorylation in the MCC. A mutant Cdc20 mimicking the dephosphorylated state escapes a mitotic checkpoint arrest, arguing that restricting Cdc20 dephosphorylation to the MCC is important. Collectively, our work reveals how Cdc20 can be dephosphorylated in the presence of cyclin B1-Cdk1 activity without causing premature anaphase onset.  相似文献   

12.
Activation of cyclin B1–cyclin-dependent kinase 1 (Cdk1), triggered by a positive feedback loop at the end of G2, is the key event that initiates mitotic entry. In metaphase, anaphase-promoting complex/cyclosome–dependent destruction of cyclin B1 inactivates Cdk1 again, allowing mitotic exit and cell division. Several models describe Cdk1 activation kinetics in mitosis, but experimental data on how the activation proceeds in mitotic cells have largely been lacking. We use a novel approach to determine the temporal development of cyclin B1–Cdk1 activity in single cells. By quantifying both dephosphorylation of Cdk1 and phosphorylation of the Cdk1 target anaphase-promoting complex/cyclosome 3, we disclose how cyclin B1–Cdk1 continues to be activated after centrosome separation. Importantly, we discovered that cytoplasmic cyclin B1–Cdk1 activity can be maintained even when cyclin B1 translocates to the nucleus in prophase. These experimental data are fitted into a model describing cyclin B1–Cdk1 activation in human cells, revealing a striking resemblance to a bistable circuit. In line with the observed kinetics, cyclin B1–Cdk1 levels required to enter mitosis are lower than the amount of cyclin B1–Cdk1 needed for mitotic progression. We propose that gradually increasing cyclin B1–Cdk1 activity after centrosome separation is critical to coordinate mitotic progression.  相似文献   

13.
The activity of Cdk1–cyclin B1 mitotic complexes is regulated by the balance between the counteracting activities of Wee1/Myt1 kinases and Cdc25 phosphatases. These kinases and phosphatases must be strictly regulated to ensure proper mitotic timing. One masterpiece of this regulatory network is Cdk1, which promotes Cdc25 activity and suppresses inhibitory Wee1/Myt1 kinases through direct phosphorylation. The Cdk1-dependent phosphorylation of Wee1 primes phosphorylation by additional kinases such as Plk1, triggering Wee1 degradation at the onset of mitosis. Here we report that Cdc14A plays an important role in the regulation of Wee1 stability. Depletion of Cdc14A results in a significant reduction in Wee1 protein levels. Cdc14A binds to Wee1 at its amino-terminal domain and reverses CDK-mediated Wee1 phosphorylation. In particular, we found that Cdc14A inhibits Wee1 degradation through the dephosphorylation of Ser-123 and Ser-139 residues. Thus the lack of phosphorylation of these two residues prevents the interaction with Plk1 and the consequent efficient Wee1 degradation at the onset of mitosis. These data support the hypothesis that Cdc14A counteracts Cdk1–cyclin B1 activity through Wee1 dephosphorylation.  相似文献   

14.
The accurate division of duplicated DNA is essential for maintenance of genomic stability in proliferating eukaryotic cells. Errors in DNA replication and chromosomal segregation may lead to cell death or genomic mutations that lead to oncogenic properties. Thus, tight regulation of DNA replication and mitosis is essential for maintaining genomic integrity. Cell division cycle 6 (Cdc6) is an essential factor for initiating DNA replication. Recent work shows that phosphorylation of Cdc6 by polo-like kinase 1 (Plk1), one of the essential mitotic kinases, regulates mitotic exit mediated by Cdk1 and separase. Here we discuss how pre-replicative complex factors are connected with Plk1 and affect mitotic exit.  相似文献   

15.
Mitosis requires precise coordination of multiple global reorganizations of the nucleus and cytoplasm. Cyclin-dependent kinase 1 (Cdk1) is the primary upstream kinase that directs mitotic progression by phosphorylation of a large number of substrate proteins. Cdk1 activation reaches the peak level due to positive feedback mechanisms. By inhibiting Cdk chemically, we showed that, in prometaphase, when Cdk1 substrates approach the peak of their phosphorylation, cells become capable of proper M-to-G1 transition. We interfered with the molecular components of the Cdk1-activating feedback system through use of chemical inhibitors of Wee1 and Myt1 kinases and Cdc25 phosphatases. Inhibition of Wee1 and Myt1 at the end of the S phase led to rapid Cdk1 activation and morphologically normal mitotic entry, even in the absence of G2. Dampening Cdc25 phosphatases simultaneously with Wee1 and Myt1 inhibition prevented Cdk1/cyclin B kinase activation and full substrate phosphorylation and induced a mitotic "collapse," a terminal state characterized by the dephosphorylation of mitotic substrates without cyclin B proteolysis. This was blocked by the PP1/PP2A phosphatase inhibitor, okadaic acid. These findings suggest that the positive feedback in Cdk activation serves to overcome the activity of Cdk-opposing phosphatases and thus sustains forward progression in mitosis.  相似文献   

16.
We have found that key mitotic regulators show distinct patterns of degradation during exit from mitosis in human cells. Using a live-cell assay for proteolysis, we show that two of these regulators, polo-like kinase 1 (Plk1) and Aurora A, are degraded at different times after the anaphase-promoting complex/cyclosome (APC/C) switches from binding Cdc20 to Cdh1. Therefore, events in addition to the switch from Cdc20 to Cdh1 control the proteolysis of APC/C(Cdh1) substrates in vivo. We have identified a putative destruction box in Plk1 that is required for degradation of Plk1 in anaphase, and have examined the effect of nondegradable Plk1 on mitotic exit. Our results show that Plk1 proteolysis contributes to the inactivation of Plk1 in anaphase, and that this is required for the proper control of mitotic exit and cytokinesis. Our experiments reveal a role for APC/C-mediated proteolysis in exit from mitosis in human cells.  相似文献   

17.
Polo-like kinase-1 is a target of the DNA damage checkpoint   总被引:1,自引:0,他引:1  
Polo-like kinases (PLKs) have an important role in several stages of mitosis. They contribute to the activation of cyclin B/Cdc2 and are involved in centrosome maturation and bipolar spindle formation at the onset of mitosis. PLKs also control mitotic exit by regulating the anaphase-promoting complex (APC) and have been implicated in the temporal and spatial coordination of cytokinesis. Experiments in budding yeast have shown that the PLK Cdc5 may be controlled by the DNA damage checkpoint. Here we report the effects of DNA damage on Polo-like kinase-1 (Plk1) in a variety of human cell lines. We show that Plk1 is inhibited by DNA damage in G2 and in mitosis. In line with this, we show that DNA damage blocks mitotic exit. DNA damage does not inhibit the kinase activity of Plk1 mutants in which the conserved threonine residue in the T-loop has been changed to aspartic acid, suggesting that DNA damage interferes with the activation of Plk1. Significantly, expression of these mutants can override the G2 arrest induced by DNA damage. On the basis of these data we propose that Plk1 is an important target of the DNA damage checkpoint, enabling cell-cycle arrests at multiple points in G2 and mitosis.  相似文献   

18.
Metaphase of mitosis is brought about in all eukaryotes by activation of cylin-dependent kinase (Cdk1), whereas exit from mitosis requires down-regulation of Cdk1 activity and dephosphorylation of its target proteins. In budding yeast, the completion of mitotic exit requires the release and activation of the Cdc14 protein-phosphatase, which is kept inactive in the nucleolus during most of the cell cycle. Activation of Cdc14 is controlled by two regulatory networks called FEAR (Cdc fourteen early anaphase release) and MEN (mitotic exit network). We have shown recently that the anaphase promoting protease (separase) is essential for Cdc14 activation, thereby it makes mitotic exit dependent on execution of anaphase. Based on this finding, we have proposed a new model for mitotic exit in budding yeast. Here we explain the essence of the model by phaseplane analysis, which reveals two underlying bistable switches in the regulatory network. One bistable switch is caused by mutual activation (positive feedback) between Cdc14 activating MEN and Cdc14 itself. The mitosis-inducing Cdk1 activity inhibits the activation of this positive feedback loop and thereby controlling this switch. The other irreversible switch is generated by a double-negative feedback (mutual antagonism) between mitosis inducing Cdk1 activity and its degradation machinery (APC(Cdh1)). The Cdc14 phosphatase helps turning this switch in favor of APC(Cdh1) side. Both of these bistable switches have characteristic thresholds, the first one for Cdk1 activity, while the second for Cdc14 activity. We show that the physiological behaviors of certain cell cycle mutants are suggestive for those Cdk1 and Cdc14 thresholds. The two bistable switches turn on in a well-defined order. In this paper, we explain how the activation of Cdc20 (which causes the activation of separase and a decrease of Cdk1 kinase activity) provides an initial trigger for the activation of the MEN-Cdc14 positive feedback loops, which in turn, flips the second irreversible Cdk-APC(Cdh1) switch on the APC(Cdh1) side).  相似文献   

19.
Unlike in budding yeast, sister chromatid cohesion in vertebrate cells is resolved in two steps: cohesin complexes are removed from sister chromatid arms during prophase via phosphorylation, whereas centromeric cohesins are removed at anaphase by Separase. Phosphorylation of cohesin subunit SA2 by polo-like kinase 1 (Plk1) is required for the removal of cohesins at prophase, but how Plk1 is recruited to phosphorylate SA2 during prophase is currently not known. Here we report that Sororin, a cohesin-interacting protein essential for sister chromatid cohesion, plays a novel role in the resolution of sister chromatid arms by direct interaction with Plk1. We identified an evolutionarily conserved motif (ST(159)P) on Sororin, which was phosphorylated by Cdk1/cyclin B and bound to the polo box domain of Plk1. Mutating Thr(159) into alanine prevented the interaction of Plk1 and Sororin and inhibited the resolution of chromosomal arm cohesion. We propose that Sororin is phosphorylated by Cdk1/cyclin B at prophase and acts as a docking protein to bring Plk1 into proximity with SA2, resulting in the phosphorylation of SA2 and the removal of cohesin complexes from chromosomal arms.  相似文献   

20.
p33cdk2 is a serine-threonine protein kinase that associates with cyclins A, D, and E and has been implicated in the control of the G1/S transition in mammalian cells. Recent evidence indicates that cyclin-dependent kinase 2 (Cdk2), like its homolog Cdc2, requires cyclin binding and phosphorylation (of threonine-160) for activation in vivo. However, the extent to which mechanistic details of the activation process are conserved between Cdc2 and Cdk2 is unknown. We have developed bacterial expression and purification systems for Cdk2 and cyclin A that allow mechanistic studies of the activation process to be performed in the absence of cell extracts. Recombinant Cdk2 is essentially inactive as a histone H1 kinase (< 4 x 10(-5) pmol phosphate transferred.min-1 x microgram-1 Cdk2). However, in the presence of equimolar cyclin A, the specific activity is approximately 16 pmol.mon-1 x microgram-1, 4 x 10(5)-fold higher than Cdk2 alone. Mutation of T160 in Cdk2 to either alanine or glutamic acid had little impact on the specific activity of the Cdk2/cyclin A complex: the activity of Cdk2T160E was indistinguishable from Cdk2, whereas that of Cdk2T160A was reduced by five-fold. To determine if the Cdk2/cyclin A complex could be activated further by phosphorylation of T160, complexes were treated with Cdc2 activating kinase (CAK), purified approximately 12,000-fold from Xenopus eggs. This treatment resulted in an 80-fold increase in specific activity. This specific activity is comparable with that of the Cdc2/cyclin B complex after complete activation by CAK (approximately 1600 pmol.mon-1 x microgram-1). Neither Cdk2T160A/cyclin A nor Cdk2T160E/cyclin A complexes were activated further by treatment with CAK. In striking contrast with cyclin A, cyclin B did not directly activate Cdk2. However, both Cdk2/cyclin A and Cdk2/cyclin B complexes display similar activity after activation by CAK. For the Cdk2/cyclin A complex, both cyclin binding and phosphorylation contribute significantly to activation, although the energetic contribution of cyclin A binding is greater than that of T160 phosphorylation by approximately 5 kcal/mol. The potential significance of direct activation of Cdk2 by cyclins with respect to regulation of cell cycle progression is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号