首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The CCA-adding enzyme (ATP:tRNA adenylyltransferase or CTP:tRNA cytidylyltransferase (EC )) generates the conserved CCA sequence responsible for the attachment of amino acid at the 3' terminus of tRNA molecules. It was shown that enzymes from various organisms strictly recognize the elbow region of tRNA formed by the conserved D- and T-loops. However, most of the mammalian mitochondrial (mt) tRNAs lack consensus sequences in both D- and T-loops. To characterize the mammalian mt CCA-adding enzymes, we have partially purified the enzyme from bovine liver mitochondria and determined cDNA sequences from human and mouse dbESTs by mass spectrometric analysis. The identified sequences contained typical amino-terminal peptides for mitochondrial protein import and had characteristics of the class II nucleotidyltransferase superfamily that includes eukaryotic and eubacterial CCA-adding enzymes. The human recombinant enzyme was overexpressed in Escherichia coli, and its CCA-adding activity was characterized using several mt tRNAs as substrates. The results clearly show that the human mt CCA-adding enzyme can efficiently repair mt tRNAs that are poor substrates for the E. coli enzyme although both enzymes work equally well on cytoplasmic tRNAs. This suggests that the mammalian mt enzymes have evolved so as to recognize mt tRNAs with unusual structures.  相似文献   

3.
Mammalian mitochondrial translational initiation factor 3 (IF3(mt)) binds to the small subunit of the ribosome displacing the large subunit during the initiation of protein biosynthesis. About half of the proteins in mitochondrial ribosomes have homologs in bacteria while the remainder are unique to the mitochondrion. To obtain information on the ribosomal proteins located near the IF3(mt) binding site, cross-linking studies were carried out followed by identification of the cross-linked proteins by mass spectrometry. IF3(mt) cross-links to mammalian mitochondrial homologs of the bacterial ribosomal proteins S5, S9, S10, and S18-2 and to unique mitochondrial ribosomal proteins MRPS29, MRPS32, MRPS36 and PTCD3 (Pet309) which has now been identified as a small subunit ribosomal protein. IF3(mt) has extensions on both the N- and C-termini compared to the bacterial factors. Cross-linking of a truncated derivative lacking these extensions gives the same hits as the full length IF3(mt) except that no cross-links were observed to MRPS36. IF3 consists of two domains separated by a flexible linker. Cross-linking of the isolated N- and C-domains was observed to a range of ribosomal proteins particularly with the C-domain carrying the linker which showed significant cross-linking to several ribosomal proteins not found in prokaryotes.  相似文献   

4.
Mitochondrial translation is essentially bacteria-like, reflecting the bacterial endosymbiotic ancestry of the eukaryotic organelle. However, unlike the translation system of its bacterial ancestors, mitochondrial translation is limited to just a few mRNAs, mainly coding for components of the respiratory complex. The classical bacterial initiation factors (IFs) IF1, IF2 and IF3 are universal in bacteria, but only IF2 is universal in mitochondria (mIF2). We analyse the distribution of mitochondrial translation initiation factors and their sequence features, given two well-propagated claims: first, a sequence insertion in mitochondrial IF2 (mIF2) compensates for the universal lack of IF1 in mitochondria, and secondly, no homologue of mitochondrial IF3 (mIF3) is identifiable in Saccharomyces cerevisiae. Our comparative sequence analysis shows that, in fact, the mIF2 insertion is highly variable and restricted in length and primary sequence conservation to vertebrates, while phylogenetic and in vivo complementation analyses reveal that an uncharacterized S. cerevisiae mitochondrial protein currently named Aim23p is a bona fide evolutionary and functional orthologue of mIF3. Our results highlight the lineage-specific nature of mitochondrial translation and emphasise that comparative analyses among diverse taxa are essential for understanding whether generalizations from model organisms can be made across eukaryotes.  相似文献   

5.
The mammalian mitochondrial (mt) ribosome (mitoribosome) is a bacterial-type ribosome but has a highly protein-rich composition. Almost half of the rRNA contained in the bacterial ribosome is replaced with proteins in the mitoribosome. Escherichia coli elongation factor G (EF-G Ec) has no translocase activity on the mitoribosome but EF-G mt is functional on the E.coli ribosome. To investigate the functional equivalency of the mt and E.coli ribosomes, we prepared hybrid mt and E.coli ribosomes. The hybrid mitoribosome containing E.coli L7/12 (L7/12 Ec) instead of L7/12 mt clearly activated the GTPase of EF-G Ec and efficiently promoted its translocase activity in an in vitro translation system. Thus, the mitoribosome is functionally equivalent to the E.coli ribosome despite their distinct compositions. The mt EF-Tu-dependent translation activity of the E.coli ribosome was also clearly enhanced by replacing the C-terminal domain (CTD) of L7/12 Ec with the mt counterpart (the hybrid E.coli ribosome). This strongly indicates that the CTD of L7/12 is responsible for EF-Tu function. These results demonstrate that functional compatibility between elongation factors and the L7/12 protein in the ribosome governs its translational specificity.  相似文献   

6.
Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. We have reconstituted an in vitro translation system from mammalian mitochondria, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a tRNA mixture from either Escherichia coli or yeast. The system is capable of translating leaderless mRNAs encoding model proteins (DHFR and nanoLuciferase) or some mtDNA-encoded proteins. We show that a leaderless mRNA, encoding nanoLuciferase, is faithfully initiated without the need for any auxiliary factors other than IF-2mt and IF-3mt. We found that the ribosome-dependent GTPase activities of both the translocase EF-G1mt and the recycling factor EF-G2mt are insensitive to fusidic acid (FA), the translation inhibitor that targets bacterial EF-G homologs, and consequently the system is resistant to FA. Moreover, we demonstrate that a polyproline sequence in the protein causes 55S mitochondrial ribosome stalling, yielding ribosome nascent chain complexes. Analyses of the effects of the Mg concentration on the polyproline-mediated ribosome stalling suggested the unique regulation of peptide elongation by the mitoribosome. This system will be useful for analyzing the mechanism of translation initiation, and the interactions between the nascent peptide chain and the mitochondrial ribosome.  相似文献   

7.
During protein biosynthesis, elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes. This factor is highly conserved throughout evolution. However, several key residues differ between bacterial and mammalian mitochondrial EF-Tu (EF-Tu(mt)). One such residue is Ser221 (Escherichia coli numbering). This residue is conserved as a Ser or Thr in the bacterial factors but is present as Pro269 in EF-Tu(mt). Pro269 reorients the loop containing this residue and shifts the adjoining beta-strand in EF-Tu(mt) compared to that of E. coli EF-Tu potentially altering the binding pocket for the acceptor stem of the aa-tRNA. Pro269 was mutated to a serine residue (P269S) in EF-Tu(mt). For comparison, the complementary mutation was created at Ser221 in E. coli EF-Tu (S221P). The E. coli EF-Tu S221P variant is poorly expressed in E. coli and the majority of the molecules fail to fold into an active conformation. In contrast, EF-Tu(mt) P269S is expressed to a high level in E. coli. When corrected for the percentage of active molecules, both variants function as effectively as their respective wild-type factors in ternary complex formation using E. coli Phe-tRNA(Phe) and Cys-tRNA(Cys). They are also active in A-site binding and in vitro translation assays with E. coli Phe-tRNA(Phe). In addition, both variants are as active as their respective wild-type factors in ternary complex formation, A-site binding and in vitro translation assays using mitochondrial Phe-tRNA(Phe).  相似文献   

8.
During initiation of bacterial protein synthesis, messenger RNA and fMet-tRNAfMet bind to the 30S ribosomal subunit together with initiation factors IF1, IF2, and IF3. Docking of the 30S preinitiation complex to the 50S ribosomal subunit results in a peptidyl-transfer competent 70S ribosome. Initiation with an elongator tRNA may lead to frameshift and an aberrant N-terminal sequence in the nascent protein. We show how the occurrence of initiation errors is minimized by (1) recognition of the formyl group by the synergistic action of IF2 and IF1, (2) uniform destabilization of the binding of all tRNAs to the 30S subunit by IF3, and (3) an optimal distance between the Shine-Dalgarno sequence and the initiator codon. We suggest why IF1 is essential for E. coli, discuss the role of the G-C base pairs in the anticodon stem of some tRNAs, and clarify gene expression changes with varying IF3 concentration in the living cell.  相似文献   

9.
Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subunit. The factor has been suggested to rescue stalled ribosomes in a codon-independent manner. The mechanism of action of this factor was obscure and is addressed here. Using a homologous mitochondria system of purified components, we demonstrate that the integrated ICT1 has no rescue activity. Rather, purified ICT1 binds stoichiometrically to mitochondrial ribosomes in addition to the integrated copy and functions as a general rescue factor, i.e. it releases the polypeptide from the peptidyl tRNA from ribosomes stalled at the end or in the middle of an mRNA or even from non-programmed ribosomes. The data suggest that the unusual termination at a sense codon (AGA/G) of the oxidative-phosphorylation enzymes CO1 and ND6 is also performed by ICT1 challenging a previous model, according to which RF1Lmt/mtRF1a is responsible for the translation termination at non-standard stop codons. We also demonstrate by mutational analyses that the unique insertion sequence present in the N-terminal domain of ICT1 is essential for peptide release rather than for ribosome binding. The function of RF1mt, another member of the class1 RFs in mammalian mitochondria, was also examined and is discussed.  相似文献   

10.
Mitochondrial complexes I, III(2), and IV from human cytotrophoblast and syncytiotrophoblast associate to form supercomplexes or respirasomes, with the following stoichiometries: I(1):(III(2))(1) and I(1):(III(2))(1-2):IV(1-4). The content of respirasomes was similar in both cell types after isolating mitochondria. However, syncytiotrophoblast mitochondria possess low levels of dimeric complex V and do not have orthodox cristae morphology. In contrast, cytotrophoblast mitochondria show normal cristae morphology and a higher content of ATP synthase dimer. Consistent with the dimerizing role of the ATPase inhibitory protein (IF(1)) (García, J. J., Morales-Ríos, E., Cortés-Hernandez, P., and Rodríguez-Zavala, J. S. (2006) Biochemistry 45, 12695-12703), higher relative amounts of IF(1) were observed in cytotrophoblast when compared with syncytiotrophoblast mitochondria. Therefore, there is a correlation between dimerization of complex V, IF(1) expression, and the morphology of mitochondrial cristae in human placental mitochondria. The possible relationship between cristae architecture and the physiological function of the syncytiotrophoblast mitochondria is discussed.  相似文献   

11.
Members of the YidC/Oxa1/Alb3 protein family function in the biogenesis of membrane proteins in bacteria, mitochondria and chloroplasts. In Escherichia coli, YidC plays a key role in the integration and assembly of many inner membrane proteins. Interestingly, YidC functions both in concert with the Sec-translocon and as a separate insertase independent of the translocon. Mitochondria of higher eukaryotes contain two distant homologues of YidC: Oxa1 and Cox18/Oxa2. Oxa1 is required for the insertion of membrane proteins into the mitochondrial inner membrane. Cox18/Oxa2 plays a poorly defined role in the biogenesis of the cytochrome c oxidase complex. Employing a genetic complementation approach by expressing the conserved region of yeast Cox18 in E. coli, we show here that Cox18 is able to complement the essential Sec-independent function of YidC. This identifies Cox18 as a bona fide member of the YidC/Oxa1/Alb3 family.  相似文献   

12.
Yeast mitochondrial initiation factor 2 (ymIF2) is encoded by the nuclear IFM1 gene. A His-tagged version of ymIF2, lacking its predicted mitochondrial presequence, was expressed in Escherichia coli and purified. Purified ymIF2 bound both E. coli fMet-tRNA(f)(Met) and Met-tRNA(f)(Met), but binding of formylated initiator tRNA was about four times higher than that of the unformylated species under the same conditions. In addition, the isolated ymIF2 was compared to E. coli IF2 in four other assays commonly used to characterize this initiation factor. Formylated and nonformylated Met-tRNA(f)(Met) were bound to E. coli 30S ribosomal subunits in the presence of ymIF2, GTP, and a short synthetic mRNA. The GTPase activity of ymIF2 was found to be dependent on the presence of E. coli ribosomes. The ymIF2 protected fMet-tRNA(f)(Met) to about the same extent as E. coli IF2 against nonenzymatic deaminoacylation. In contrast to E. coli IF2, the complex formed between ymIF2 and fMet-tRNA(f)(Met) was not stable enough to be analyzed in a gel shift assay. In similarity to other IF2 species isolated from bacteria or bovine mitochondria, the N-terminal domain could be eliminated without loss of initiator tRNA binding activity.  相似文献   

13.
The molybdenum co-factor (Moco) is an essential part of all eukaryotic molybdoenzymes. It is a molybdopterin and reveals the same principal structure in eubacteria, archaebacteria and eukaryotes. This paper reports the isolation of cnx1 , a cDNA clone of Arabidopsis thaliana which complements the Escherichia coli Moco mutant mogA . The mapping data of this cDNA correlate well with the mapping position of the A. thaliana molybdenum cofactor locus chl6 . As mutants in chl6 are known to be repairable by high concentrations of molybdate, the defective gene is very likely to be involved in the last step of Moco biosynthesis, that is, the insertion of molybdenum into molybdopterin. The protein encoded by cnx1 shows a two-domain structure: the N-terminal domain is homologous to the E. coli Moco protein MoeA, the C-terminal domain is homologous to the E. coli Moco proteins MoaB and MogA, respectively. These homologies show that part of the prokaryotic Moco biosynthetic pathway accomplished by monofunctional proteins in E. coli , is performed by a single multifunctional protein in eukaryotes. In addition Cnx1 is homologous to the eukaryotic proteins Gephyrin, a rat neuroprotein, and Cinnamon, a Drosophila protein with a function in Moco biosynthesis. These proteins also show a two-domain structure but the order of the domains is inversed as compared with Cnx1. Southern analysis indicates the existence of at least one further member, in addition to the cnx1 gene, of this novel gene family in the Arabidopsis genome.  相似文献   

14.
15.
The bovine liver mitochondrial factor that promotes the binding of fMet-tRNA to mitochondrial ribosomes, initiation factor 2 (IF-2mt), has been identified in the postribosomal supernatant fraction of isolated liver mitochondria. This factor has been purified approximately 5,000-fold and present preparations are estimated to be about 10% pure. IF-2mt has an apparent molecular weight of about 140,000 as determined by gel filtration chromatography. IF-2mt is active in stimulating fMet-tRNA binding to Escherichia coli ribosomes but E. coli IF-2 is not active in promoting initiator tRNA binding to animal mitochondrial ribosomes. The IF-2mt-mediated binding of fMet-tRNAi(Met) to mitochondrial ribosomes is dependent on the presence of a message such as poly(A,U,G) and on GTP. Nonhydrolyzable analogs of GTP are 2-3-fold less effective in promoting initiation complex formation on mitochondrial ribosomes than is GTP suggesting that IF-2mt is capable of recycling to some extent under the current assay conditions.  相似文献   

16.
Elongation factor G (EF-G) catalyzes the translocation step of protein biosynthesis. Genomic analysis suggests that two isoforms of this protein occur in mitochondria. The region of the cDNA coding for the mature sequence of isoform 1 of human mitochondrial EF-G (EF-G1(mt)) has been cloned and expressed in Escherichia coli. The recombinant protein has been purified to near homogeneity by chromatography on Ni-NTA resins and cation exchange high performance liquid chromatography. EF-G1(mt) is active on both bacterial and mitochondrial ribosomes. Human EF-G1(mt) is considerably more resistant to fusidic acid than many bacterial translocases. A molecular model for EF-G1(mt) has been created and analyzed in the context of its relationship to the translocases from other systems.  相似文献   

17.
The translation system of mammalian mitochondria   总被引:2,自引:0,他引:2  
Oligoribonucleotides and mRNA were used to define properties of the bovine mitoribosomal mRNA binding site. The RNA binding domain on the 28 S subunit spans approx. 80 nucleotides of the template, based on ribosome protection experiments, but the major interaction with the ribosome occurs over a 30 nucleotide stretch. The binding site for E. coli IF3 is conserved in bovine mitoribosomes, but mitochondrial factors appear essential for proper interaction of mRNA with mitoribosomes. The small subunit of bovine mitoribosomes contains a high-affinity binding site for guanyl nucleotides, further indication of specialized mechanisms for initiation complex formation and function of mammalian mitochondrial ribosomes.  相似文献   

18.
The amino acid sequence of the Dsg protein is 50% identical to that of translation initiation factor IF3 of Escherichia coli, the product of its infC gene. Anti-E. coli IF3 antibodies cross-react with the Dsg protein. Tn5 insertion mutations in dsg are lethal. When ample nutrients are available, however, certain dsg point mutant strains grow at the same rate as wild-type cells. Under the starvation conditions that induce fruiting body development, these dsg mutants begin to aggregate but fail to develop further. The level of Dsg antigen, as a fraction of total cell protein, does not change detectably during growth and development, as expected for a factor essential for protein synthesis. The amount of IF3 protein in E. coli is known to be autoregulated at the translational level. This autoregulation is lost in an E. coli infC362 missense mutant. The dsg+ gene from Myxococcus xanthus restores normal autoregulation to the infC362 mutant strain. Dsg is distinguished from IF3 of E. coli, other enteric bacteria, and Bacillus stearothermophilus by having a C-terminal tail of 66 amino acids. Partial and complete deletion of this tail showed that it is needed for certain vegetative and developmental functions but not for viability.  相似文献   

19.
Bovine mitochondrial translational initiation factor 2 (IF-2(mt)) is organized into four domains, an N-terminal domain, a central G-domain and two C-terminal domains. These domains correspond to domains III-VI in the six-domain model of Escherichia coli IF-2. Variants in IF-2(mt) were prepared and tested for their abilities to bind the small (28S) subunit of the mitochondrial ribosome. The binding of wild-type IF-2(mt) was strong (K(d) approximately 10-20 nM) and was not affected by fMet-tRNA. Deletion of the N-terminal domain substantially reduced the binding of IF-2(mt) to 28S subunits. However, the addition of fMet-tRNA stimulated the binding of this variant at least 2-fold demonstrating that contacts between fMet-tRNA and IF-2(mt) can stabilize the binding of this factor to 28S subunits. No binding was observed for IF-2(mt) variants lacking the G-domain which probably plays a critical role in organizing the structure of IF-2(mt). IF-2(mt) contains a 37-amino acid insertion region between domains V and VI that is not found in the prokaryotic factors. Mutations in this region caused a significant reduction in the ability of the factor to promote initiation complex formation and to bind 28S subunits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号