首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Inferring the evolutionary and ecological processes that have shaped contemporary species distributions using the geographic distribution of gene lineages is the principal goal of phylogeographic research. Researchers in the field have recognized that inferences made from a single gene, often mitochondrial, can be informative regarding the pattern of diversification but lack conclusive information regarding the evolutionary mechanisms that led to the observed patterns. Here, we use a multilocus (20 loci) data set to explore the evolutionary history of the White‐breasted Nuthatch (Sitta carolinensis). A previous single‐locus study found S. carolinensis is comprised of four reciprocally monophyletic clades geographically restricted to the pine and oak forests of: (i) eastern North America, (ii) southern Rocky Mountain and Mexican Mountain ranges, (iii) Eastern Sierra Nevada and Northern Rocky Mountains and (iv) Pacific slope of North America. The diversification of the clades was attributed to the fragmentation of North American pine and oak woodlands in the Pliocene with subsequent divergences owing to the Pleistocene glacial cycles. Principal component, clustering and species tree analyses of the multilocus data resolved the same four groups or lineages found in the single‐locus study. Coalescent analyses and hypothesis testing of nested isolation and migration models indicate that isolation and not gene flow has been the major evolutionary mechanism responsible for shaping genetic variation, and all the divergence events within S. carolinensis have occurred in response to the Pleistocene glacial cycles.  相似文献   

2.
Little is known about the evolutionary history of most complex multi‐trophic insect communities. Widespread species from different trophic levels might evolve in parallel, showing similar spatial patterns and either congruent temporal patterns (Contemporary Host‐tracking) or later divergence in higher trophic levels (Delayed Host‐tracking). Alternatively, host shifts by natural enemies among communities centred on different host resources could disrupt any common community phylogeographic pattern. We examined these alternative models using two Megastigmus parasitoid morphospecies associated with oak cynipid galls sampled throughout their Western Palaearctic distributions. Based on existing host cynipid data, a parallel evolution model predicts that eastern regions of the Western Palaearctic should contain ancestral populations with range expansions across Europe about 1.6 million years ago and deeper species‐level divergence at both 8–9 and 4–5 million years ago. Sequence data from mitochondrial cytochrome b and multiple nuclear genes showed similar phylogenetic patterns and revealed cryptic genetic species within both morphospecies, indicating greater diversity in these communities than previously thought. Phylogeographic divergence was apparent in most cryptic species between relatively stable, diverse, putatively ancestral populations in Asia Minor and the Middle East, and genetically depauperate, rapidly expanding populations in Europe, paralleling patterns in host gallwasp species. Mitochondrial and nuclear data also suggested that Europe may have been colonized multiple times from eastern source populations since the late Miocene. Temporal patterns of lineage divergence were congruent within and across trophic levels, supporting the Contemporary Host‐tracking Hypothesis for community evolution.  相似文献   

3.
Knouft JH 《Oecologia》2004,139(3):408-417
Many taxonomic and ecological assemblages of species exhibit a right-skewed body size-frequency distribution when characterized at a regional scale. Although this distribution has been frequently described, factors influencing geographic variation in the distribution are not well understood, nor are mechanisms responsible for distribution shape. In this study, variation in the species body size-frequency distributions of 344 regional communities of North American freshwater fishes is examined in relation to latitude, species richness, and taxonomic composition. Although the distribution of all species of North American fishes is right-skewed, a negative correlation exists between latitude and regional community size distribution skewness, with size distributions becoming left-skewed at high latitudes. This relationship is not an artifact of the confounding relationship between latitude and species richness in North American fishes. The negative correlation between latitude and regional community size distribution skewness is partially due to the geographic distribution of families of fishes and apparently enhanced by a nonrandom geographic distribution of species within families. These results are discussed in the context of previous explanations of factors responsible for the generation of species size-frequency distributions related to the fractal nature of the environment, energetics, and evolutionary patterns of body size in North American fishes.  相似文献   

4.
Current Common Agricultural Policy (CAP) subsidies in the Mediterranean region tend to prioritize afforestation on former arable land with oaks rather than pines because pine plantations would maintain lower biological diversities than native forests. Nevertheless, no thorough evaluations of the conservation values of pine plantations as compared to oak remnants have been carried out to date. We analyze the diversity and conservation value of bird assemblages breeding in 200 remnants of Holm oak Quercus ilex woodlands and 82 mature (>50-year-old) pine plantations in central Spain, a Mediterranean region mostly devoted to arable farming. Species–area relationships were compared between forest types. The conservation value of bird assemblages was assessed using the “Species of European Conservation Concern” (SPEC) classification of Burfield and van Bommel [(2004). Birds in Europe: Populations estimates, trends and conservation status. Cambridge: BirdLife International]. Overall numbers of bird species maintained by oak and pine archipelagoes were rather similar, but species–area relationships differed between forest types. Intercepts were higher in oak fragments, whereas slopes were steeper in pine plantations. Small oak fragments held more species (mainly Mediterranean Sylvia warblers) than plantations, whereas large plantations held more species than large oak remnants. Differences in species–area relationships seemed to be due to differences in vegetation structure, especially understorey shrub cover and tree height and cover. We recorded nine SPECs, all exclusive (6) or near-exclusive (3) to oak woodlands, although such woodlands do not appear to be critical for their conservation. Hence, we conclude that pine afforestations have played a role for maintaining and restoring forest bird communities in the farming landscapes of central Spain. Promoting large and shrubby plantations would enhance their conservation value for breeding birds, together with promoting growth, regeneration and expansion of Holm oak remnants by means of set-aside measures previous or alternative to oak reafforestation. The increasing importance of non-commercial as compared to commercial values of Mediterranean forests would justify subsidizing the proposed policy.  相似文献   

5.
Aim Primary and secondary genetic clines in post-glacial colonized regions have different implications for biogeographic distributions and the origin of species. Primary clines arise in situ after colonization as adaptive responses to environmental gradients, while secondary clines are caused by contact between vicariant lineages. Here we analyse primary versus secondary origin of a genetic cline in the tephritid fly Urophora cardui in Jutland, Denmark, in a post-glacial landscape. Location Western Palaearctic. Methods Phylogeographic and demographic analyses of U. cardui based on mitochondrial DNA (mtDNA) genealogies, hierarchical genetic variance tests based on allozymes and distribution analysis of a rare allele from the Jutland cline. Results There was no phylogeographic divergence between the Jutland population of U. cardui north of the cline and neighbouring western European regional populations, which all shared the common western European mtDNA haplotype H1. At nuclear loci, by contrast, the North Jutland population was diverged above the mean level of divergence among regional populations and had no loss of genetic variation. A rare allozyme allele that was frequent in the cline area (up to 45%) and was missing north of the cline also occurred at low frequency (0–14%) elsewhere in the sampling range. Shallow phylogeographic divergence was observed between Russian and western European populations and between English and continental populations. Main conclusions The genetic variation patterns support primary cline evolution and parapatric divergence in Jutland following a demographic expansion of a western European ancestral source population of U. cardui, and suggest cryptic refugia and/or selection in other European population assemblages. The patterns of intra-specific regional divergence are discussed with respect to the interpretation of cryptic refugia in Europe after the most recent ice age.  相似文献   

6.
The emerald ash borer (EAB) Agrilus planipennis, first detected in 2002 in the vicinity of Detroit, Michigan, USA, has spread throughout much of eastern and midwestern North America as of 2016, resulting in widespread mortality of ash trees in the genus Fraxinus. We investigated the effects of this newly available, exotic food source on populations of six species of largely resident insectivorous birds, including five species of woodpeckers and white-breasted nuthatch (Sitta canadensis), using North American Breeding Bird Survey data for breeding season estimates and Audubon Christmas Bird Counts for winter season estimates. We found evidence for relatively modest and variable effects of EAB invasion on the populations of these birds during the breeding season, but highly significant numerical increases during the winter that in several cases appeared to be increasing as the EAB invasion has progressed. Our results confirm that the EAB invasion is resulting in increased populations of several insectivorous birds, primarily during the winter. They also suggest that the numerical response of woodpeckers to EAB may be such that avian predation, which represents a significant, and possibly the largest, morality factor affecting some EAB populations, may continue to increase and help control the EAB epidemic as the invasion continues.  相似文献   

7.
Shifts in species' phenology in response to climate change have wide-ranging consequences for ecological systems. However, significant variability in species' responses, together with limited data, frustrates efforts to forecast the consequences of ongoing phenological changes. Herein, we use a case study of three North American plant communities to explore the implications of variability across levels of organisation (within and among species, and among communities) for forecasting responses to climate change. We show how despite significant variation among species in sensitivities to climate, comparable patterns emerge at the community level once regional climate drivers are accounted for. However, communities differ with respect to projected patterns of divergence and overlap among their species' phenological distributions in response to climate change. These analyses and a review of hypotheses suggest how explicit consideration of spatial scale and levels of biological organisation may help to understand and forecast phenological responses to climate change.  相似文献   

8.
The emerald ash borer (EAB) Agrilus planipennis, first detected in 2002 in the vicinity of Detroit, Michigan, USA, is one of the most recent in a long list of introduced insect pests that have caused serious damage to North American forest trees, in this case ash trees in the genus Fraxinus. We used data from Project FeederWatch, a citizen science program focused on winter bird populations, to quantify the effects of EAB invasion on four species of resident, insectivorous birds known or likely to be EAB predators: three woodpecker species and the white-breasted nuthatch (Sitta canadensis). We compared relative numbers of birds within 50 km of the epicenter of the region where EAB was first detected, an area known to have suffered high ash tree mortality by 2008, to numbers 50–100 km from the epicenter and to control sites within 50 km of five comparable Midwestern cities where damage due to EAB has yet to be severe. We found evidence for significant effects on all four of the species in response to the EAB invasion in the highly impacted region, with red-bellied woodpeckers (Melanerpes carolinus) and white-breasted nuthatches showing numerical increases while downy woodpeckers (Picoides pubescens) and hairy woodpeckers (Picoides villosus) initially declined but exhibited at least temporary increases several years later. Temporal correlation analyses failed to provide support for immigration being a major cause of the elevated numbers in the highly impacted area, and thus these results are consistent with the hypothesis that increases were due to enhanced survival and/or reproduction associated with the EAB invasion within the highly impacted area. Results suggest that the continuing invasion of EAB into new areas is likely to significantly alter avian communities, although not always in ways that will be easy to predict.  相似文献   

9.
Diversity was studied in 10 communities, including the understory of native oak woodland, planted woodlands (pine and eucalypt), and shrublands in the strict sense (heathlands, broom shrublands, gorse shrublands).In each community, species richness, diversity, dominance and evenness were analysed. Differences were observed among communities with regard to species composition, richness in annual herbs, perennial herbs and shrubs, dominant plant families (Ericaceae, Papilionaceae) and diversification of shrub species.The possible relations between environmental stress and/or human influences on differences in diversity are discussed.  相似文献   

10.
Adaptive evolution is often associated with speciation. In plants, however, ecotypic differentiation is common within widespread species, suggesting that climatic and edaphic specialization can outpace cladogenesis and the evolution of postzygotic reproductive isolation. We used cpDNA sequence (5 noncoding regions, 3.5 kb) and amplified fragment length polymorphisms (AFLPs: 4 primer pairs, 1,013 loci) to evaluate the history of ecological differentiation in the North American Achillea millefolium, an autopolyploid complex of "ecological races" exhibiting morphological, physiological, and life-history adaptations to diverse environments. Phylogenetic analyses reveal North American A. millefolium to be a monophyletic group distinct from its European and Asian relatives. Based on patterns of sequence divergence, as well as fossil and paleoecological data, colonization of North America appears to have occurred via the Bering Land Bridge during the Pleistocene (1.8 MYA to 11,500 years ago). Population genetic analyses indicate negligible structure within North American A. millefolium associated with varietal identity, geographic distribution, or ploidy level. North American populations, moreover, exhibit the signature of demographic expansion. These results affirm the "ecotype" concept of the North American Achillea advocated by classical research and demonstrate the rapid rate of ecological differentiation that sometimes occurs in plants.  相似文献   

11.
Abstract. European Mediterranean landscapes have undergone changes in structure in recent years as a result of widespread agricultural land abandonment and cessation of silvicultural regimes. Studies concerning the regeneration dynamics of dominant forest species have become critical to the prediction of future landscape trends in these changing forest stands. Quercus ilex (holm oak) and Q. pubescens (downy oak) are considered to be the terminal point of secondary succession in extensive areas of the Mediterranean region. Recent studies, however, have suggested the existence of recruitment bottlenecks in oak genet populations as a result of current management regimes. In this study, we present evidence of the successful establishment of Q. ilex and Q. pubescens in Pinus halepensis (Aleppo pine) woodlands. We investigate the distribution patterns and spatial relationships among oak recruits and resident pines. Established P. halepensis is randomly distributed throughout the study area. Oak seedlings are positively associated with pine trees, suggesting that P. halepensis individuals provide safe sites for oak genet recruitment. We show that spatial patterns of recruitment are in agreement with the general model of spatial segregation described for other Mediterranean plant communities, with seeder species colonizing large openings after disturbance, followed by a more aggregated recruitment of resprouter species.  相似文献   

12.
In this paper, we use mitochondrial NADH dehydrogenase subunit 2 sequences to test Pleistocene refugial hypotheses for the pygmy nuthatch (Sitta pygmaea). Pygmy nuthatches are a common resident of long-needle pine forests in western North America and demonstrate a particular affinity with ponderosa pine (Pinus ponderosa). Palaeoecological and genetic data indicate that ponderosa pine was isolated in two Pleistocene refugia corresponding to areas in the southern Sierra Nevada in the west and southern Arizona and New Mexico in the east. We use coalescent simulations to test the hypothesis that pygmy nuthatches tracked the Pleistocene history of their preferred habitat and persisted in two refugia during the periods of glacial maxima. Coalescent simulation of population history does not support the hypothesis of two Pleistocene refugia for the pygmy nuthatch. Instead, our data are consistent with a single refuge model. Nucleotide diversity is greatest in the western populations of southern and coastal California. We suggest that the pygmy nuthatch expanded from a far western glacial refuge into its current distribution since the most recent glacial maximum.  相似文献   

13.
Understanding the dual roles of demographic and selective processes in the buildup of population divergence is one of the most challenging tasks in evolutionary biology. Here, we investigated the demographic history of Atlantic salmon across the entire species range using 2035 anadromous individuals from North America and Eurasia. By combining results from admixture graphs, geo‐genetic maps, and an Approximate Bayesian Computation (ABC) framework, we validated previous hypotheses pertaining to secondary contact between European and Northern American populations, but also identified secondary contacts in European populations from different glacial refugia. We further identified the major sources of admixture from the southern range of North America into more northern populations along with a strong signal of secondary gene flow between genetic regional groups. We hypothesize that these patterns reflect the spatial redistribution of ancestral variation across the entire North American range. Results also support a role for linked selection and differential introgression that likely played an underappreciated role in shaping the genomic landscape of species in the Northern hemisphere. We conclude that studies between partially isolated populations should systematically include heterogeneity in selective and introgressive effects among loci to perform more rigorous demographic inferences of the divergence process.  相似文献   

14.
Aim We surveyed mitochondrial DNA (mtDNA) sequence variation among regionally isolated populations of 10 grassland‐associated butterfly species to determine: (1) the utility of phylogeographic comparisons among multiple species for assessing recent evolutionary patterns, and (2) the respective roles of isolation attributable to range disjunction versus isolation attributable solely to geographic distance in establishing divergence patterns. Location The Peace River grasslands of northern Alberta and British Columbia, Canada, which are isolated by 300+ km from similar communities to the south. Methods We sequenced mtDNA (1420 bp of cytochrome c oxidase subunit I) from five grassland‐restricted butterfly species that have geographically disjunct populations and from five ecologically broader species that have more continuous distributions across the same regions. Using analysis of molecular variance (AMOVA), Mantel and partial Mantel tests, and haplotype networks, we compared population structure within and between species in order to assess the validity of single‐species phylogeographic characterizations. We then contrasted variance components between disjunct and continuously distributed species to assess whether divergences were correlated more with disjunction or with geographic distance. Results Single‐species analyses varied substantially within both the disjunct and the continuous groups. One species in each of these groups had mtDNA with unusually deep intraspecific mitochondrial lineage divergences. On the whole, however, the five species with disjunct ranges exhibited greater divergence between geographically distant populations than did the five species with continuous distributions. Comparison of variance components between disjunct and continuous species indicated that isolation attributable only to geographic distance was responsible for up to half of the total sequence variation between disjunct populations of grassland butterflies. Main conclusions Our findings show that single‐species phylogeographic analyses of post‐Pleistocene butterfly distributions are inadequate for characterizing regional biogeographic divergence histories. However, comparison of mtDNA sequence divergences between groups of disjunct and continuously distributed species can allow isolation attributable to range interruption to be quantitatively distinguished from isolation attributable solely to gene flow attenuation over the same geographic area.  相似文献   

15.
RAPD markers provide a powerful tool for the investigation of genetic variation in natural and domesticated populations. Recent studies of strain/cultivar identification have shown extensive RAPD divergence among, but little variation within, inbred species or cultivars. In contrast, little is known about the pattern and extent of RAPD variation in heterogeneous, outcrossing species. We describe the population genetic variation of RAPD markers in natural, diploid sources of dioecious buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Buffalograss is native to the semi-arid regions of the Great Plains of North America, where it is important for rangeland forage, soil conservation, and as turfgrass. Most sources of buffalograss germplasm are polyploid; diploid populations are previously known only from semi-arid Central Mexico. This is the first report of diploids from humid Gulf Coastal Texas. These two diploid sources represent divergent adaptive ecotypes. Seven 10-mer primers produced 98 polymorphic banding sites. Based on the presence/ absence of bands, a genetic distance matrix was calculated. The new Analysis of Molecular Variance (AMOVA) technique was used to apportion the variation among individuals within populations, among populations within adaptive regions, and among regions. There was considerable variation within each of the four populations, and every individual was genetically distinct. Even so, genetic divergence was found among local populations. Within-population variation was larger and among-population variation smaller in Mexico than in Texas. The largest observed genetic differences were those between the two regional ecotypes. These patterns of genetic variation were very different from those reported for inbred species and provide important baseline data for cultivar identification and continuing studies of the evolution of polyploid races in this species.  相似文献   

16.
Differential selection pressures caused by environmental disparities lead to populations to become differentiated as they adapt to local environments. In addition, natural selection during the species past can contribute to the observed differentiation. In this study, we examine the geographic variation in a set of four traits related to growth and plant architecture in cork oak (Quercus suber) and investigate to what extent this variation is the result of the effects of ongoing evolution in current environments and the past evolutionary history of the species. Cork oak saplings at the common garden trial exhibited differences in plant architecture associated to cpDNA lineage. Eastern lineages, exhibited the lowest apical dominance and highest branchiness, consistent with the analyses in other cork oak trials. In contrast, patterns linked to the evolutionary past were less evident in height and diameter. These results suggest that selective pressures after cpDNA divergence can have blurred patterns in some traits closely related to fitness, while conserving the past evolutionary imprints in plant architectural traits. Introgressed populations did not show significant differentiation in architecture, which suggests that allele exchanges via hybridization have had a limited effect on population differentiation in cork oak. Finally, populations within lineages also showed differences in growth and architecture. Correlation between population architecture and temperature patterns were observed indicating that environmental factors such as climate also could result crucial in the evolution of plant architecture of cork oak within lineages.  相似文献   

17.
1. The restricted scale of most prior studies of genetic diversity in daphniid populations provides limited information on the geographical patterning of gene frequencies. The present study addresses this gap by examining allozymic divergence in populations of the most broadly distributed daphniid in the warm temperate regions of North America, Daphnia obtusa, across its range.
2. Local populations of this species show the gene frequency differentiation typical of other daphniids. In contrast to other daphniids with broad distributions, however, further divergence is apparent at a larger geographical scale, with North American D. obtusa fragmented into three lineages showing largely allopatric distributions. The three lineages are based primarily on allele frequency shifts at three polymorphic loci and are represented by eastern, central and south-western groupings.
3. Because of this pattern of differentiation, there is no simple monotonic relationship between geographical distance and genetic divergence. Instead, local metapopulations belonging to a specific lineage show little genetic divergence over several thousand km, while marked shifts in gene frequency occur over a few hundred km in regions where different lineages are in contact.  相似文献   

18.
Question: How do studies of the distribution of genetic diversity of species with different life forms contribute to the development of conservation strategies? Location: Old‐growth forests of the southeastern United States. Methods: Reviews of the plant allozyme literature are used to identify differences in genetic diversity and structure among species with different life forms, distributions and breeding systems. The general results are illustrated by case studies of four plant species characteristic of two widespread old‐growth forest communities of the southeastern United States: the Pinus palustris – Aristida stricta (Longleaf pine – wiregrass) savanna of the Coastal Plain and the Quercus – Carya – Pinus (Oak‐hickory‐pine) forest of the Piedmont. Genetic variation patterns of single‐gene and quantitative traits are also reviewed. Results: Dominant forest trees, represented by Pinus palustris(longleaf pine) and Quercus rubra (Northern red oak), maintain most of their genetic diversity within their populations whereas a higher proportion of the genetic diversity of herbaceous understorey species such as Sarracenia leucophylla and Trillium reliquum is distributed among their populations. The herbaceous species also tend to have more population‐to‐population variation in genetic diversity. Higher genetic differentiation among populations is seen for quantitative traits than for allozyme traits, indicating that interpopulation variation in quantitative traits is influenced by natural selection. Conclusion: Developing effective conservation strategies for one or a few species may not prove adequate for species with other combinations of traits. Given suitable empirical studies, it should be possible to design efficient conservation programs that maintain natural levels of genetic diversity within species of conservation interest.  相似文献   

19.
Oleĭnik AG  Skurikhina LA  Brykov VA 《Genetika》2011,47(12):1642-1654
The level of genetic differentiation of northern Dolly Varden char Salvelinus malma malma from Asia and North America was evaluated using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D loop) obtained by means of PCR-RFLP analysis. For S. m. malma, the mean values of haplotype and nucleotide diversity were 0.5261 +/- 0.00388 and 0.001558, respectively. The mean estimate of the population nucleotide divergence constituted 0.055%. It was demonstrated that S. m. malma on the most part of the species range examined (drainages of the Beaufort Sea, Chukotka Sea, Bering Sea, and the Sea of Okhotsk) was characterized by the population genetic structure with the low level of genetic differentiation and divergence. At the same time, populations from the Pacific Ocean Gulf of Alaska demonstrated marked genetic differentiation, supported by the high pairwise phi(ST) values (from 0.4198 to 0.5211) and nucleotide divergence estimates (mean divergence, 0.129%), from Asian and North American populations. Nested analysis of molecular variance (AMOVA) showed that most of the mtDNA variation in S. m. malma fell in the intrapopulation component (72.5%). At the same time, the differences between the populations (21.1%) and between the regions (6.4%) made lower contribution to the total variation.  相似文献   

20.
1. The restricted scale of most prior studies of genetic diversity in daphniid populations provides limited information on the geographical patterning of gene frequencies. The present study addresses this gap by examining allozymic divergence in populations of the most broadly distributed daphniid in the warm temperate regions of North America, Daphnia obtusa, across its range.
2. Local populations of this species show the gene frequency differentiation typical of other daphniids. In contrast to other daphniids with broad distributions, however, further divergence is apparent at a larger geographical scale, with North American D. obtusa fragmented into three lineages showing largely allopatric distributions. The three lineages are based primarily on allele frequency shifts at three polymorphic loci and are represented by eastern, central and south-western groupings.
3. Because of this pattern of differentiation, there is no simple monotonic relationship between geographical distance and genetic divergence. Instead, local metapopulations belonging to a specific lineage show little genetic divergence over several thousand km, while marked shifts in gene frequency occur over a few hundred km in regions where different lineages are in contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号