首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Ma B  Yi BD  Xing BR 《生理学报》1998,50(6):679-682
用单个方波电刺激牛蛙离体椎旁经节前纤维,细胞内记录节后B细胞快兴奋性突后电位,观察糖皮质激素对B细胞f-EPSP的快速抑制作用。结果发现,GC灌注3min,。B细胞f-EPSP的幅值减小,撤除GC后,EPSP的幅值恢复到对照水平。作用具有剂量信赖性。  相似文献   

2.
交感神经节中有脑啡肽神经末梢,可能以突触前抑制的方式抑制胆硷能神经的传递。Konishi等在成年豚鼠游离的交感肠系膜下神经节中进行了实验性研究。用细胞内记录法记录神经节细胞的EPSP_S。通过一对电极给一小束肠系膜下神经(节前纤维)试验刺激,以诱发快的EPSP_S,而对其余的节前纤维,通过另外的电极给予条件刺激。肠系膜下神经节中的脑啡肽神经末梢是节前纤维,给条件刺激(50Hz,8秒)以后,试验刺激引起的EPSP的平均值减小,约为条件刺激前试验刺激引起的EPSP的50%,抑制持续2~4分钟。纳络酮(1~3μM)可以清除条件性节前纤维刺激对胆硷能EPSP的抑制效应,相同浓度的纳络酮也几乎可完全阻断作用很强的脑啡肽拟似物[D-Al_α~2]-甲-脑啡肽(0.3~2μM)对胆硷能EPSP_S的抑制作用。纳  相似文献   

3.
电刺激节前纤维,在细胞内可依次记录到四种突触后电位:f-EPSP、s-IPSP、s-EPSP和L-s-EPSP。其中f-EPSP代表神经节传递的经典通路。节前神经末梢释放的ACh直接作用于突触后膜的N和M胆碱受体,分别产生f-EPSP和s-EPSP。s-IPSP的产生和调节机制,说法不一,本文对此作了重点介绍。L-s-EPSP表示非胆碱能突触传递,其递质可能为促黄体释放激素或P物质。本文还简要介绍了与神经节突触传递有关的其它神经递质或调制物。  相似文献   

4.
电刺激节前纤维,在细胞内可依次记录到四种突触后电位: f-EPSP、s-IPSP、s-EPSP 和 L-s-EPSP. 其中 f-EPSP 代表神经节传递的经典通路.节前神经末梢释放的节 ACh 直接作用于突触后膜的 N 和 M 胆碱受体,分别产生 f-EPSP 和 s-EPSP.s-IPSP 的产生和调节机制,说法不一,本文对此作了重点介绍.L-s-EPSP 表示非胆碱能突触传递,其递质可能为促黄体释放激素或 P 物质.本文还简要介绍了与神经节突触传递有关的其它神经递质或调制物.  相似文献   

5.
Meng W  Wang XD  Xiao P  Li DF 《生理学报》2006,58(3):232-236
鸣禽高级发声中枢(high vocal center,HVC)至弓状皮质栎核(robust nucleus ofthe arcopallium,RA)的突触传递是鸣唱运动通路中的关键部分.本文运用在体场电位电生理记录的方法,研究了成年雄性斑胸草雀(Taeniopygia guttata)HVC-RA突触的电生理特性.实验结果显示,刺激HVC,在RA内所记录到的诱发场电位幅度较小.配对脉冲检测发现,HVC-RA突触传递具有明显的配对脉冲易化特性.当以强直刺激作用于HVC,RA内诱发场电位随即显著减小,并在15 min内逐渐恢复,表明HVC-RA突触传递在强直刺激过后出现了短时抑制.该通路的突触传递特性可能与其在发声控制中的作用有关.以上的实验结果为进一步研究发声运动过程中的突触可塑性提供了资料.  相似文献   

6.
用电生理学方法研究了灭多威对美洲大蠊Periplanetaamerwana腹六神经节(A6节)突触传递的影响。用灭多威溶液浸泡A6节,电刺激尾须神经粗支,用甘露醇间隙法记录兴奋性突触后电位(EPSP)和突触后动作电位。给予弱刺激只记录到EPSP时,灭多威作用初期EPSP幅度增加、时程延长,能诱发突触后动作电位,随后EPSP逐渐减小至消失,冲洗可恢复,突触前反应保持不变。增加电刺激强度记录到突触后动作电位时,灭多威可阻断A6节的突触传递,阻断时间是浓度依赖性的,阻断是可逆的,但冲洗30 min仍保留一定的后作用。对美洲大蠊雄性成虫腹腔注射灭多威测定致死中量(LD50)为(3.56±0.01) μg/g体重。根据灭多威的作用机理对其阻断A6节突触传递的特点以及对虫体的毒杀机制进行了讨论。  相似文献   

7.
翟进  马如纯 《生理学报》1990,42(1):29-36
本文应用细胞内记录技术,观察了钙通道阻滞剂硝苯吡啶(nifedipine)对离体豚鼠腹腔神经节突触传递的影响,硝苯吡啶(0.1-10umol/L)不影响所检细胞的静息膜电位,膜电阻及细胞内刺激引起的动作电位,但能显著阻断N-型胆碱能的突触传递,并且这种作用可被低钙模拟、高钙拮抗,硝苯吡啶(10umol/L)也不影响突触后膜对乙酰胆碱(ACh)的敏感性;但在高钾克氏液中,能减少微小兴奋性突触后电位(mEPSPs)的频率;在低钙和高镁克氏液中,能减少量子含量,而对量子大小无影响。结果表明,治疗量的硝苯吡啶(0.1umol/L)通过阻滞突触前膜钙内流及ACh的量子性释放,产生突触阻断作用。这可能是硝苯吡啶降压机理的一个组成部分。  相似文献   

8.
糖皮质激素引起哺乳类神经元超极化反应的离子机制   总被引:1,自引:0,他引:1  
汪文  邢宝仁  陈宜张 《生理学报》1997,49(5):537-544
在豚鼠腹腔神经节上对383个神经元作细胞内记录,给予1μmol/L半琥珀酸皮质醇灌流,38个神经元膜电位发生超极化反应,幅度变化为2~12mV(6.3±0.1mV),伴有膜电阻的降低,反应呈剂量效应关系。9个神经元呈去极化反应,其余336个神经元不反应。用单电极间断电压箝方法记录43个神经元在糖皮质激素作用下膜电流的变化,其中5个神经元出现外向电流,膜电导增加;1个神经元为内向电流。用低钙高镁液阻断突触传递和蛋白质合成抑制剂放线菌素D后,超极化反应仍然存在。皮质醇超极化反应的翻转电位为-79.0±4.3mV(n=5)。皮质醇超极化反应和GABA去极化反应可在同一神经元上出现,印防己毒素可拮抗GABA的去极化反应,但不能拮抗皮质醇的超极化反应。钾离子通道阻断剂四乙基铵(TEA)和4-氨基吡啶(4-AP)能拮抗皮质醇的超极化反应。我们推断皮质醇的超极化反应是细胞膜钾离子通道介导的。  相似文献   

9.
节前神经刺激可在交感神经节细胞内引起一个迟慢兴奋性突触后电位(Is-EPSP),它不被N或M型胆碱能阻断剂所阻断,故属于非胆碱能性突触传递。Is-EPSP的有关神经递质可能是肽类物质,如P物质、促性腺激素释放激素(LHRH);这种肽能性传递有可能参与交感神经节的生理整合机能。  相似文献   

10.
目的 槲皮素是一种广泛分布于药用植物中的黄酮类化合物,传统被认为具有神经保护作用。本研究利用位于大鼠脑干花萼状突触的突触前神经末梢进行膜片钳记录,研究槲皮素调控突触传递和可塑性的突触前机制。方法 利用全细胞膜片钳结合膜电容记录,在突触后记录微小兴奋性突触后电流(m EPSC),在突触前神经末梢记录钙內流和神经囊泡的释放、回收以及可立即释放库(RRP)的恢复动力学。并且利用纤维刺激在轴突给予5~200 Hz的刺激,诱发突触后EPSC,记录突触后短时程抑制(STD)。结果 100μmol/L槲皮素不影响突触后m EPSC的振幅、频率以及AMPA受体的动力学特征。在突触前神经末梢,槲皮素不改变钙内流或囊泡的释放,但显著抑制胞吐后网格蛋白依赖的慢速胞吞。抑制胞吞会导致突触前囊泡动员的减慢,降低RRP的补充速率,并且增强高频刺激下的短时程可塑性STD。结论 本研究为槲皮素调控中枢神经突触传递提供全新的突触前神经机制,槲皮素有助于抑制中枢神经过度兴奋,进而发挥神经保护作用。  相似文献   

11.
Riluzole (2-amino-6-(trifluoromethoxy)benzothiazole) is a drug known for its inhibitory effect on glutamatergic transmission and its anti-nociceptive and anti-allodynic effects in neuropathic pain rat models. Riluzole also has an enhancing effect on GABAergic synaptic transmission. However, the effect on the spinal dorsal horn, which plays an important role in modulating nociceptive transmission, remains unknown. We investigated the ameliorating effect of riluzole on mechanical allodynia using the von Frey test in a rat model of neuropathic pain and analyzed the synaptic action of riluzole on inhibitory synaptic transmission in substantia gelatinosa (SG) neurons using whole-cell patch clamp recordings. We found that single-dose intraperitoneal riluzole (4 mg/kg) administration effectively attenuated mechanical allodynia in the short term in a rat model of neuropathic pain. Moreover, 300 μM riluzole induced an outward current in rat SG neurons. The outward current induced by riluzole was not suppressed in the presence of tetrodotoxin. Furthermore, we found that the outward current was suppressed by simultaneous bicuculline and strychnine application, but not by strychnine alone. Altogether, these results suggest that riluzole enhances inhibitory synaptic transmission monosynaptically by potentiating GABAergic synaptic transmission in the rat spinal dorsal horn.  相似文献   

12.
Involvement of the adenylate cyclase system in cholinergic modulation of synaptic transmission was investigated in area CA1 in rat hippocampal slices. Microiontophoretic application of acetylcholine as well as addition of carbachol to the superfusate or of tolbutamide (a cAMP-dependent protein kinase inhibitor) depressed transmission at synapses formed by Schaffer collaterals and commissural fibers with dendrites of pyramidal cells belonging to hippocampal area CA1. Both numbers of free quanta of neurotransmitter and the likelihood of transmitter release decreased following carbachol action. Atropine suppressed the inhibitory action of carbachol on synaptic transmission. Dibutyryl cAMP and forskolin increased the amplitude of synaptic potentials and suppressed, either partially or in full, the inhibitory effects of cholinomimetics on synaptic potentials. It was concluded that cholinomimetics and activators of the adenylate cyclase system exert opposing effects on neurotransmission at synapses formed between Schaffer collaterals/commissural fibers and dendrites of pyramidal neurons belonging to hippocampal area CA1.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 435–442, July–August, 1989.  相似文献   

13.
Peroxisomal proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA) receptor-mediated temporal lobe epilepsy (TLE). We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC) analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.  相似文献   

14.
With the aim of selecting cDNA sequences expressed in neurons utilizing exclusively cholinergic synaptic transmission, cDNA derived from Torpedo electric lobe was cloned and screened by hybridization with probes originating from another brain region known for its low content of cholinergic neurons (cerebellum) and a nonneuronal tissue (muscle). This method led to the isolation of 18 clones among 3,200 showing no hybridization with probes other than those derived from electric lobe. These clones can therefore be considered to represent sequences involved in the expression of cholinergic function in neurons.  相似文献   

15.
Sheridan RE  Adler M 《Life sciences》2006,79(6):591-595
In primary embryonic spinal cord cultures, synaptic transmission can be conveniently studied by monitoring radiolabeled neurotransmitter release or by recording of electrophysiological responses. However, while the mature spinal cord contains an appreciable number of cholinergic motoneurons, cultures of embryonic spinal cord have a paucity of these neurons and release little or no acetylcholine upon stimulation. To determine whether the proportion of cholinergic neurons in primary mouse spinal cord cultures can be augmented, the effects of several classes of growth factors were examined on depolarization- and Ca(2+)-evoked release of choline/acetylcholine (Ch/ACh). In the absence of growth factors, little or no evoked release of radiolabeled Ch/ACh could be demonstrated. Media supplemented with brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF) were examined for their ability to preserve the population of neurons in culture. CNTF was found to increase the number of surviving neurons and to enhance the release of radiolabeled Ch/ACh; the other factors were without effect. The action of CNTF was transient, and the neuronal population decreased to levels observed in cultures lacking growth factor after 20 days in vitro. The correlation between enhanced neuron survival and increased Ch/ACh release suggests that CNTF protected cholinergic neurons, albeit transiently, from cell death.  相似文献   

16.
We found that nonadrenergic inhibitory synaptic potentials (ISP) induced by intramural stimulation in atropine-treated smooth muscles of the guinea-pig large intestine demonstrated no changes upon the influence of an activator of adenylate cyclase, forskolin. This indicates that cAMP-dependent pathways are not involved in the generation of ISP. However, in these muscles with no atropine pretreatment ISP were suppressed by forskolin; intramural stimulation evoked in these smooth muscle cells M-cholinergic excitatory synaptic potentials (ESP) instead of ISP. An increase in the intracellular cAMP concentration due to application of its membrane-penetrating form, dibutyryl-cAMP, did not mimic the above-described effect of forskolin. Hence, it can be supposed that the effect of forskolin on inhibitory synaptic transmission in the atropine-untreated smooth muscles is not related to changes in the intracellular cAMP level; this effect is determined by other mechanisms. The above differences between the effects of forskolin on ISP in the atropine-treated and atropine-untreated smooth muscle strips indicate that the interaction of intracellular signal pathways (probably, through protein Gq/11), which is observed with activation of adenylate cyclase, occurs under conditions of simultaneous activation of M cholinoreceptors and purinoreceptors. The pattern of adenylate cyclase-mediated modulation of inhibitory effects of purinergic neurons on smooth muscles does not allow us to rule out the possibility of involvement of interstitial cells of Cajal as a relay link providing this synaptic effect. Transmission of excitation from cholinergic nerve terminals to smooth muscles is realized without the participation of the interstitial cells of Cajal.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 438–445, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

17.
Cholinacetyltransferase (ChAT) activity has been studied in 56 nuclei of the cerebral trunk in human fetuses at the age of 6-8 lunar months. Cytoplasmic and synaptic ChAT activity has been revealed and three types of neurons for cholinergic synaptic transmission has been distinguished. There are only cholinergic-noncholinoceptive neurons in five macrocellular nuclei of the cranial nerves. In 25 nuclei (paravicellular, reticular, pigmented, sensitive nuclei of the cranial nerves, nuclei of the funiculi posterior and some other switching centres) there are only noncholinergic-cholinoceptive neural cells. In 16 nuclei there are three, and in 8 nuclei--two types of cells. Either noncholinergic-cholinoceptive or cholinergic-noncholinoceptive cells predominate; there is no predominance of cholinergic-cholinoceptive neurons in any of the nuclei. Mapping on the position of the cholinergic synaptic transmission neurons in the cerebral trunk is composed.  相似文献   

18.
The dorsomedial nucleus of the hypothalamus (DMH) contributes to the regulation of overall energy homeostasis by modulating energy intake as well as energy expenditure. Despite the importance of the DMH in the control of energy balance, DMH-specific genetic markers or neuronal subtypes are poorly defined. Here we demonstrate the presence of cholinergic neurons in the DMH using genetically modified mice that express enhanced green florescent protein (eGFP) selectively in choline acetyltransferase (Chat)-neurons. Overnight food deprivation increases the activity of DMH cholinergic neurons, as shown by induction of fos protein and a significant shift in the baseline resting membrane potential. DMH cholinergic neurons receive both glutamatergic and GABAergic synaptic input, but the activation of these neurons by an overnight fast is due entirely to decreased inhibitory tone. The decreased inhibition is associated with decreased frequency and amplitude of GABAergic synaptic currents in the cholinergic DMH neurons, while glutamatergic synaptic transmission is not altered. As neither the frequency nor amplitude of miniature GABAergic or glutamatergic postsynaptic currents is affected by overnight food deprivation, the fasting-induced decrease in inhibitory tone to cholinergic neurons is dependent on superthreshold activity of GABAergic inputs. This study reveals that cholinergic neurons in the DMH readily sense the availability of nutrients and respond to overnight fasting via decreased GABAergic inhibitory tone. As such, altered synaptic as well as neuronal activity of DMH cholinergic neurons may play a critical role in the regulation of overall energy homeostasis.  相似文献   

19.
The biologically active lipid platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine; PAF) is a mediator of inflammatory and immune responses, and it accumulates in the brain during convulsions or ischemia. We have examined whether PAF may play a second messenger role in the central nervous system by studying effects on synaptic transmission in cultured hippocampal neurons. Carbamyl-PAF, a nonhydrolyzable PAF analog with a similar pharmacologic profile, augmented glutamate-mediated, evoked excitatory synaptic transmission and increased the frequency of spontaneous miniature excitatory synaptic events without increasing their amplitude or altering their time course. This compound had no significant effect on gamma-aminobutyric acid-mediated inhibitory synaptic responses. Lyso-PAF, the biologically inactive metabolic intermediate, had no effect on synaptic transmission. Moreover, the enhancement of excitatory synaptic transmission by carbamyl-PAF was blocked by a PAF receptor antagonist. These results indicate a specific presynaptic effect of PAF in enhancing excitatory synaptic transmission in cultured rat hippocampal neurons.  相似文献   

20.
W Müller  J A Connor 《Neuron》1991,6(6):901-905
Muscarinic synaptic activation is known to be involved in cortical arousal as well as learning. Although simple increases in the electrical responsiveness of neurons might be the basis of arousal, the linkage of muscarinic transmission to the synaptic plasticity that might underlie learning is lacking. Most models of synaptic plasticity involve postsynaptic Ca2+ changes as a trigger for subsequent processes. We imaged muscarinic effects on free Ca2+ accumulation during intracellular recordings from CA3 pyramidal neurons in the guinea pig hippocampal slice. Muscarinic activation, either by repetitive stimulation of cholinergic fibers or by bath-applied carbachol, strongly increased intradendritic Ca2+ accumulation during directly evoked repetitive firing, in part by blocking a Ca(2+)-dependent K+ conductance. The effects of repetitive stimulation of cholinergic fibers were enhanced by the acetylcholine-esterase blocker eserine and blocked by the muscarinic antagonist atropine. These findings demonstrate a novel muscarinic reinforcement of Ca2+ changes during excitation, which are probably significant for synapse modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号