首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Foshay MC  Vitello LB  Erman JE 《Biochemistry》2004,43(17):5065-5072
Replacement of the distal histidine, His-52, in cytochrome c peroxidase (CcP) with a lysine residue produces a mutant cytochrome c peroxidase, CcP(H52K), with spectral and kinetic properties significantly altered compared to those of the wild-type enzyme. Three spectroscopically distinct forms of the enzyme are observed between pH 4.0 and 8.0 with two additional forms, thought to be partially denatured forms, making contributions to the observed spectra at the pH extremes. CcP(H52K) exists in at least three, slowly interconverting conformational states over most of the pH range that was investigated. The side chain epsilon-amino group of Lys-52 has an apparent pK(a) of 6.4 +/- 0.2, and the protonation state of Lys-52 affects the spectral properties of the enzyme and the reactions with both hydrogen peroxide and HCN. In its unprotonated form, Lys-52 acts as a base catalyst facilitating the reactions of both hydrogen peroxide and HCN with CcP(H52K). The major form of CcP(H52K) reacts with hydrogen peroxide with a rate approximately 50 times slower than that of wild-type CcP but reacts with HCN approximately 3 times faster than does the wild-type enzyme. The major form of the mutant enzyme has a higher affinity for HCN than does native CcP.  相似文献   

2.
The high potential heme site of Pseudomonas cytochrome c peroxidase has His and Met as ligands. On reduction, the Fe-met bond becomes photosensitive. Following photolysis, the bond reforms with a half-time of 35 ps. The low potential heme peroxidatic site of the fully reduced enzyme has been shown to bind to a range of ligands. The compounds with carbon monoxide, methyl, ethyl, n-butyl, and t-butyl isonitriles have been investigated by laser flash photolysis. All are photosensitive and show different degrees of geminate recombination of ligand in the picosecond and nanosecond time ranges. Carbon monoxide shows the least effect. The three straight-chain isonitriles show about 50% geminate recombination with half-times of the order of 10 ns. t-Butyl isonitrile shows more and faster recombination. These results imply considerable freedom of movement within the active site for the smaller ligands.  相似文献   

3.
The anion-binding characteristics of resting and half-reduced Pseudomonas cytochrome c peroxidase (ferrocytochrome c-551: hydrogen peroxide oxidoreductase, EC 1.11.1.5) have been examined by EPR and optical spectroscopy with cyanide, azide and fluoride as ligands. The resting enzyme was found to be essentially inaccessible for ligation, which indicates that it has a closed conformation. In contrast, the half-reduced enzyme has a conformation in which the low-potential heme is easily accessible for ligands, a behavior parallel to that towards the substrate hydrogen peroxide (R?nnberg, M., Araiso, T., Ellfolk, N. and Dunford, H.B. (1981) Arch. Biochem. Biophys. 207, 197-204). Cyanide and azide caused distinct changes in the low-potential heme c moiety, and the gz values of the two low-spin derivatives were 3.14 and 3.22, respectively. Fluoride binds to the same heme, giving rise to a high-spin signal at g = 6. The dissociation constants of the anions differ widely from each other, the values for the cyanide, azide and fluoride being 23 microM, 2.5 mM and 0.13 M, respectively. In addition, a partial shift of the low-spin peak at g = 2.84 of the half-reduced species to 3.24 was observed even at low concentrations of fluoride.  相似文献   

4.
5.
To test the effect of alternative bases at the distal histidine position, four CcP variants have been constructed that substitute the two basic residues, aspartate and glutamate, and their amides, asparagine and glutamine, for histidine-52, i.e., CcP(H52D), CcP(H52E), CcP(H52N), and CcP(H52Q). All four mutants catalyze oxidation of ferrocytochrome c by H(2)O(2) with steady-state activities that are between 250 and 7700 times slower than wild-type CcP at pH 6.0, 0.10M ionic strength, 25°C. The rate of Compound I formation is decreased between 3.5 and 5.4 orders of magnitude for the mutants compared to wild-type CcP, with the rate of the reaction between CcP(H52Q) and H(2)O(2) the slowest yet observed for any CcP mutant. A correlation between the rate of Compound I formation and the rate of HCN binding for CcP and various CcP distal pocket mutants provides strong evidence that the rate-limiting step in CcP Compound I formation is deprotonation of H(2)O(2) within the distal heme pocket under the experimental conditions employed in this study. While CcP(H52E) reacts stoichiometrically with H(2)O(2) to form Compound I, only ~36% of CcP(H52D), ~21% of CcP(H52Q) and ~8% of CcP(H52N) appear to be converted to Compound I during their respective reactions with H(2)O(2). This is partially due to the slow rate of Compound I formation and the rapid endogenous decay of Compound I for these mutants. The pathways for the endogenous decay of Compound I for the four mutants used in this study are distinct from that of wild-type CcP Compound I.  相似文献   

6.
Interaction of cytochrome c peroxidase with cytochrome c   总被引:1,自引:0,他引:1  
J J Leonard  T Yonetani 《Biochemistry》1974,13(7):1465-1468
  相似文献   

7.
The mitochondrial electron transport chain is a source of oxygen superoxide anion (O(2)(-)) that is dismutated to H(2)O(2). Although low levels of ROS are physiologically synthesized during respiration, their increase contributes to cell injury. Therefore, an efficient machinery for H(2)O(2) disposal is essential in mitochondria. In this study, the ability of brain mitochondria to acquire cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylserine (PS) in vitro through a fusion process was exploited to investigate lipid effects on ROS. MTT assay, oxygen consumption, and respiratory ratio indicated that the acquired phospholipids did not alter mitochondrial respiration and O(2)(-) production from succinate. However, in CL-enriched mitochondria, H(2)O(2) levels where 27% and 47% of control in the absence and in the presence of antimycin A, respectively, suggesting an increase in H(2)O(2) elimination. Concomitantly, cytochrome c (cyt c) was released outside mitochondria. Since free oxidized cyt c acquired peroxidase activity towards H(2)O(2) upon interaction with CL in vitro, a contribution of cyt c to H(2)O(2) disposal in mitochondria through CL conferred peroxidase activity is plausible. In this model, the accompanying CL peroxidation should weaken cyt c-CL interactions, favouring the detachment and release of the protein. Neither cyt c peroxidase activity was elicited by PS in vitro, nor cyt c release was observed in PS-enriched mitochondria, although H(2)O(2) levels were significantly decreased, suggesting a cyt c-independent role of PS in ROS metabolism in mitochondria.  相似文献   

8.
Cytochrome c derivatives modified with a photoactivatable arylazido group in selected lysine residues were irradiated in the presence of cytochrome c peroxidase (EC 1.11.1.5). A derivative modified at lysine 13 was able to cross-link to the enzyme and inhibit electron transfer activity. Complete inhibition of cytochrome c peroxidase activity was obtained when 1 mol of cytochrome c was covalently bound per mol of cytochrome c peroxidase. Chemical cleavage of the covalent complex has been used for a preliminary characterization of the site of cross-linking of cytochrome c to cytochrome c peroxidase. This linkage site was localized to the NH2 terminal part of cytochrome c peroxidase including residues 1-51.  相似文献   

9.
A covalent complex between recombinant yeast iso-1-cytochrome c and recombinant yeast cytochrome c peroxidase (rCcP), in which the crystallographically defined cytochrome c binding site [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] is blocked, was synthesized via disulfide bond formation using specifically engineered cysteine residues in both yeast iso-1-cytochrome c and yeast cytochrome c peroxidase [Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580]. Previous studies on similar covalent complexes, those that block the Pelletier-Kraut crystallographic site, have demonstrated that samples of the covalent complexes have detectable activities that are significantly lower than those of wild-type yCcP, usually in the range of approximately 1-7% of that of the wild-type enzyme. Using gradient elution procedures in the purification of the engineered peroxidase, cytochrome c, and covalent complex, along with activity measurements during the purification steps, we demonstrate that the residual activity associated with the purified covalent complex is due to unreacted CcP that copurifies with the covalent complex. Within experimental error, the covalent complex that blocks the Pelletier-Kraut site has zero catalytic activity in the steady-state oxidation of exogenous yeast iso-1-ferrocytochrome c by hydrogen peroxide, demonstrating that only ferrocytochrome c bound at the Pelletier-Kraut site is oxidized during catalytic turnover.  相似文献   

10.
Ion binding to cytochrome c   总被引:2,自引:0,他引:2  
This paper is a further study of ion binding to protein surfaces and builds on the studies of the binding of [Cr(CN)6]3- and [Fe(edta)(H2O)]- previously reported [Williams et al. (1982) FEBS Lett. 15, 293-299; Eley et al. (1982) Eur. J. Biochem. 124, 295-303]. In the present paper the binding of polyaminocarboxylate complexes of gadolinium have been studied. Eight ion-binding sites have been identified on the surface of cytochrome c. These exhibit different binding specificities which, in some cases, are not full understood. However it is clear that simple outer-sphere interactions are not the sole determining factor for the association of metal ion complexes with proteins. The NMR paramagnetic difference spectrum method has been shown to be good at locating binding sites and revealing qualitative differences in their relative affinities for a range of complex types. However the use of relaxation probes is not a good method for the quantitative determination of binding constants; for this, isostructural shift probes must be sought.  相似文献   

11.
12.
The kinetic rates and equilibrium association constants for cyanide binding have been measured for a series of cytochrome c derivatives as a probe of heme accessibility. The series included horse and yeast cytochromes iodinated at Tyr 67 and 74, horse cytochrome formylated at Trp 59 in both a low and high redox potential form, the Met 80 sulfoxide derivative of horse cytochrome and the N-acylisourea heme propionate derivative of tuna cytochrome. Native cytochromes c are well known to bind cyanide slowly in a reaction simply first order both in cytochrome and cyanide up to at least 100 mM in cyanide. The derivative demonstrate markedly different kinetics which indicate the following conclusions. (1) In spite of chemical modification at different loci, all the derivatives have highly similar reactivity, suggesting common ligation structures and mechanisms for reaction. (2) Compared to native cytochromes, reaction rates are 10-20 fold greater. This is in accord with a more accessible heme crevice, but not a completely opened crevice. For the completely opened case, rate increases are expected to be between three and five orders of magnitude. (3) Reaction rates are either independent of cyanide concentration (zero order) or show only slight variation. A mechanism which accounts for the data over four orders of magnitude in concentration postulates a protein conformation step, opening of the heme crevice, as the rate determining step. This conformation change has a limiting rate of 6 . 10(-2) s-1.  相似文献   

13.
Jasion VS  Poulos TL 《Biochemistry》2012,51(12):2453-2460
Leishmania major peroxidase (LmP) exhibits both ascorbate and cytochrome c peroxidase activities. Our previous results illustrated that LmP has a much higher activity against horse heart cytochrome c than ascorbate, suggesting that cytochrome c may be the biologically important substrate. To elucidate the biological function of LmP, we have recombinantly expressed, purified, and determined the 2.08 ? crystal structure of L. major cytochrome c (LmCytc). Like other types of cytochrome c, LmCytc has an electropositive surface surrounding the exposed heme edge that serves as the site of docking with redox partners. Kinetic assays performed with LmCytc and LmP show that LmCytc is a much better substrate for LmP than horse heart cytochrome c. Furthermore, unlike the well-studied yeast system, the reaction follows classic Michaelis-Menten kinetics and is sensitive to an increasing ionic strength. Using the yeast cocrystal as a control, protein-protein docking was performed using Rosetta to develop a model for the binding of LmP and LmCytc. These results suggest that the biological function of LmP is to act as a cytochrome c peroxidase.  相似文献   

14.
Comparative proton NMR studies have been carried out on high-spin and low-spin forms of recombinant native cytochrome c peroxidase (rCcP) and its His52 --> Leu variant. Proton NMR spectra of rCcP(H52L) (high spin) and rCcP(H52L)CN (low spin) reveal the presence of multiple enzyme forms in solution, whereas only single enzyme forms are found in spectra of wild-type and recombinant wild-type CcP and CcPCN near neutral pH. The spectroscopic behaviors of these forms have been studied in detail when pH, temperature, and solvent isotope composition were varied. For resting-state rCcP(H52L) the comparatively large NMR line widths compromise resolution, but two specific enzyme forms were found. They were interconvertible on the basis of varying temperature. For rCcP(H52L)CN four magnetically distinct enzyme forms were identified by NMR. It was found that these forms dynamically interconvert with changing pH, temperature, and solvent isotope composition (percent D(2)O). These studies have identified the alkaline titration of His52 and essentially identical alkaline enzyme forms for natWTCcPCN and rCcP(H52L)CN. From this work we interpret an essential role of His52 in CcP function to be preservation of a single active site structure in addition to the critical role of general base catalysis.  相似文献   

15.
Yeast cytochrome c peroxidase and horse heart cytochrome c have been cocrystallized in a form suitable for x-ray diffraction studies and the structure determined at 3.3 A. The asymmetric unit contains a dimer of the peroxidase which was oriented and positioned in the unit cell using molecular replacement techniques. Similar attempts to locate the cytochrome c molecules were unsuccessful. The peroxidase dimer model was subjected to eight rounds of restrained parameters least squares refinement after which the crystallographic R factor was 0.27 at 3.3 A. Examination of a 2Fo-Fc electron density map showed large "empty" regions between peroxidase dimers with no indication of cytochrome c molecules. Electrophoretic analysis of the crystals demonstrated the presence of the peroxidase and cytochrome c in an approximate equal molar ratio. Therefore, while cytochrome c molecules are present in the unit cell they are orientationally disordered and occupy the space between peroxidase dimers.  相似文献   

16.
1. The steady state kinetics for the oxidation of ferrocytochrome c by yeast cytochrome c peroxidase are biphasic under most conditions. The same biphasic kinetics were observed for yeast iso-1, yeast iso-2, horse, tuna, and cicada cytochromes c. On changing ionic strength, buffer anions, and pH, the apparent Km values for the initial phase (Km1) varied relatively little while the corresponding apparent maximal velocities varied over a much larger range. 2. The highest apparent Vmax1 for horse cytochrome c is attained at relatively low pH (congruent to 6.0) and low ionic strength (congruent to 0.05), while maximal activity for the yeast protein is at higher pH (congruent to 7.0) and higher ionic strength (congruent to 0.2), with some variations depending on the nature of the buffering ions. 3. Direct binding studies showed that cytochrome c binds to two sites on the peroxidase, under conditions that give biphasic kinetics. Under those ionic conditions that yield monophasic kinetics, binding occurred at only one site. At the optimal buffer concentrations for both yeast and horse cytochromes c, the KD1 and KD2 values approximate the Km1 and Km2 values. At ionic strengths below optimal, binding becomes too strong and above optimal, too weak. 4. Under ionic conditions that are optimal and give monophasic kinetics with horse cytochrome c but are suboptimal for the yeast protein, yeast cytochrome c strongly inhibits the reaction of horse cytochrome c with peroxidase, uncompetitively at one site and competitively at a second site. The appearance of the second site under monophasic conditions is interpreted as an allosteric effect of the inhibitor binding to the first site. 5. The simplest model accounting for these observations postulates two kinetically active sites on each molecule of peroxidase, a high affinity and a low affinity site, that may correspond to the free radical and the heme iron (IV) of the oxidized enzyme, respectively. Both oxidizing equivalents may be discharged at either site. Furthermore, the enzyme appears to exist as an equilibrium mixture of a high ionic strength form, EH and a low ionic strength form, EL, the former reacting optimally with yeast cytochrome c, and the latter with horse cytochrome c.  相似文献   

17.
《Free radical research》2013,47(4):439-444
Abstract

The peroxidase-type reactivity of cytochrome c is proposed to play a role in free radical production and/or apoptosis. This study describes cytochrome c catalysis of peroxide consumption by ascorbate. Under conditions where the sixth coordination position at the cytochrome c heme iron becomes more accessible for exogenous ligands (by carboxymethylation, cardiolipin addition or by partial denaturation with guanidinium hydrochloride) this peroxidase activity is enhanced. A reaction intermediate is detected by stopped-flow UV-vis spectroscopy upon reaction of guanidine-treated cytochrome c with peroxide, which resembles the spectrum of globin Compound II species and is thus proposed to be a ferryl species. The ability of physiological levels of ascorbate (10–60 µM) to interact with this species may have implications for mechanisms of cell signalling or damage that are based on cytochrome c/peroxide interactions.  相似文献   

18.
Subunit III was removed from beef heart cytochrome oxidase by incubation of the isolated enzyme at 25 degrees C for 24 h in lauryl maltoside buffer at a detergent to protein ratio of 10:1 (w:w). During the course of the incubation, the reaction of the enzyme with cyanide was followed by spectrophotometry in the Soret region. The starting material binds cyanide in a multiexponential process with 70% of the reaction occurring during the slow phase of the reaction at an observed rate of 3.85 X 10(-5) S-1 with 1 mM KCN. More of the enzyme binds cyanide during the fast phase of the reaction at an observed rate of 3.8 X 10(-3) S-1 as subunit III is removed by lauryl maltoside. After 24 h of incubation in lauryl maltoside, the enzyme reacts with cyanide completely in a rapid, single exponential process. When the protein from such an incubation is recovered by cytochrome c affinity chromatography and analyzed for its subunit content, subunit III is absent. The position of the Soret maximum of the oxidized enzyme shifts from its maximum at 418 nm in the starting material to 422 nm in the subunit III-depleted enzyme. The subunit III-depleted enzyme binds cyanide completely in a simple bimolecular reaction with a rate constant of 3.8 M-1 S-1. We discuss this result in terms of the possible structural and functional roles for subunit III in the cytochrome oxidase complex.  相似文献   

19.
A pH titration study of cytochrome c peroxidase and apocytochrome c peroxidase was carried out at 25 degrees C and 0.1 M ionic strength. The net charge on cytochrome c peroxidase due to proton association and dissociation varies from +32 at pH 2 to --50.2 at pH 12, while that of apocytochrome c peroxidase varies between +24.5 at pH 3 to --48 at pH 12. The apoprotein tented to aggregate below pH 3. Between pH 4 and 8, the titration behavior of both the native enzyme and the apoenzyme are consistent with the semi-empirical Linderstr?m-Lang theory. Between pH 9 and 12, the titration behavior of both the holo- and apoproteins suggest they assume a more extended conformation which reduces the electrostatic interaction charged groups on the surface. In the acid region, between pH 4 and 3, a similar transition occurs in which the protein expands 40% based on the electrostatic factor of the Linderstr?m-Lang theory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号