首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of in vitro studies have shown that polyphenols and flavonoids in tea exert significant antioxidant activity. However, epidemiologic and experimental studies have produced conflicting results. The purpose of the present study was to compare the antioxidant activity of black tea in vitro with that ex vivo. Black tea polyphenols (BTP), black tea extract (BTE), or their major polyphenolic antioxidant constituent, epigallocatechin gallate (EGCG), were added to human plasma and lipid peroxidation was induced by the water-soluble radical generator 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Following a lag phase, lipid peroxidation was initiated and occurred at a rate that was lowered in a dose-dependent manner by BTP. Similarly, EGCG and BTE added to plasma in vitro strongly inhibited AAPH-induced lipid peroxidation. The lag phase preceding detectable lipid peroxidation was due to the antioxidant activity of endogenous ascorbate, which was more effective at inhibiting lipid peroxidation than the tea polyphenols and was not spared by these compounds. In contrast, when eight healthy volunteers consumed the equivalent of six cups of black tea, the resistance of their plasma to lipid peroxidation ex vivo did not increase over the next 3 h. These data suggest that, despite antioxidant efficacy in vitro, black tea does not protect plasma from lipid peroxidation in vivo. The striking discrepancy between the in vitro and ex vivo data is most likely explained by the insufficient bioavailability of tea polyphenols in humans.  相似文献   

2.
Tea polyphenols, e.g., (-)-epigallocatechin-3-O-(3-O-methyl gallate (EGCG3”Me), (-)-epigallocatechin-3-O-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-O-gallate (ECG), and (-)-epicatechin (EC), are believed to be responsible for the beneficial effects of tea. ‘Benifuuki’, a tea (Camellia sinensis L.) cultivar grown in Japan, is rich in the anti-allergic molecule epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3”Me). Pulverized Benifuuki green tea powder (BGP) is more widely distributed than leaf tea in Japan. Japanese people mix their pulverized tea with water directly, whereas it is common to drink leaf tea after extraction. However, few studies of the effects of BGP particle size on polyphenol bioavailability have been performed. This study was conducted to investigate the absorption of catechins in rats after the intragastric administration of Benifuuki green tea. Therefore, we assessed the plasma concentrations of catechins following the ingestion of BGP with different mean particle sizes (2.86, 18.6, and 76.1 μm) or Benifuuki green tea infusion (BGI) as a control in rats. The bioavailabilities of EGCG3”Me, EGCG, ECG, EGC, and EC were analyzed after the oral administration of a single dose of Benifuuki green tea (125 mg/rat) to rats. The plasma concentrations of tea catechins were determined by HPLC analysis combined with of electrochemical detection (ECD) using a coulometric array. The AUC (area under the drug concentration versus time curve; min μg/mL) of ester-type catechins (EGCG3”Me, EGCG, and ECG) for the BGP 2.86 μm were significantly higher than those in the infusion and 18.6 and 76.1 μm BGP groups, but the AUC of free-type catechins (EGC and EC) showed no differences between these groups. Regarding the peak plasma level of EGCG3”Me adjusted for intake, BGP 2.86 μm and BGI showed higher values than the BGP 18.6 and 76.1 μm groups, and the peak plasma levels of the other catechins displayed the same tendency. The present study demonstrates that the bioavailability of ester-type catechins (EGCG and ECG) can be improved by reducing the particle size of green tea, but the plasma level of EGCG3”Me in the BGI group was similar to that in the BGP 2.86 μm group. This result suggests that drinking Benifuuki green tea with a particle size of around 2 μm would deliver the anti-allergic EGCG3”Me and the anti-oxidant EGCG efficiently.  相似文献   

3.
Diet has a significant impact on colorectal cancer and both dietary fiber and plant-derived compounds have been independently shown to be inversely related to colon cancer risk. Butyrate (NaB), one of the principal products of dietary fiber fermentation, induces differentiation of colon cancer cell lines by inhibiting histone deacetylases (HDACs). On the other hand, (?)-epicatechin (EC) and (?)-epigallocatechin gallate (EGCG), two abundant phenolic compounds of green tea, have been shown to exhibit antitumoral properties. In this study we used colon cancer cell lines to study the cellular and molecular events that take place during co-treatment with NaB, EC and EGCG. We found that (i) polyphenols EC and EGCG fail to induce differentiation of colon adenocarcinoma cell lines; (ii) polyphenols EC and EGCG reduce NaB-induced differentiation; (iii) the effect of the polyphenols is specific for NaB, since differentiation induced by other agents, such as trichostatin A (TSA), was unaltered upon EC and EGCG treatment, and (iv) is independent of the HDAC inhibitory activity of NaB. Also, (v) polyphenols partially reduce cellular NaB; and (vi) on a molecular level, reduction of cellular NaB uptake by polyphenols is achieved by impairing the capacity of NaB to relocalize its own transporter (monocarboxylate transporter 1, MCT1) in the plasma membrane. Our findings suggest that beneficial effects of NaB on colorectal cancer may be reduced by green tea phenolic supplementation. This valuable information should be of assistance in choosing a rational design for more effective diet-driven therapeutic interventions in the prevention or treatment of colorectal cancer.  相似文献   

4.
Many beneficial proprieties have been associated with polyphenols from green tea, such as chemopreventive, anticarcinogenic, antiatherogenic and antioxidant actions. In this study, we investigated the effects of green tea polyphenols (GTPs) and their principal catechins on the function of P-glycoprotein (P-gp), which is involved in the multidrug resistance phenotype of cancer cells. GTPs (30 microg/ml) inhibit the photolabeling of P-gp by 75% and increase the accumulation of rhodamine-123 (R-123) 3-fold in the multidrug-resistant cell line CH(R)C5, indicating that GTPs interact with P-gp and inhibit its transport activity. Moreover, the modulation of P-gp transport by GTPs was a reversible process. Among the catechins present in GTPs, EGCG, ECG and CG are responsible for inhibiting P-gp. In addition, EGCG potentiates the cytotoxicity of vinblastine (VBL) in CH(R)C5 cells. The inhibitory effect of EGCG on P-gp was also observed in human Caco-2 cells, which form an intestinal epithelial-like monolayer. Our results indicate that, in addition to their anti-cancer properties, GTPs and more particularly EGCG inhibit the binding and efflux of drugs by P-gp. Thus, GTPs or EGCG might be potential agents for modulating the bioavailability of P-gp substrates at the intestine and the multidrug resistance phenotype associated with expression of this transporter in cancer cells.  相似文献   

5.
Oxidative cell damage is involved in the pathogenesis of atherosclerosis, cancer, diabetes and other diseases. Uptake of fruit juice with especially high content of antioxidant flavonoids/polyphenols, might reduce oxidative cell damage. Therefore, an intervention study was performed with a red mixed berry juice [trolox equivalent antioxidative capacity (TEAC): 19.1 mmol/L trolox] and a corresponding polyphenol-depleted juice (polyphenols largely removed, TEAC 2.4 mmol/L trolox), serving as control. After a 3-week run-in period, 18 male probands daily consumed 700 mL juice, and 9 consumed control juice, in a 4-week intervention, followed by a 3-week wash-out. Samples were collected weekly to analyze DNA damage (comet assay), lipid peroxidation (plasma malondialdehyde: HPLC/fluorescence; urinary isoprostanes: GC-MS), blood glutathione (photometrically), DNA-binding activity of nuclear factor-kappaB (ELISA) and plasma carotenoid/alpha-tocopherol levels (HPLC-DAD). During intervention with the fruit juice, a decrease of oxidative DNA damage (p<5x10(-4)) and an increase of reduced glutathione (p<5x10(-4)) and of glutathione status (p<0.05) were observed, which returned to the run-in levels in the subsequent wash-out phase. The other biomarkers were not significantly modulated by the juice supplement. Intervention with the control juice did not result in reduction of oxidative damage. In conclusion, the fruit juice clearly reduces oxidative cell damage in healthy probands.  相似文献   

6.
Oxidative stress has been linked to the development of various chronic diseases. Vegetables and fruits, which contain polyphenols, were shown to have protective effects. (-)-Epigallocatechin-3-gallate (EGCG), a polyphenol abundant in tea, has been shown to have antioxidant activities in cell-free conditions and this study focused on the effect of cellular EGCG. Using an intestinal cell model to examine the oxidative stress induced by hydroxyl radicals, we report here that physiological concentrations (0.1-1 microM) of EGCG have dose- and incubation duration-dependent cell-associated lipid antioxidant activity (measuring malondialdehyde production). Vitamin E and vitamin C at 10-40 microM also showed cell-associated lipid antioxidant activities under shorter incubation durations. When EGCG was included in the incubation with vitamin E or C, more antioxidant activities were consistently observed than when vitamins were added alone. Catechin (widely present in fruits and vegetables) at 1 microM also significantly increased the antioxidant activity of vitamins E and C. Previous studies examining cell-associated activity of EGCG mainly focused on the 10-100 microM concentration range. Our results suggest that although the physiological level (0.1-1 microM) of dietary catechins is much lower than that of vitamins, they further contribute to the total antioxidant capacity even in the presence of vitamins.  相似文献   

7.
Green tea polyphenols exert a wide range of biochemical and pharmacological effects, and have been shown to possess antimutagenic and anticarcinogenic properties. Oxidative stress is involved in the pathogenesis of Parkinson's disease. However, although green tea polyphenols may be expected to inhibit the progression of Parkinson's disease on the basis of their known antioxidant activity, this has not previously been established. In the present study, we evaluated the neuroprotective effects of green tea polyphenols in the Parkinson's disease pathological cell model. The results show that the natural antioxidants have significant inhibitory effects against apoptosis induced by oxidative stress. 6-Hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells was chosen as the in vitro model of Parkinson's disease in our study. Apoptotic characteristics of PC12 cells were assessed by MTT assay, flow cytometry, fluorescence microscopy and DNA fragmentation. Green tea polyphenols and their major component, EGCG at a concentration of 200 microM, exert significant protective effects against 6-OHDA-induced PC12 cell apoptosis. EGCG is more effective than the mixture of green tea polyphenols. The antioxidant function of green tea polyphenols may account for this neuroprotective effect. The present study supports the notion that green tea polyphenols have the potential to be effective as neuropreventive agents for the treatment of neurodegenerative diseases.  相似文献   

8.
Saffari Y  Sadrzadeh SM 《Life sciences》2004,74(12):1513-1518
Green tea polyphenols like epigallocatechin gallate (EGCG) have been proposed as a cancer chemopreventative. Several studies have shown that EGCG can act as an antioxidant by trapping proxyl radicals and inhibiting lipid peroxidation. The main propose of this study is to investigate the antioxidant capacity of EGCG using erythrocyte membrane-bound ATPases as a model. The effects of EGCG on t-butylhydroperoxide-induced lipid peroxidation and the activity of membrane-bound ATPases in human erythrocyte membranes were studied. The extent of oxidative damage in membranes was assessed by measuring lipid peroxidation, (TBARS, thiobarbituric acid reactive substances formation) and the activity of ATPases (Na(+)/K(+), Ca(2+), and CaM-activated Ca(2+) pump ATPases). EGCG blocked t-BHP induced lipid peroxidation in erythrocyte membranes, significantly (0.45 +/- 0.02 vs 0.20 +/- 0.01; t-BHP vs t-BHP + EGCG respectively, microm/L TBARS) (p < 0.05). EGCG also protected ATPases against t-BHP induced damage; for Na/K ATPase (2.4 +/- 0.2 vs 1.6 +/- 0.1 vs 2.44 +/- 0.2, nmol Pi/min/mg protein, control vs t-BHP vs t-BHP and EGCG respectively), for Ca ATPase (5.8 +/- 0.4 vs 3.9 +/- 0.3 vs 5.6 +/- 0.34, nmol Pi/min/mg protein, control vs t-BHP vs t-BHP and EGCG respectively) and for CaM-Ca ATPase (14.7 +/- 0.7 vs 7.3 +/- 0.4 vs 11.6 +/- 0.55, nmol Pi/min/mg protein, control vs t-BHP vs t-BHP and EGCG respectively) (p < 0.05). In conclusion our results indicate that EGCG is a powerful antioxidant that is capable protecting erythrocyte membrane-bound ATPases against oxidative stress.  相似文献   

9.
A novel post-addition method, based on the trapping of ABTS-radicals, is applied for studying the total antioxidant capacity of seminal plasma. A remarkable profile is observed, in which seminal plasma quenches radicals in a continuous, relatively slow fashion. Five putative antioxidants present in seminal plasma were studied using the same assay. Some of the compounds such as ascorbic acid, alpha-tocopherol and uric acid exert immediate, fast radical trapping, whereas hypotaurine and tyrosine give rise to the same slow radical trapping curve as seminal plasma. Due to this slow, continuous radical trapping, quantification of the total antioxidant capacity (expressed as trolox equivalent antioxidant capacity, TEAC) strongly depends on the chosen time point after onset of radical trapping. When determined during the slow antioxidant trapping phase, tyrosine has a powerful antioxidant capacity, which in combination with its relatively high plasma concentration makes it an important contributor to the total antioxidant capacity of seminal plasma.  相似文献   

10.
Epigallocatechin gallate, a major component of green tea polyphenols, protects against the oxidation of fat-soluble antioxidants including lutein. The current study determined the effect of a relatively high but a dietary achievable dose of lutein or lutein plus green tea extract on antioxidant status. Healthy subjects (50–70 years) were randomly assigned to one of two groups (n=20 in each group): (1) a lutein (12 mg/day) supplemented group or (2) a lutein (12 mg/day) plus green tea extract (200 mg/day) supplemented group. After 2 weeks of run-in period consuming less than two servings of lightly colored fruits and vegetables in their diet, each group was treated for 112 days while on their customary regular diets. Plasma carotenoids including lutein, tocopherols, flavanols and ascorbic acid were analyzed by HPLC-UVD and HPLC-electrochemical detector systems; total antioxidant capacity by fluorometry; lipid peroxidation by malondialdehyde using a HPLC system with a fluorescent detector and by total hydroxyoctadecadienoic acids using a GC/MS. Plasma lutein, total carotenoids and ascorbic acid concentrations of subjects in either the lutein group or the lutein plus green tea extract group were significantly increased (P<.05) at 4 weeks and throughout the 16-week study period. However, no significant changes from baseline in any biomarker of overall antioxidant activity or lipid peroxidation of the subjects were seen in either group. Our results indicate that an increase of antioxidant concentrations within a range that could readily be achieved in a healthful diet does not affect in vivo antioxidant status in normal healthy subjects when sufficient amounts of antioxidants already exist.  相似文献   

11.
Aqueous extracts of green and black teas have been shown to inhibit a variety of experimentally induced animal tumors, particularly ultraviolet (UV) B light-induced skin carcinogenesis. In the present study, we compared the effects of different extractable fractions of green and black teas on scavenging hydrogen peroxide (H2O2), and UV irradiation-induced formation of 8-hydroxy 2'-deoxyguanosine (8-OHdG) in vitro. Green and black teas have been extracted by serial chloroform, ethyl acetate and n-butanol, and divided into four subfractions designated as GT1-4 for green tea and BT1-4 for black tea, respectively. The total extracts from green and black teas exhibited a potent scavenging capacity of exogenous H2O2 in a dose-dependent manner. It appeared that the total extracts from black tea scavenged H2O2 more potently than those from green tea. When tested individually, the potency of scavenging H2O2 by green tea subfractions was: GT2 > GT3 > GT1 > GT4, whereas the order of efficacy for black tea was: BT2 > BT3 > BT4 > BT1. In addition, we demonstrated that total fractions of green and black teas substantially inhibited the induction of 8-OHdG in calf thymus by all three portions of UV spectrum (UVA, B and C). Consistent with the capacity of scavenging H2O2, the subfractions from black tea showed a greater inhibition of UV-induced 8-OHdG than those from green tea. At low concentrations, the order of potency of quenching of 8-OHdG by green tea subfractions was: GT2 > GT3 > GT4 > GT1 and the efficacy of all subfractions became similar at high concentrations. All subfractions of the black tea except BT1 strongly inhibited UV-induced 8-OHdG and the order of potency was: BT2 > BT3 > BT4 > BT1. Addition of (-)-epigallocatechin gallate (EGCG), an ingredient of green tea extract, to low concentration of green and black tea extracts substantially enhanced the scavenging of H2O2 and quenching of 8-OHdG, suggesting the important role of EGCG in the antioxidant activities of tea extracts. The potent scavenging of oxygen species and blocking of UV-induced oxidative DNA damage may, at least in part, explain the mechanism(s) by which green/black teas inhibit photocarcinogenesis.  相似文献   

12.
Introduction – Green tea, a popular drink with beneficial health properties, is a rich source of specific flavanols (polyphenols). There is a special interest in the water extraction of green tea polyphenols since the composition of the corresponding extracts is expected to reflect the one of green tea infusions consumed worldwide. Objective – To develop a microwave‐assisted water extraction (MWE) of green tea polyphenols. Methodology – MWE of green tea polyphenols has been investigated as an alternative to water extraction under conventional heating (CWE). The experimental conditions were selected after consideration of both temperature and extraction time. The efficiency and selectivity of the process were determined in terms of extraction time, total phenolic content, chemical composition (HPLC‐MS analysis) and antioxidant activity of the extracts. Results – By MWE (80°C, 30 min), the flavanol content of the extract reached 97.46 (± 0.08) mg of catechin equivalent/g of green tea extract, vs. only 83.06 (± 0.08) by CWE (80°C, 45 min). In particular, the concentration of the most bioactive flavanol EGCG was 77.14 (± 0.26) mg of catechin equivalent/g of green tea extract obtained by MWE, vs 64.18 (± 0.26) mg/g by CWE. Conclusion – MWE appears more efficient than CWE at both 80 and 100°C, particularly for the extraction of flavanols and hydroxycinnamic acids. Although MWE at 100°C typically affords higher yields in total phenols, MWE at 80°C appears more convenient for the extraction of the green tea‐specific and chemically sensitive flavanols. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
We investigated the phagocytosis-enhancing activity of green tea polyphenols, such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) catechin (+C) and strictinin, using VD3-differentiated HL60 cells. EGCG, EGC, ECG and strictinin, but not EC and +C, increased the phagocytic activity of macrophage-like cells, and a caspase inhibitor significantly inhibited phagocytic activities. These results suggest that the pyrogallol-type structure in green tea polyphenols may be important for enhancement of the phagocytic activity through caspase signaling pathways.  相似文献   

14.
The phenolic composition and antioxidant activities [TEAC, ORAC, FRAP] of consumer brews (1 tea bag in 230 ml for 1 min) of seven different brands of black tea from the British market were investigated. The main phenolic compounds identified were epigallocatechin gallate, four theaflavins, as well as epicatechin gallate, theogallin (tentative assignment), quercetin-3-rutinoside and 4-caffeoyl quinic acid. Thearubigins represented an estimated 75-82% of the total phenolics. Further, polyphenol fractions were in decreasing order theaflavins, flavan-3-ols, flavonols, gallic acids and hydroxycinnamates. On average, a cup of a consumer brew of black tea is providing polyphenols at the level of 262 mg GAE/serving, of which 65 mg were assigned to individual polyphenols. The antioxidant activity of black tea preparations is higher than that of most reported dietary agents on a daily basis. Correlations were observed between the antioxidant activities and the sum of all quantified polyphenols by HPLC analysis as well as with the total phenolics. Treatment of the black tea brew with simulated gastric juice resulted in a significant increase of the identified theaflavins implying a partial cleavage of thearubigins in the environment of the gastric lumen. Therefore, black tea can be considered to be a rich source of polyphenols and/or antioxidants.  相似文献   

15.
The oxidative stress theory of aging offers the best mechanistic elucidation of the aging phenomenon and other age-related diseases. The susceptibility of an individual depends on the antioxidant status of the body. In humans, the antioxidant system includes a number of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), nonenzymatic antioxidants such as glutathione (GSH), protein –SH, ascorbic acid, and uric acid, and dietary antioxidants. Antioxidant enzymes form the first line of defense against reactive oxygen species. In an earlier report, we showed that the plasma antioxidant potential in humans decreases as a function of age and that there are compensatory mechanisms operating in the body which are induced to maintain the antioxidant capacity during aging. In the present study, we report the relationship between human aging and antioxidant enzymes SOD and CAT; we also correlate the activity of these enzymes with the antioxidant capacity of the plasma. Our results show a significantly higher plasma SOD and CAT activity in older individuals than in younger individuals. The induction in activity of SOD and CAT during human aging may be a compensatory response of the individual to an increased oxidative stress.  相似文献   

16.
To examine the bioavailability of olive polyphenols and to correlate it with their antioxidant efficacy, plasma and urine from healthy volunteers who had consumed 20 olives were subjected to (a) GC-MS analysis for individual phenolics, (b) estimation of plasma total polyphenol content and (c) estimation of plasma total antioxidant potential. Olive polyphenols were absorbed and metabolized within the body, occurring in plasma mainly in the conjugated form with glucuronic acid and reaching C(max) in 1-2h. Excretion rates were maximum at 0-4h. Tyrosol and hydroxytyrosol increased in plasma after intervention. Total antioxidant potential increased (p<0.05). The results indicate that olive polyphenols possess good bioavailability, which is in accordance with their antioxidant efficacy.  相似文献   

17.
Oxidative stress is considered as a prominent feature of many acute and chronic diseases as well as of the normal aging process. We examined the effects of intra-peritoneal administration of catechins and EGCG as in vivo inhibitors of oxidative stress induced by ozone administration in two groups of Wistar rats. The first group was treated by intra-peritoneal administration of catechins and EGCG after the administration of ozone and the second group was pretreated by intra-peritoneal administration of catechins and EGCG prior to ozone administration. We determined in blood the activity of the enzymes superoxide dismutase and glutathione peroxidase, total antioxidant capacity, levels of copper and zinc and in urine malonaldehyde contents. Ozone administration resulted in significant reduction of glutathione peroxidase activity, plasma zinc levels and plasma and Red Blood Cells antioxidant capacity. Catechins and EGCG upregulate superoxide dismutase activity and maintain plasma and Red Blood Cells antioxidant capacity. Malonaldehyde levels at the end of the study were significantly increased only in the first group. Our data demonstrate that treatment with catechins and EGCG cannot reverse or prevent the effects of oxidative stress although some modulation occurs.  相似文献   

18.
The postulated importance of oxidative damage to DNA in aging and age-related degenerative pathologies such as cancer has prompted efforts to develop sensitive quantitation methods. 8-Hydroxy-2′-deoxyguanosine (8-OHdG) is a widely used marker for oxidative damage to DNA. To develop an immunoassay for quantitation of 8-OHdG, two monoclonal antibodies have been developed and characterized by competitive enzyme-linked immunosorbent assay (ELISA). Antibody 1F7 has 50% inhibition at 5 pmol 8-OHdG and 1 × 105 pmol dG, while antibody IF11 has 50% inhibition at 2.5 pmol 8-OHdG and 2000 pmol dG. Both antisera crossreact with guanosine and several structurally related derivatives, including 6-and 8-mercaptoguanosine, 8-bromoguanosine, 8-methylguanine, and 7-methylguanosine. Immunoaffinity columns were prepared with antibody 1F7, which exhibits higher selectivity than 1F11, to isolate 8-OHdG from DNA hydrolyzates followed by ELISA quantitation with antibody 1F11. This method allows the analysis of approximately one 8-OHdG/105 dG using 100μg DNA. To validate the assay, DNA extracted from human placental tissues were assayed by both ELISA and HPLC with electrochemical detection. Values by both methods correlated well (r = 0.87, p < 0.001), but the levels determined by ELISA were approximately sixfold higher than those determined by HPLC. This may be due to oligonucleotides detected by the ELISA but not the HPLC method or crossreactivity with other damaged bases present in the immunoaffinity purified material. Placental samples from current smokers had significantly higher 8-OHdG by ELISA than those from nonsmokers (p < 0.05). The method of immunoaffinity purification combined with ELISA quantitation has sufficient sensitivity for detecting 8-OHdG in human DNA samples. Although absolute values are higher than those determined by HPLC, the method provides a good alternative to the HPLC-EC method for monitoring relative oxidative damage in molecular epidemiological studies.  相似文献   

19.
Green tea (Camellia sinensis) is rich in catechins, of which (−)-epigallocatechin-3-gallate (EGCG) is the most abundant. Studies in animal models of carcinogenesis have shown that green tea and EGCG can inhibit tumorigenesis during the initiation, promotion and progression stages. Many potential mechanisms have been proposed including both antioxidant and pro-oxidant effects, but questions remain regarding the relevance of these mechanisms to cancer prevention. In the present review, we will discuss the redox chemistry of the tea catechins and the current literature on the antioxidant and pro-oxidative effects of the green tea polyphenols as they relate to cancer prevention. We report that although the catechins are chemical antioxidants which can quench free radical species and chelate transition metals, there is evidence that some of the effects of these compounds may be related to induction of oxidative stress. Such pro-oxidant effects appear to be responsible for the induction of apoptosis in tumor cells. These pro-oxidant effects may also induce endogenous antioxidant systems in normal tissues that offer protection against carcinogenic insult. This review is meant point out understudied areas and stimulate research on the topic with the hope that insights into the mechanisms of cancer preventive activity of tea polyphenols will result.  相似文献   

20.
Epigallocatechin-3-gallate (EGCG) is a major component of green tea polyphenols which displays potential properties of anticancer and neuroprotection. Here we show that protection of motor neuron by EGCG is associated with regulating glutamate level in organotypic culture of rat spinal cord. In this model, EGCG blocked glutamate excitotoxicity caused by threohydroxyaspartate, an inhibitor of glutamate transporter. This property of EGCG may be not due to its intrinsic antioxidative activity, because another antioxidant could not regulate glutamate level under the same condition. These results show that EGCG may be a potential therapeutic candidate for neurodegenerative diseases involving glutamate excitotoxicity such as ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号